

Welcome to **E-XFL.COM**

Understanding <u>Embedded - DSP (Digital Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital Signal Processors)</u>

Details	
Product Status	Obsolete
Туре	SC140 Core
Interface	DSI, Ethernet, RS-232
Clock Rate	400MHz
Non-Volatile Memory	External
On-Chip RAM	1.436MB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	431-BFBGA, FCBGA
Supplier Device Package	431-FCPBGA (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmsc8122tmp6400v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Pin A	ssignments4	Figure 10.Internal Tick Spacing for Memory Controller Signals 22	2
	1.1	FC-PBGA Ball Layout Diagrams4	Figure 11. SIU Timing Diagram	5
	1.2	Signal List By Ball Location7	Figure 12.CLKOUT and CLKIN Signals	3
2	Elect	rical Characteristics	Figure 13.DMA Signals	7
	2.1	Maximum Ratings	Figure 14.Asynchronous Single- and Dual-Strobe Modes Read	
	2.2	Recommended Operating Conditions14	Timing Diagram)
	2.3	Thermal Characteristics	Figure 15.Asynchronous Single- and Dual-Strobe Modes Write	
	2.4	DC Electrical Characteristics15	Timing Diagram)
	2.5	AC Timings	Figure 16. Asynchronous Broadcast Write Timing Diagram 30)
3	Hard	ware Design Considerations39	Figure 17.DSI Synchronous Mode Signals Timing Diagram 31	l
	3.1	Start-up Sequencing Recommendations39	Figure 18.TDM Inputs Signals	2
	3.2	Power Supply Design Considerations	Figure 19.TDM Output Signals	2
	3.3	Connectivity Guidelines	Figure 20.UART Input Timing	3
	3.4	External SDRAM Selection	Figure 21.UART Output Timing	3
	3.5	Thermal Considerations	Figure 22.Timer Timing	ļ
4	Orde	ring Information	Figure 23.MDIO Timing Relationship to MDC	ļ
5	Pack	age Information	Figure 24.MII Mode Signal Timing	5
6	Prod	uct Documentation	Figure 25.RMII Mode Signal Timing	
7	Revis	sion History	Figure 26.SMII Mode Signal Timing	3
1 :	-+ -+	Eiguros	Figure 27.GPIO Timing	7
		Figures	Figure 28.EE Pin Timing	
		MSC8122 Block Diagram	Figure 29.Test Clock Input Timing Diagram 38	
		StarCore SC140 DSP Extended Core Block Diagram 3	Figure 30.Boundary Scan (JTAG) Timing Diagram	3
_		MSC8122 Package, Top View	Figure 31.Test Access Port Timing Diagram	
		MSC8122 Package, Bottom View	Figure 32.TRST Timing Diagram	
		Overshoot/Undershoot Voltage for V _{IH} and V _{IL} 16	Figure 33.Core Power Supply Decoupling)
		Start-Up Sequence: V _{DD} and V _{DDH} Raised Together 17	Figure 34.V _{CCSYN} Bypass	l
Fig	ure 7.	Start-Up Sequence: V _{DD} Raised Before V _{DDH} with CLKIN	Figure 35.MSC8122 Mechanical Information, 431-pin FC-PBGA	
		Started with V _{DDH}	Package	ļ
		Power-Up Sequence for V _{DDH} and V _{DD} /V _{CCSYN} 18		
Fig	ure 9.	Timing Diagram for a Reset Configuration Write 21		

1 Pin Assignments

This section includes diagrams of the MSC8122 package ball grid array layouts and pinout allocation tables.

1.1 FC-PBGA Ball Layout Diagrams

Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.

