

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC140 Core
Interface	DSI, Ethernet, RS-232
Clock Rate	300MHz
Non-Volatile Memory	External
On-Chip RAM	1.436MB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	431-BFBGA, FCBGA
Supplier Device Package	431-FCPBGA (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8122tmp4800v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ssignments

Des.	Signal Name	Des.	Signal Name
E12	GND	G6	HA17
E13	V _{DD}	G7	PWE0/PSDDQM0/PBS0
E14	GND	G8	V _{DD}
E15	GND	G9	V _{DD}
E16	V _{DD}	G10	IRQ3/BADDR31
E17	GND	G11	BM0/TC0/BNKSEL0
E18	GND	G12	ABB/IRQ4
E19	GPIO9/TDM2TSYN/IRQ7/ETHMDIO	G13	V _{DD}
E20	GPIO13/TDM2RCLK/IRQ11/ETHMDC	G14	IRQ7/INT_OUT
E21	GPIO10/TDM2TCLK/IRQ8/ETHRX_DV/ETHCRS_DV/NC	G15	ETHCRS/ETHRXD
E22	GPIO12/TDM2RSYN/IRQ10/ETHRXD1/ETHSYNC	G16	V _{DD}
F2	PORESET	G17	CS1
F3	RSTCONF	G18	BCTL0
F4	NMI	G19	GPIO15/TDM1TSYN/DREQ1
F5	HA29	G20	GND
F6	HA22	G21	GPIO17/TDM1TDAT/DACK1
F7	GND	G22	GPIO22/TDM0TCLK/DONE2/DRACK2
F8	V _{DD}	H2	HA20
F9	V _{DD}	H3	HA28
F10	V _{DD}	H4	V _{DD}
F11	GND	H5	HA19
F12	V _{DD}	H6	TEST
F13	GND	H7	PSDCAS/PGPL3
F14	V _{DD}	H8	PGTA/PUPMWAIT/PGPL4/PPBS
F15	ETHRX_CLK/ETHSYNC_IN	H9	V _{DD}
F16	ETHTX_CLK/ETHREF_CLK/ETHCLOCK	H10	BM1/TC1/BNKSEL1
F17	GPIO20/TDM1RDAT	H11	ARTRY
F18	GPIO18/TDM1RSYN/DREQ2	H12	AACK
F19	GPIO16/TDM1TCLK/DONE1/DRACK1	H13	DBB/IRQ5
F20	GPIO11/TDM2TDAT/IRQ9/ETHRX_ER/ETHTXD	H14	HTA
F21	GPIO14/TDM2RDAT/IRQ12/ETHRXD0/NC	H15	V _{DD}
F22	GPIO19/TDM1RCLK/DACK2	H16	TT4/CS7
G2	HA24	H17	CS4
G3	HA27	H18	GPIO24/TDM0RSYN/IRQ14
G4	HA25	H19	GPIO21/TDM0TSYN
G5	HA23	H20	V _{DD}

Table 1. MSC8122 Signal Listing by Ball Designator (continued)

Signal Name Signal Name Des. Des. M15 P12 V_{DDH} V_{CCSYN} M16 HBRST P13 GND M17 V_{DDH} P14 GND TA M18 P15 V_{DDH} BR GND M19 P16 TEA M20 V_{DDH} P17 PSDVAL P18 M21 A24 DP0/DREQ1/EXT_BR2 M22 A21 P19 N2 HD26 P20 V_{DDH} GND HD30 P21 N3 N4 HD29 P22 A19 N5 HD24 R2 HD18 PWE2/PSDDQM2/PBS2 N6 R3 V_{DDH} N7 VDDH R4 GND HWBS0/HDBS0/HWBE0/HDBE0 R5 HD22 N8 HBCS HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6 R6 N9 GND HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4 N10 R7 GND N14 R8 TSZ1 HRDS/HRW/HRDE N15 R9 TSZ3 BG IRQ1/GBL N16 R10 HCS N17 R11 V_{DD} N18 CS0 R12 V_{DD} PSDWE/PGPL1 N19 R13 V_{DD} N20 GPIO26/TDM0RDAT R14 TT0/HA7 IRQ7/DP7/DREQ4 N21 A23 R15 IRQ6/DP6/DREQ3 N22 A20 R16 IRQ3/DP3/DREQ2/EXT_BR3 P2 HD20 R17 TS P3 HD27 R18 IRQ2/DP2/DACK2/EXT_DBG2 P4 HD25 R19 Ρ5 HD23 R20 A17 HWBS3/HDBS3/HWBE3/HDBE3 P6 R21 A18 HWBS2/HDBS2/HWBE2/HDBE2 R22 A16 P7 HWBS1/HDBS1/HWBE1/HDBE1 T2 HD17 P8 P9 HCLKIN HD21 T3 P10 GND Τ4 HD1/DSISYNC P11 **GND**_{SYN} T5 HD0/SWTE