1.2 Signal List By Ball Location

Table 1 presents signal list sorted by ball number. -

Table 1. MSC8122 Signal Listing by Ball Designator

	Table 1. WOCO122 Signal Listing by Ball Designator								
Des.	Signal Name	Des.	Signal Name						
В3	V_{DD}	C18	GPIO1/TIMER0/CHIP_ID1/IRQ5/ETHTXD1						
B4	GND	C19	GPIO7/TDM3RCLK/IRQ5/ETHTXD3						
B5	GND	C20	GPIO3/TDM3TSYN/IRQ1/ETHTXD2						
В6	NMI_OUT	C21	GPIO5/TDM3TDAT/IRQ3/ETHRXD3						
B7	GND	C22	GPIO6/TDM3RSYN/IRQ4/ETHRXD2						
В8	V_{DD}	D2	TDI						
В9	GND	D3	EE0						
B10	V_{DD}	D4	EE1						
B11	GND	D5	GND						
B12	V_{DD}	D6	V_{DDH}						
B13	GND	D7	HCID2						
B14	V_{DD}	D8	HCID3/HA8						
B15	GND	D9	GND						
B16	V_{DD}	D10	V_{DD}						
B17	GND	D11	GND						
B18	V_{DD}	D12	V_{DD}						
B19	GPIO0/CHIP_ID0/IRQ4/ETHTXD0	D13	GND						
B20	V_{DD}	D14	V_{DD}						
B21	V_{DD}	D15	V_{DD}						
B22	GND	D16	GPIO31/TIMER3/SCL						
C2	GND	D17	GPIO29/CHIP_ID3/ETHTX_EN						
C3	V_{DD}	D18	V_{DDH}						
C4	TDO	D19	GPIO4/TDM3TCLK/IRQ2/ETHTX_ER						
C5	SRESET	D20	V_{DDH}						
C6	GPIO28/UTXD/DREQ2	D21	GND						
C7	HCID1	D22	GPIO8/TDM3RDAT/IRQ6/ETHCOL						
C8	GND	E2	TCK						
C9	V_{DD}	E3	TRST						
C10	GND	E4	TMS						
C11	V_{DD}	E5	HRESET						
C12	GND	E6	GPIO27/URXD/DREQ1						
C13	V_{DD}	E7	HCID0						
C14	GND	E8	GND						
C15	GND	E9	V_{DD}						
C16	GPIO30/TIMER2/TMCLK/SDA	E10	GND						
C17	GPIO2/TIMER1/CHIP_ID2/IRQ6	E11	V_{DD}						

Table 1. MSC8122 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
W15	V_{DDH}	AA9	V_{DDH}
W16	HD33/D33/reserved	AA10	HD54/D54/ETHTX_EN
W17	V _{DDH}	AA11	HD52/D52
W18	HD32/D32/reserved	AA12	V_{DDH}
W19	GND	AA13	GND
W20	GND	AA14	V_{DDH}
W21	A7	AA15	HD46/D46/ETHTXT0
W22	A6	AA16	GND
Y2	HD7	AA17	HD42/D42/ETHRXD2/reserved
Y3	HD15	AA18	HD38/D38/reserved
Y4	V_{DDH}	AA19	HD35/D35/reserved
Y5	HD9	AA20	A0
Y6	V_{DD}	AA21	A2
Y7	HD60/D60/ETHCOL/reserved	AA22	A3
Y8	HD58/D58/ETHMDC	AB2	GND
Y9	GND	AB3	HD13
Y10	V_{DDH}	AB4	HD11
Y11	HD51/D51	AB5	HD8
Y12	GND	AB6	HD62/D62
Y13	V_{DDH}	AB7	HD61/D61
Y14	HD43/D43/ETHRXD3/reserved	AB8	HD57/D57/ETHRX_ER
Y15	GND	AB9	HD56/D56/ETHRX_DV/ETHCRS_DV
Y16	V_{DDH}	AB10	HD55/D55/ETHTX_ER/reserved
Y17	GND	AB11	HD53/D53
Y18	HD37/D37/reserved	AB12	HD50/D50
Y19	HD34/D34/reserved	AB13	HD49/D49/ETHTXD3/reserved
Y20	V _{DDH}	AB14	HD48/D48/ETHTXD2/reserved
Y21	A4	AB15	HD47/D47/ETHTXD1
Y22	A5	AB16	HD45/D45
AA2	V_{DD}	AB17	HD44/D44
AA3	HD14	AB18	HD41/D41/ETHRXD1
AA4	HD12	AB19	HD39/D39/reserved
AA5	HD10	AB20	HD36/D36/reserved
AA6	HD63/D63	AB21	A1
AA7	HD59/D59/ETHMDIO	AB22	V_{DD}
AA8	GND		

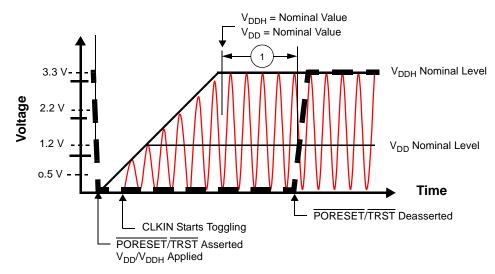


Figure 6. Start-Up Sequence: V_{DD} and V_{DDH} Raised Together



Figure 7. Start-Up Sequence: V_{DD} Raised Before V_{DDH} with CLKIN Started with V_{DDH}

Table 9.	System	Clock I	Parameters
----------	---------------	---------	-------------------

Characteristic	Min	Max	Unit
Phase jitter between BCLK and CLKIN	_	0.3	ns
CLKIN frequency	20	see Table 8	MHz
CLKIN slope	_	3	ns
CLKIN period jitter ¹	_	150	ps
CLKIN jitter spectrum	150	_	KHz
PLL input clock (after predivider)	20	100	MHz
PLL output frequency (VCO output)	800		MHz
300 MHz core		1200	MHz
400 MHz core		1600	MHz
500 MHz core		2000	MHz
CLKOUT frequency jitter ¹	_	200	ps
CLKOUT phase jitter ¹ with CLKIN phase jitter of ±100 ps.	_	500	ps

Not tested. Guaranteed by design.

2.5.4 **Reset Timing**

The MSC8122 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- Bus monitor reset
- Host reset command through JTAG

All MSC8122 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. Table 10 describes the reset sources.

Table 10. Reset Sources

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC8122 and configures various attributes of the MSC8122. On PORESET, the entire MSC8122 device is reset. SPLL states is reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The clock mode (MODCK bits), reset configuration mode, boot mode, Chip ID, and use of either a DSI 64 bits port or a System Bus 64 bits port are configured only when PORESET is asserted.
External hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC8122. While HRESET is asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The most configurable features are reconfigured. These features are defined in the 32-bit hard reset configuration word described in Hard Reset Configuration Word section of the Reset chapter in the MSC8122 Reference Manual.
External soft reset (SRESET)	Input/ Output	Initiates the soft reset flow. The MSC8122 detects an external assertion of SRESET only if it occurs while the MSC8122 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is driven, the SC140 extended cores are reset, and system configuration is maintained.
Software watchdog reset	Internal	When the MSC8122 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC8122 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
Host reset command through the TAP	Internal	When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the soft reset signal and an internal soft reset sequence is generated.

MSC8122 Quad Digital Signal Processor Data Sheet, Rev. 16

Table 11 summarizes the reset actions that occur as a result of the different reset sources.

Table 11. Reset Actions for Each Reset Source

Reset Action/Reset Source	Power-On Reset (PORESET)	Hard Reset (HRESET)	Soft	Reset (SRESET)
Reset Action/Reset Source	External only	External or Internal (Software Watchdog or Bus Monitor)	External	JTAG Command: EXTEST, CLAMP, or HIGHZ
Configuration pins sampled (Refer to Section 2.5.4.1 for details).	Yes	No	No	No
SPLL state reset	Yes	No	No	No
System reset configuration write through the DSI	Yes	No	No	No
System reset configuration write though the system bus	Yes	Yes	No	No
HRESET driven	Yes	Yes	No	No
SIU registers reset	Yes	Yes	No	No
IPBus modules reset (TDM, UART, Timers, DSI, IPBus master, GIC, HS, and GPIO)	Yes	Yes	Yes	Yes
SRESET driven	Yes	Yes	Yes	Depends on command
SC140 extended cores reset	Yes	Yes	Yes	Yes
MQBS reset	Yes	Yes	Yes	Yes

2.5.4.1 Power-On Reset (PORESET) Pin

Asserting $\overline{\text{PORESET}}$ initiates the power-on reset flow. $\overline{\text{PORESET}}$ must be asserted externally for at least 16 CLKIN cycles after V_{DD} and V_{DDH} are both at their nominal levels.

2.5.4.2 Reset Configuration

The MSC8122 has two mechanisms for writing the reset configuration:

- Through the direct slave interface (DSI)
- Through the system bus. When the reset configuration is written through the system bus, the MSC8122 acts as a configuration master or a configuration slave. If configuration slave is selected, but no special configuration word is written, a default configuration word is applied.

Fourteen signal levels (see **Chapter 1** for signal description details) are sampled on PORESET deassertion to define the Reset Configuration Mode and boot and operating conditions:

- RSTCONF
- CNFGS
- DSISYNC
- DSI64
- CHIP_ID[0-3]
- BM[0-2]
- SWTE
- MODCK[1–2]

21

2.5.4.3 Reset Timing Tables

Table 12 and **Figure 9** describe the reset timing for a reset configuration write through the direct slave interface (DSI) or through the system bus.

Table 12. Timing for a Reset Configuration Write through the DSI or System Bus

No.	Characteristics	Expression	Min	Max	Unit
1	Required external PORESET duration minimum CLKIN = 20 MHz CLKIN = 100 MHz (300 MHz core) CLKIN = 133 MHz (400 MHz core) CLKIN = 166 MHz (500 MHz core)	16/CLKIN	800 160 120 96	_ _ _ _	ns ns ns
2	Delay from deassertion of external PORESET to deassertion of internal PORESET • CLKIN = 20 MHz to 166 MHz	1024/CLKIN	6.17	51.2	μs
3	Delay from de-assertion of internal PORESET to SPLL lock CLKIN = 20 MHz (RDF = 1) CLKIN = 100 MHz (RDF = 1) (300 MHz core) CLKIN = 133 MHz (RDF = 2) (400 MHz core) CLKIN = 166 MHz (RDF = 2) (500 MHz core)	6400/(CLKIN/RDF) (PLL reference clock-division factor)	320 64 96 77	320 64 96 77	hs hs hs
5	Delay from SPLL to HRESET deassertion • REFCLK = 40 MHz to 166 MHz	512/REFCLK	3.08	12.8	μs
6	Delay from SPLL lock to SRESET deassertion • REFCLK = 40 MHz to 166 MHz	515/REFCLK	3.10	12.88	μs
7	Setup time from assertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0-3], BM[0-2], SWTE, and MODCK[1-2] before deassertion of PORESET		3	_	ns
8	Hold time from deassertion of PORESET to deassertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0-3], BM[0-2], SWTE, and MODCK[1-2]		5	_	ns
Note:	Timings are not tested, but are guaranteed by design.				