Table 1. MSC8122 Signal Listing by Ball Designator (continued)

Electrical Characteristics

2 Electrical Characteristics

This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the *MSC8122 Reference Manual*.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2 describes the maximum electrical ratings for the MSC8122.

Table 2. Absolute Maximum Rating	S
----------------------------------	---

Rating	Symbol	Value	Unit			
Core and PLL supply voltage	V _{DD}	-0.2 to 1.6	V			
I/O supply voltage	V _{DDH}	-0.2 to 4.0	V			
Input voltage	V _{IN}	-0.2 to 4.0	V			
Maximum operating temperature: • Standard range • Extended range	TJ	90 105	℃ ℃			
Minimum operating temperature • Standard range • Extended range	Т _Ј	0 40	Э° С			
Storage temperature range	T _{STG}	-55 to +150	°C			
 Functional operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond 						

the listed limits may affect device reliability or cause permanent damage.

3. Section 3.5, Thermal Considerations includes a formula for computing the chip junction temperature (T_J).

rical Characteristics

2.5 AC Timings

The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs. When systems such as DSP farms are developed using the DSI, use a device loading of 4 pF per pin. AC timings are based on a 20 pF load, except where noted otherwise, and a 50 Ω transmission line. For loads smaller than 20 pF, subtract 0.06 ns per pF down to 10 pF load. For loads larger than 20 pF, add 0.06 ns for SIU/Ethernet/DSI delay and 0.07 ns for GPIO/TDM/timer delay. When calculating overall loading, also consider additional RC delay.

2.5.1 Output Buffer Impedances

Table 6. Output Buffer Impedances

Output Buffers	Typical Impedance (Ω)			
System bus	50			
Memory controller	50			
Parallel I/O	50			
Note: These are typical values at 65°C. The impedance may vary by ±25% depending on device process and operating temperature.				

2.5.2 Start-Up Timing

Starting the device requires coordination among several input sequences including clocking, reset, and power. **Section 2.5.3** describes the clocking characteristics. **Section 2.5.4** describes the reset and power-up characteristics. You must use the following guidelines when starting up an MSC8122 device:

- **PORESET** and **TRST** must be asserted externally for the duration of the power-up sequence. See **Table 11** for timing.
- If possible, bring up the V_{DD} and V_{DDH} levels together. For designs with separate power supplies, bring up the V_{DD} levels and then the V_{DDH} levels (see **Figure 7**).
- CLKIN should start toggling at least 16 cycles (starting after V_{DDH} reaches its nominal level) before PORESET deassertion to guarantee correct device operation (see Figure 6 and Figure 7).
- CLKIN must not be pulled high during V_{DDH} power-up. CLKIN can toggle during this period.
- **Note:** See Section 3.1 for start-up sequencing recommendations and Section 3.2 for power supply design recommendations.

The following figures show acceptable start-up sequence examples. Figure 6 shows a sequence in which V_{DD} and V_{DDH} are raised together. Figure 7 shows a sequence in which V_{DDH} is raised after V_{DD} and CLKIN begins to toggle as V_{DDH} rises.

Figure 6. Start-Up Sequence: V_{DD} and V_{DDH} Raised Together

Figure 7. Start-Up Sequence: V_{DD} Raised Before V_{DDH} with CLKIN Started with V_{DDH}

In all cases, the power-up sequence must follow the guidelines shown in Figure 8.

Figure 8. Power-Up Sequence for V_{DDH} and V_{DD}/V_{CCSYN}

The following rules apply:

- 1. During time interval A, V_{DDH} should always be equal to or less than the V_{DD}/V_{CCSYN} voltage level. The duration of interval A should be kept below 10 ms.
- 2. The duration of timing interval B should be kept as small as possible and less than 10 ms.