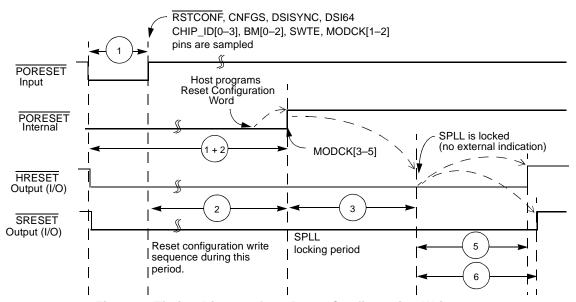


Figure 9. Timing Diagram for a Reset Configuration Write

The UPM machine and GPCM machine outputs change on the internal tick selected by the memory controller configuration. The AC timing specifications are relative to the internal tick. SDRAM machine outputs change only on the REFCLK rising edge.

Table 14. AC Timing for SIU Inputs

		٧	alue for	Bus Spe	ed in MHz			
		Ref = CLKIN			Ref = CLKOUT			
No.	Characteristic		1.2 V	1.2 V	1.2 V	Units		
		100/ 133	133	166	133			
10	Hold time for all signals after the 50% level of the REFCLK rising edge	0.5	0.5	0.5	0.5	ns		
11a	ARTRY/ABB set-up time before the 50% level of the REFCLK rising edge	3.1	3.0	3.0	3.0	ns		
11b	DBG/DBB/BG/BR/TC set-up time before the 50% level of the REFCLK rising edge	3.6	3.3	3.3	3.3	ns		
11c	AACK set-up time before the 50% level of the REFCLK rising edge	3.0	2.9	2.9	2.9	ns		
11d	TA/TEA/PSDVAL set-up time before the 50% level of the REFCLK rising edge • Data-pipeline mode	3.5	3.4	3.4	3.4	ns		
	Non-pipeline mode	4.4	4.0	4.0	4.0	ns		
12	Data bus set-up time before REFCLK rising edge in Normal mode • Data-pipeline mode • Non-pipeline mode	1.9 4.2	1.8 4.0	1.7 4.0	1.8 4.0	ns ns		
13 ¹	Data bus set-up time before the 50% level of the REFCLK rising edge in ECC and PARITY modes • Data-pipeline mode	2.0	2.0	2.0	2.0	ns		
	Non-pipeline mode	8.2	7.3	7.3	7.3	ns		
14 ¹	DP set-up time before the 50% level of the REFCLK rising edge • Data-pipeline mode • Non-pipeline mode	2.0 7.9	2.0 6.1	2.0 6.1	2.0 6.1	ns ns		
15a	TS and Address bus set-up time before the 50% level of the REFCLK rising edge Extra cycle mode (SIUBCR[EXDD] = 0) No extra cycle mode (SIUBCR[EXDD] = 1)	4.2 5.5	3.8 5.0	3.8 5.0	3.8 5.0	ns ns		
15b	Address attributes: TT/TBST/TSZ/GBL set-up time before the 50% level of the REFCLK rising edge Extra cycle mode (SIUBCR[EXDD] = 0) No extra cycle mode (SIUBCR[EXDD] = 1)	3.7 4.8	3.5 4.4	3.5 4.4	3.5 4.4	ns ns		
16	PUPMWAIT signal set-up time before the 50% level of the REFCLK rising edge	3.7	3.7	3.7	3.7	ns		
17	IRQx setup time before the 50% level; of the REFCLK rising edge ³	4.0	4.0	4.0	4.0	ns		
18	IRQx minimum pulse width ³	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	ns		

Notes:

- 1. Timings specifications 13 and 14 in non-pipeline mode are more restrictive than MSC8102 timings.
 - 2. Values are measured from the 50% TTL transition level relative to the 50% level of the REFCLK rising edge.
 - 3. Guaranteed by design.