2.5.3 Clock and Timing Signals

The following sections include a description of clock signal characteristics. **Table 7** shows the maximum frequency values for internal (Core, Reference, Bus, and DSI) and external (CLKIN and CLKOUT) clocks. The user must ensure that maximum frequency values are not exceeded.

Table '	7.	Maximum	Frequencies
---------	----	---------	-------------

Characteristic	Maximum in MHz		
Core frequency	300/400/500		
Reference frequency (REFCLK)	100/133/166		
Internal bus frequency (BLCK)	100/133/166		
DSI clock frequency (HCLKIN)			
Core frequency = 300 MHz	HCLKIN ≤ (min{70 MHz, CLKOUT})		
Core frequency = 400/500 MHz	$HCLKIN \le (min\{100 \text{ MHz}, CLKOUT\})$		
External clock frequency (CLKIN or CLKOUT)	100/133/166		

Table 8	B. C	Clock	Frequ	uencies
---------	------	-------	-------	---------

Characteristics	Symbol	300 MHz Device		400 MHz Device		500 MHz Device	
Characteristics		Min	Мах	Min	Max	Min	Max
CLKIN frequency	F _{CLKIN}	20	100	20	133.3	20	166.7
BCLK frequency	F _{BCLK}	40	100	40	133.3	40	166.7
Reference clock (REFCLK) frequency	F _{REFCLK}	40	100	40	133.3	40	166.7
Output clock (CLKOUT) frequency	F _{CLKOUT}	40	100	40	133.3	40	166.7
SC140 core clock frequency	F _{CORE}	200	300	200	400	200	500
Note: The rise and fall time of external clocks should be 3 ns maximum							

2.5.4.3 Reset Timing Tables

Table 12 and Figure 9 describe the reset timing for a reset configuration write through the direct slave interface (DSI) or through the system bus.

No.	Characteristics	Expression	Min	Max	Unit
1	Required external PORESET duration minimum • CLKIN = 20 MHz • CLKIN = 100 MHz (300 MHz core) • CLKIN = 133 MHz (400 MHz core) • CLKIN = 166 MHz (500 MHz core)	16/CLKIN	800 160 120 96	 	ns ns ns ns
2	Delay from deassertion of external PORESET to deassertion of internal PORESET • CLKIN = 20 MHz to 166 MHz	1024/CLKIN	6.17	51.2	μs
3	 Delay from de-assertion of internal PORESET to SPLL lock CLKIN = 20 MHz (RDF = 1) CLKIN = 100 MHz (RDF = 1) (300 MHz core) CLKIN = 133 MHz (RDF = 2) (400 MHz core) CLKIN = 166 MHz (RDF = 2) (500 MHz core) 	6400/(CLKIN/RDF) (PLL reference clock-division factor)	320 64 96 77	320 64 96 77	hs hs hs
5	Delay from SPLL to HRESET deassertion • REFCLK = 40 MHz to 166 MHz	512/REFCLK	3.08	12.8	μs
6	Delay from SPLL lock to SRESET deassertion • REFCLK = 40 MHz to 166 MHz	515/REFCLK	3.10	12.88	μs
7	Setup time from assertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2] before deassertion of PORESET		3	_	ns
8	Hold time from deassertion of PORESET to deassertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2]		5	—	ns
Note:	Timings are not tested, but are guaranteed by design.				

 Table 12. Timing for a Reset Configuration Write through the DSI or System Bus

rical Characteristics

System Bus Access Timing 2.5.5

Core Data Transfers 2.5.5.1

Generally, all MSC8122 bus and system output signals are driven from the rising edge of the reference clock (REFCLK). The REFCLK is the CLKIN signal. Memory controller signals, however, trigger on four points within a REFCLK cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge of REFCLK (and T3 at the falling edge), but the spacing of T2 and T4 depends on the PLL clock ratio selected, as Table 13 shows.

	Tick Spacing (T1 Occurs at the Rising Edge of REFCLK)					
BCLK/SC140 clock	T2	Т3	Τ4			
1:4, 1:6, 1:8, 1:10	1/4 REFCLK	1/2 REFCLK	3/4 REFCLK			
1:3	1/6 REFCLK	1/2 REFCLK	4/6 REFCLK			
1:5	2/10 REFCLK	1/2 REFCLK	7/10 REFCLK			

Table 13. Tick Spacing for Memory Controller Signals

Figure 10 is a graphical representation of Table 13.

Figure 10. Internal Tick Spacing for Memory Controller Signals

The UPM machine and GPCM machine outputs change on the internal tick selected by the memory controller configuration. The AC timing specifications are relative to the internal tick. SDRAM machine outputs change only on the REFCLK rising edge.

		v	Value for Bus Speed in MHz				
		R	ef = CLK	IN	Ref = CLKOUT		
No.	Characteristic	1.1 V	1.2 V	1.2 V	1.2 V	Units	
		100/ 133	133	166	133		
10	Hold time for all signals after the 50% level of the REFCLK rising edge	0.5	0.5	0.5	0.5	ns	
11a	ARTRY/ABB set-up time before the 50% level of the REFCLK rising edge	3.1	3.0	3.0	3.0	ns	
11b	DBG/DBB/BG/BR/TC set-up time before the 50% level of the REFCLK rising edge	3.6	3.3	3.3	3.3	ns	
11c	AACK set-up time before the 50% level of the REFCLK rising edge	3.0	2.9	2.9	2.9	ns	
11d	 TA/TEA/PSDVAL set-up time before the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode 	3.5 4.4	3.4 4.0	3.4 4.0	3.4 4.0	ns ns	
12	Data bus set-up time before REFCLK rising edge in Normal mode Data-pipeline mode Non-pipeline mode	1.9 4.2	1.8 4.0	1.7 4.0	1.8 4.0	ns ns	
13 ¹	Data bus set-up time before the 50% level of the REFCLK rising edge in ECC and PARITY modes • Data-pipeline mode • Non-pipeline mode	2.0 8.2	2.0 7.3	2.0 7.3	2.0 7.3	ns ns	
14 ¹	DP set-up time before the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode	2.0 7.9	2.0 6.1	2.0 6.1	2.0 6.1	ns ns	
15a	 TS and Address bus set-up time before the 50% level of the REFCLK rising edge Extra cycle mode (SIUBCR[EXDD] = 0) No extra cycle mode (SIUBCR[EXDD] = 1) 	4.2 5.5	3.8 5.0	3.8 5.0	3.8 5.0	ns ns	
15b	Address attributes: TT/TBST/TSZ/GBL set-up time before the 50% level of the REFCLK rising edge • Extra cycle mode (SIUBCR[EXDD] = 0) • No extra cycle mode (SIUBCR[EXDD] = 1)	3.7 4.8	3.5 4.4	3.5 4.4	3.5 4.4	ns ns	
16	PUPMWAIT signal set-up time before the 50% level of the REFCLK rising edge	3.7	3.7	3.7	3.7	ns	
17	$\overline{\text{IRQx}}$ setup time before the 50% level; of the REFCLK rising edge^3	4.0	4.0	4.0	4.0	ns	
18	IRQx minimum pulse width ³	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	ns	
Notes:	 Timings specifications 13 and 14 in non-pipeline mode are more r Values are measured from the 50% TTL transition level relative to Guaranteed by design. 	estrictive t the 50%	han MSC8 level of the	3102 timing REFCLK	gs. rising edge.		