Table 15. AC Timing for SIU Outputs

		Value for Bus Speed in MHz ³					
		R	ef = CLK	IN	Ref = CLKOUT		
No.	Characteristic		1.2 V	1.2 V	1.2 V	Units	
		100/ 133	133	166	100/133		
30 ²	Minimum delay from the 50% level of the REFCLK for all signals	0.9	0.8	0.8	1.0	ns	
31	PSDVAL/TEA/TA max delay from the 50% level of the REFCLK rising edge	6.0	4.9	4.9	5.8	ns	
32a	Address bus max delay from the 50% level of the REFCLK rising edge • Multi-master mode (SIUBCR[EBM] = 1) • Single-master mode (SIUBCR[EBM] = 0)	6.4 5.3	5.5 4.2	5.5 3.9	6.4 5.1	ns ns	
32b	Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50% level of the REFCLK rising edge	6.4	5.1	5.1	6.0	ns	
32c	Address attributes: TT[2–4]/TC max delay from the 50% level of the REFCLK rising edge	6.9	5.7	5.7	6.6	ns	
32d	BADDR max delay from the 50% level of the REFCLK rising edge	5.2	4.2	4.2	5.1	ns	
33a	Data bus max delay from the 50% level of the REFCLK rising edge • Data-pipeline mode • Non-pipeline mode	4.8 7.1	3.9 6.1	3.7 6.1	4.8 7.0	ns ns	
33b	DP max delay from the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode	6.0 7.5	5.3 6.5	5.3 6.5	6.2 7.4	ns ns	
34	Memory controller signals/ALE/CS[0–4] max delay from the 50% level of the REFCLK rising edge	5.1	4.2	3.9	5.1	ns	
35a	DBG/BG/BR/DBB max delay from the 50% level of the REFCLK rising edge	6.0	4.7	4.7	5.6	ns	
35b	AACK/ABB/TS/CS[5–7] max delay from the 50% level of the REFCLK rising edge	5.5	4.5	4.5	5.4	ns	

Notes:

- 1. Values are measured from the 50% level of the REFCLK rising edge to the 50% signal level and assume a 20 pF load except where otherwise specified.
- 2. Except for specification 30, which is specified for a 10 pF load, all timings in this table are specified for a 20 pF load. Decreasing the load results in a timing decrease at the rate of 0.3 ns per 5 pF decrease in load. Increasing the load results in a timing increase at the rate of 0.15 ns per 5 pF increase in load.
- 3. The maximum bus frequency depends on the mode:
 - In 60x-compatible mode connected to another MSC8122 device, the frequency is determined by adding the input and output longest timing values, which results in the total delay for 20 pF output capacitance. You must also account for other influences that can affect timing, such as on-board clock skews, on-board noise delays, and so on.
 - In single-master mode, the frequency depends on the timing of the devices connected to the MSC8122.
 - To achieve maximum performance on the bus in single-master mode, disable the DBB signal by writing a 1 to the SIUMCR[BDD] bit. See the SIU chapter in the MSC8122 Reference Manual for details.

2.5.5.2 CLKIN to CLKOUT Skew

Table 17 describes the CLKOUT-to-CLKIN skew timing.

Table 16. CLKOUT Skew

No.	Characteristic	Min ¹	Max ¹	Units
20	Rise-to-rise skew			
	• V _{DD} = 1.1 V	0.0	0.95	ns
	• V _{DD} = 1.2 V	0.0	0.85	ns
21	Fall-to-fall skew			
	• V _{DD} = 1.1 V	-1.5	1.0	ns
	• V _{DD} = 1.2 V	-0.8	1.0	ns
22	CLKOUT phase (1.2 V, 133 MHz)			
	Phase high	2.8	_	ns
	Phase low	2.8	_	ns
23	CLKOUT phase (1.1 V, 133 MHz)			
	Phase high	2.2	_	ns
	Phase low	2.2	_	ns
24	CLKOUT phase (1.1 V, 100 MHz)			
	Phase high	3.3	_	ns
	Phase low	3.3	_	ns

Notes:

- 1. A positive number indicates that CLKOUT precedes CLKIN, A negative number indicates that CLKOUT follows CLKIN.
- 2. Skews are measured in clock mode 29, with a CLKIN:CLKOUT ratio of 1:1. The same skew is valid for all clock modes.
- 3. CLKOUT skews are measured using a load of 10 pF.
- 4. CLKOUT skews and phase are not measured for 500/166 Mhz parts because these parts only use CLKIN mode.

For designs that use the CLKOUT synchronization mode, use the skew values listed in **Table 16** to adjust the rise-to-fall timing values specified for CLKIN synchronization. **Figure 12** shows the relationship between the CLKOUT and CLKIN timings.

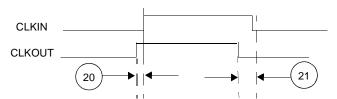
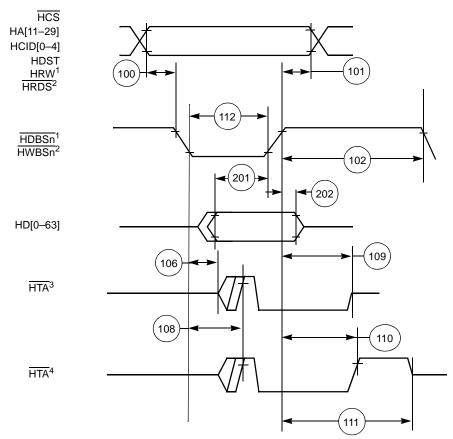
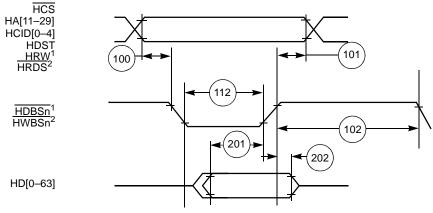



Figure 12. CLKOUT and CLKIN Signals.