Table 14. AC Timing for SIU Inputs

		V	Value for Bus Speed in MHz ³				
	Characteristic		ef = CLK	IN	Ref = CLKOUT]	
No.			1.2 V	1.2 V	1.2 V	Units	
			133	166	100/133		
30 ²	Minimum delay from the 50% level of the REFCLK for all signals	0.9	0.8	0.8	1.0	ns	
31	PSDVAL/TEA/TA max delay from the 50% level of the REFCLK rising edge		4.9	4.9	5.8	ns	
32a	Address bus max delay from the 50% level of the REFCLK rising edge • Multi-master mode (SIUBCR[EBM] = 1) • Single-master mode (SIUBCR[EBM] = 0)		5.5 4.2	5.5 3.9	6.4 5.1	ns ns	
32b	Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50% level of the REFCLK rising edge		5.1	5.1	6.0	ns	
32c	Address attributes: TT[2–4]/TC max delay from the 50% level of the REFCLK rising edge		5.7	5.7	6.6	ns	
32d	BADDR max delay from the 50% level of the REFCLK rising edge	5.2	4.2	4.2	5.1	ns	
33a	Data bus max delay from the 50% level of the REFCLK rising edgeData-pipeline modeNon-pipeline mode	4.8 7.1	3.9 6.1	3.7 6.1	4.8 7.0	ns ns	
33b	DP max delay from the 50% level of the REFCLK rising edgeData-pipeline modeNon-pipeline mode	6.0 7.5	5.3 6.5	5.3 6.5	6.2 7.4	ns ns	
34	Memory controller signals/ALE/CS[0–4] max delay from the 50% level of the REFCLK rising edge		4.2	3.9	5.1	ns	
35a	DBG/BG/BR/DBB max delay from the 50% level of the REFCLK rising edge		4.7	4.7	5.6	ns	
35b	AACK/ABB/TS/CS[5-7] max delay from the 50% level of the REFCLK rising edge		4.5	4.5	5.4	ns	
Notes:	 s: 1. Values are measured from the 50% level of the REFCLK rising edge to the 50% signal level and assume a 20 pF load except where otherwise specified. 2. Except for specification 30, which is specified for a 10 pE load, all timings in this table are specified for a 20 pE load. 						

Decreasing the load results in a timing decrease at the rate of 0.3 ns per 5 pF decrease in load. Increasing the load results in

• In 60x-compatible mode connected to another MSC8122 device, the frequency is determined by adding the input and output longest timing values, which results in the total delay for 20 pF output capacitance. You must also account for other

• To achieve maximum performance on the bus in single-master mode, disable the DBB signal by writing a 1 to the

influences that can affect timing, such as on-board clock skews, on-board noise delays, and so on.
In single-master mode, the frequency depends on the timing of the devices connected to the MSC8122.

SIUMCR[BDD] bit. See the SIU chapter in the MSC8122 Reference Manual for details.

a timing increase at the rate of 0.15 ns per 5 pF increase in load.

The maximum bus frequency depends on the mode:

Table 15. AC Timing for SIU Outputs

3.

2.5.5.3 DMA Data Transfers

Table 17 describes the DMA signal timing.

No.	Characteristic		Ref = CLKIN		Ref = CLKOUT (1.2 V only)	
		Min	Max	Min	Max	
37	DREQ set-up time before the 50% level of the falling edge of REFCLK	5.0	—	5.0	—	ns
38	DREQ hold time after the 50% level of the falling edge of REFCLK		—	0.5	—	ns
39	DONE set-up time before the 50% level of the rising edge of REFCLK	5.0	—	5.0	—	ns
40	DONE hold time after the 50% level of the rising edge of REFCLK	0.5	—	0.5		ns
41	DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge	0.5	7.5	0.5	8.4	ns

Table 17. DMA Signals

The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ according to the timings in **Table 17**. Figure 13 shows synchronous peripheral interaction.

Figure 13. DMA Signals

Figure 14 shows DSI asynchronous read signals timing.

Notes: 1. Used for single-strobe mode access.

- **2.** Used for dual-strobe mode access.
- **3.** HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 14. Asynchronous Single- and Dual-Strobe Modes Read Timing Diagram

Figure 15 shows DSI asynchronous write signals timing.

Notes: 1. Used for single-strobe mode access.

- 2. Used for dual-strobe mode access.
- 3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 15. Asynchronous Single- and Dual-Strobe Modes Write Timing Diagram

Figure 16 shows DSI asynchronous broadcast write signals timing.

Figure 16. Asynchronous Broadcast Write Timing Diagram

2.5.8 UART Timing

No.	Characteristics	Expression	Min	Max	Unit
400	URXD and UTXD inputs high/low duration	$16 imes T_{REFCLK}$	160.0	—	ns
401	URXD and UTXD inputs rise/fall time			10	ns
402	UTXD output rise/fall time			10	ns

Figure 20. UART Input Timing

Figure 21. UART Output Timing

2.5.9 Timer Timing

No.	Characteristics		Ref = CLKIN		
			Max	Onic	
500	TIMERx frequency	10.0	—	ns	
501	TIMERx Input high period	4.0	—	ns	
502	TIMERx Output low period	4.0	_	ns	
503	TIMERx Propagations delay from its clock input1.1 V core1.2 V core	3.1 2.8	9.5 8.1	ns ns	