NXP

Figure 15 shows DSI asynchronous write signals timing.



Notes:

- 1. Used for single-strobe mode access.
- 2. Used for dual-strobe mode access.
- 3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- **4.** HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 15. Asynchronous Single- and Dual-Strobe Modes Write Timing Diagram

Figure 16 shows DSI asynchronous broadcast write signals timing.

Notes:

- 1. Used for single-strobe mode access.
- 2. Used for dual-strobe mode access.

Figure 16. Asynchronous Broadcast Write Timing Diagram

MSC8122 Quad Digital Signal Processor Data Sheet, Rev. 16

2.5.6.2 DSI Synchronous Mode

Table 19. DSI Inputs in Synchronous Mode

No.	Characteristic	Everession	1.1 V Core		1.2 V Core		Units
	Characteristic	Expression	Min	Max	Min	Max	Offics
120	HCLKIN cycle time ^{1,2}	HTC	10.0	55.6	10.0	55.6	ns
121	HCLKIN high pulse width	$(0.5 \pm 0.1) \times HTC$	4.0	33.3	4.0	33.3	ns
122	HCLKIN low pulse width	$(0.5 \pm 0.1) \times HTC$	4.0	33.3	4.0	33.3	ns
123	HA[11–29] inputs set-up time	_	1.2	_	1.2	_	ns
124	HD[0-63] inputs set-up time	_	0.6	_	0.4	_	ns
125	HCID[0-4] inputs set-up time	_	1.3	_	1.3	_	ns
126	All other inputs set-up time	_	1.2	_	1.2	_	ns
127	All inputs hold time	_	1.5	_	1.5	_	ns
Notes:	1. Values are based on a frequency range of 18–100 MHz.						

Refer to **Table 7** for HCLKIN frequency limits.

Table 20. DSI Outputs in Synchronous Mode

No.	Characteristic	1.1 V Core		1.2 V Core		Units	
140.	Characteristic	Min	Max	Min	Max	Omis	
128	HCLKIN high to HD[0–63] output active	output active 2.0 —				ns	
129	HCLKIN high to HD[0–63] output valid	_	_	6.3	ns		
130	HD[0–63] output hold time	1.7 —		1.7	_	ns	
131	HCLKIN high to HD[0–63] output high impedance	— 8.3		_	7.6	ns	
132	HCLKIN high to HTA output active	2.2	2.2 —		_	ns	
133	HCLKIN high to HTA output valid	— 7.4		_	5.9	ns	
134	HTA output hold time 1.7 — 1.7		1.7	_	ns		
135	HCLKIN high to HTA high impedance	- 7.5 - 6.3			ns		

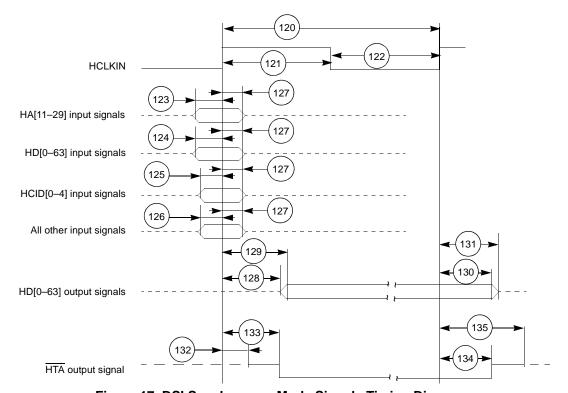


Figure 17. DSI Synchronous Mode Signals Timing Diagram

MSC8122 Quad Digital Signal Processor Data Sheet, Rev. 16

2.5.7 TDM Timing

Table 21. TDM Timing

No.	Characteristic	Expression 1.1		1.1 V Core		1.2 V Core		
NO.	Characteristic	Expression	Min	Max	Min	Max	Units	
300	TDMxRCLK/TDMxTCLK	TC ¹	16	_	16	_	ns	
301	TDMxRCLK/TDMxTCLK high pulse width	$(0.5 \pm 0.1) \times TC$	7	7 —		_	ns	
302	TDMxRCLK/TDMxTCLK low pulse width	$(0.5\pm0.1)\times TC$	7 —		7	_	ns	
303	TDM receive all input set-up time		1.3	1.3 —		_	ns	
304	TDM receive all input hold time		1.0	1.0 —		_	ns	
305	TDMxTCLK high to TDMxTDAT/TDMxRCLK output active ^{2,3}		2.8 —		2.8	_	ns	
306	TDMxTCLK high to TDMxTDAT/TDMxRCLK output		— 10.0 — 8.8		8.8	ns		
307	All output hold time ⁴		2.5	2.5 — 2.5		_	ns	
308	TDMxTCLK high to TDmXTDAT/TDMxRCLK output high impedance ^{2,3}		_	10.7	_	10.5	ns	
309	TDMxTCLK high to TDMXTSYN output valid ²	_ 9		9.7	_	8.5	ns	
310	TDMxTSYN output hold time ⁴		2.5 — 2.5 —		ns			

Notes:

- 1. Values are based on a a maximum frequency of 62.5 MHz. The TDM interface supports any frequency below 62.5 MHz. Devices operating at 300 MHz are limited to a maximum TDMxRCLK/TDMxTCLK frequency of 50 MHz.
- 2. Values are based on 20 pF capacitive load.
- 3. When configured as an output, TDMxRCLK acts as a second data link. See the MSC8122 Reference Manual for details.
- 4. Values are based on 10 pF capacitive load.

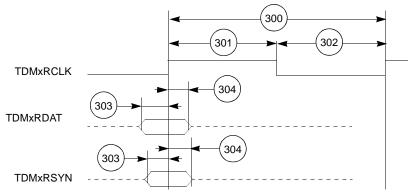


Figure 18. TDM Inputs Signals

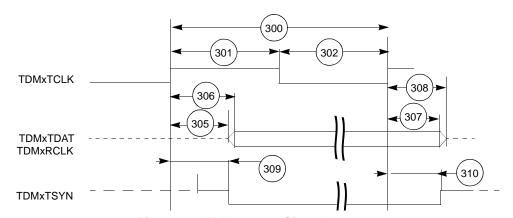


Figure 19. TDM Output Signals

2.5.8 UART Timing

Table 22. UART Timing

No.	Characteristics	Expression	Min	Max	Unit
400	URXD and UTXD inputs high/low duration	16 × T _{REFCLK}	160.0	_	ns
401	URXD and UTXD inputs rise/fall time			10	ns
402	UTXD output rise/fall time			10	ns

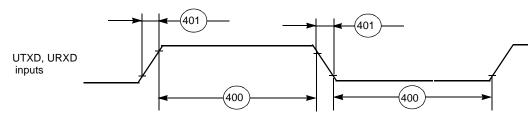


Figure 20. UART Input Timing

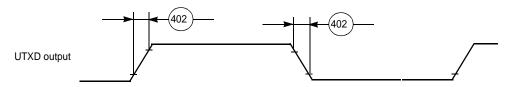


Figure 21. UART Output Timing

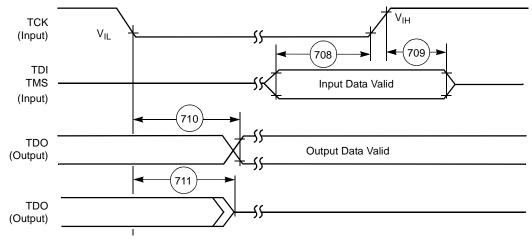


Figure 31. Test Access Port Timing Diagram

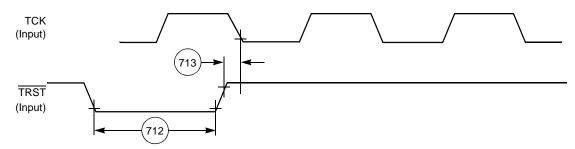


Figure 32. TRST Timing Diagram

3 Hardware Design Considerations

The following sections discuss areas to consider when the MSC8122 device is designed into a system.

3.1 Start-up Sequencing Recommendations

Use the following guidelines for start-up and power-down sequences:

- Assert PORESET and TRST before applying power and keep the signals driven low until the power reaches the required minimum power levels. This can be implemented via weak pull-down resistors.
- CLKIN can be held low or allowed to toggle during the beginning of the power-up sequence. However, CLKIN must start toggling before the deassertion of PORESET and after both power supplies have reached nominal voltage levels.
- If possible, bring up V_{DD}/V_{CCSYN} and V_{DDH} together. If it is not possible, raise V_{DD}/V_{CCSYN} first and then bring up V_{DDH}. V_{DDH} should not exceed V_{DD}/V_{CCSYN} until V_{DD}/V_{CCSYN} reaches its nominal voltage level. Similarly, bring both voltage levels down together. If that is not possible reverse the power-up sequence, with V_{DDH} going down first and then V_{DD}/V_{CCSYN}.

Note: This recommended power sequencing for the MSC8122 is different from the MSC8102. See **Section 2.5.2** for start-up timing specifications.

External voltage applied to any input line must not exceed the I/O supply V_{DDH} by more than 0.8 V at any time, including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes. This is an acceptable exception to the rule. However, each such input can draw up to 80 mA per input pin per device in the system during start-up.

During the power-up sequence, if V_{DD} rises before V_{DDH} (see **Figure 6**), current can pass from the V_{DD} supply through the device ESD protection circuits to the V_{DDH} supply. The ESD protection diode can allow this to occur when V_{DD} exceeds V_{DDH} by more than 0.8 V. Design the power supply to prevent or minimize this effect using one of the following optional methods:

3.5 Thermal Considerations

An estimation of the chip-junction temperature, T_I, in °C can be obtained from the following:

$$T_J = T_A + (R_{\Theta JA} \times P_D)$$
 Eqn. 1

where

 T_A = ambient temperature near the package (°C)

 R_{AJA} = junction-to-ambient thermal resistance (°C/W)

 $P_D = P_{INT} + P_{I/O} = power dissipation in the package (W)$

 $P_{INT} = I_{DD} \times V_{DD} = internal power dissipation (W)$

 $P_{I/O}$ = power dissipated from device on output pins (W)

The power dissipation values for the MSC8122 are listed in **Table 2-3**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm^2 with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip. You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case that is painted black. The MSC8122 device case surface is too shiny (low emissivity) to yield an accurate infrared temperature measurement. Use the following equation to determine T_J :

$$T_I = T_T + (\theta_{IA} \times P_D)$$
 Eqn. 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C)

 θ_{JA} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

Note: See MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601/D).

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

D		Core	Operating	Core	Order Number			
Part	Package Type	Voltage	Temperature	Frequency (MHz)	Lead-Free	Lead-Bearing		
MSC8122	Flip Chip Plastic Ball Grid Array (FC-PBGA)	1.1 V	-40° to 105°C	300	MSC8122TVT4800V	MSC8122TMP4800V		
				400	MSC8122TVT6400V	MSC8122TMP6400V		
		1.2 V	-40° to 105°C	400	MSC8122TVT6400	MSC8122TMP6400		
			0° to 90°C	500	MSC8122VT8000	MSC8122MP8000		

45

7 Revision History

Table 31 provides a revision history for this data sheet.

Table 31. Document Revision History

Revision	Date	Description
0	May 2004	Initial release.
1	Jun. 2004	 Updated timing number 32b. Updated DSI timing specifications.
2	Sep 2004	 New orderable parts added with other core voltage and temperature options. Updated thermal characteristics. In Table 2-14, removed references to 30 pF. Design guidelines and layout recommendations updated.
3	Nov. 2004	 Added 500 MHz core and 166 MHz bus speed options. Definitions of GPIO[27–28] updated. Bus, TDM, and GPIO timing updated. I²C timing changed to GPIO timing. GPIO[27–28] connections updated. MWBEn replaced with correct name HWBEn. Design guidelines update.
4	Jan. 2005	 Package type changed to FC-PBGA for all frequencies. Low-voltage 300 MHz power changed to 1.1 V. HRESET and SRESET definitions updated. Undershoot and overshoot values added for V_{DDH}. RMII timing updated. Design guidelines updated and reorganized.
5	Apr. 2005	 Added 400 MHz, 1.1 V core part. Temperature range descriptions changed to standard and extended. CLKOUT timing specifications added. Device start-up guidelines added to design considerations and updated power supply guidelines. Ordering information updated.
6	May 2005	Multiple AC timing specifications updated.
7	May 2005	Multiple AC timing specifications updated.
8	Jul. 2005	Multiple AC timing specifications updated.
9	Jul. 2005	AC specification table layout modified.
10	Sep. 2005	 ETHTX_EN type and TRST description updated. Package drawing updated. Clock specifications updated. Start-up sequence updated.
11	Oct 2005	 V_{DDH} + 10% changed to V_{DDH} + 8% in Figure 2-1. V_{DDH} +20% changed to V_{DDH} + 17% in Figure 2-1.
12	Apr 2006	Reset timing updated to reflect actual values in Table 2-11.
13	Oct. 2006	Added new timings 17 and 18 for IRQ set time and pulse width in Table 2-13
14	Dec. 2007	 Converted to new data sheet format. Added PLL supply current to Table 5 in Section 2.4. Modified Figure 5 in Section 2.4 to make it clear that the time limits for undershoot referred to values below -0.3 V and not GND. Added cross-references between Sections 2.5.2 and Section 3.1 and 3.2. Added power-sequence guidelines to Sections 2.5.2. Added CLKIN jitter characteristic specifications to Table 9. Added additional guidelines to prevent reverse current to Section 3.1. Added connectivity guidelines for DSI in sliding windows mode to Section 3.3.
15	May 2008	Changed V _{IL} maximum and reference value to 0.8 V in Table 5 .
16	Dec. 2008	• Clarified the wording of note 2 in Table 15 on p. 24.

MSC8122 Quad Digital Signal Processor Data Sheet, Rev. 16

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French)

Japan:

Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

www.freescale.com/support

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™], the Freescale logo, CodeWarrior, StarCore, and QUICC Engine are trademarks of Freescale Semiconductor, Inc. RapidIO is a registered trademark of the RapidIO Trade Association. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004, 2008. All rights reserved.

Document Number: MSC8122

Rev. 16 12/2008