Figure 22. Timer Timing

2.5.10 Ethernet Timing

2.5.10.1 Management Interface Timing

Table 24. Ethernet Controller Management Interface Timing

No.	Characteristics	Min	Max	Unit
801	ETHMDIO to ETHMDC rising edge set-up time	10	—	ns
802	ETHMDC rising edge to ETHMDIO hold time	10		ns

Figure 23. MDIO Timing Relationship to MDC

2.5.10.2 MII Mode Timing

No.	Characteristics	Min	Max	Unit
803	ETHRX_DV, ETHRXD[0–3], ETHRX_ER to ETHRX_CLK rising edge set-up time	3.5	—	ns
804	ETHRX_CLK rising edge to ETHRX_DV, ETHRXD[0–3], ETHRX_ER hold time			ns
805	ETHTX_CLK to ETHTX_EN, ETHTXD[0–3], ETHTX_ER output delay			
	• 1.1 V core	1	14.6	ns
	• 1.2 V core	1	12.6	ns

Figure 24. MII Mode Signal Timing

2.5.10.3 RMII Mode

No	Characteristics		1.1 V Core		1.2 V Core	
NO.	Characteristics	Min	Max	Min	Max	Unit
806	ETHTX_EN,ETHRXD[0–1], ETHCRS_DV, ETHRX_ER to ETHREF_CLK rising edge set-up time	1.6		2	—	ns
807	ETHREF_CLK rising edge to ETHRXD[0–1], ETHCRS_DV, ETHRX_ER hold time	1.6	_	1.6	-	ns
811	ETHREF_CLK rising edge to ETHTXD[0–1], ETHTX_EN output delay.	3	12.5	3	11	ns

Figure 25. RMII Mode Signal Timing

2.5.10.4 SMII Mode

No.	Characteristics	Min	Max	Unit
808	ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge set-up time		_	ns
809	ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time	1.0	_	ns
810	 ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay 1.1 V core. 1.2 V core. 		6.0 ² 5.0 ²	ns ns
Notes:	 Measured using a 5 pF load. Measured using a 15 pF load. 			

Figure 26. SMII Mode Signal Timing

2.5.11 GPIO Timing

Table 28. GPIO Timing

No.	Characteristics		Ref = CLKIN		Ref = CLKOUT (1.2 V only)	
			Max	Min	Max	
601	REFCLK edge to GPIO out valid (GPIO out delay time)		6.1		6.9	ns
602	REFCLK edge to GPIO out not valid (GPIO out hold time)		_	1.3	_	ns
603	REFCLK edge to high impedance on GPIO out	—	5.4	_	6.2	ns
604	GPIO in valid to REFCLK edge (GPIO in set-up time)	3.5	_	3.7	_	ns
605	REFCLK edge to GPIO in not valid (GPIO in hold time)	0.5	_	0.5	_	ns

Figure 27. GPIO Timing

2.5.12 EE Signals

Table	29.	EE	Pin	Timing	
IUNIO	20.			· · · · · · · · · · · · · · · · · · ·	,

Number Characteristics		Туре	Min	
65	EE0 (input)	Asynchronous	4 core clock periods	
66	EE1 (output)	Synchronous to Core clock	1 core clock period	

Notes: 1. The core clock is the SC140 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset.
 2. Refer to Table 1-4 on page 1-6 for details on EE pin functionality.

Figure 28 shows the signal behavior of the EE pins.

Figure 28. EE Pin Timing

2.5.13 JTAG Signals

Table 30. JTAG Timing

No.	Characteristics	All frequencies		Unit
		Min	Max	
700	TCK frequency of operation $(1/(T_{C} \times 4); maximum 25 MHz)$	0.0	25	MHz
701	TCK cycle time	40.0	—	ns
702	TCK clock pulse width measured at V_{M} = 1.6 V			
	• High	20.0	—	ns
	• Low	16.0	—	ns
703	TCK rise and fall times	0.0	3.0	ns

Figure 31. Test Access Port Timing Diagram

3 Hardware Design Considerations

The following sections discuss areas to consider when the MSC8122 device is designed into a system.

3.1 Start-up Sequencing Recommendations

Use the following guidelines for start-up and power-down sequences:

- Assert **PORESET** and **TRST** before applying power and keep the signals driven low until the power reaches the required minimum power levels. This can be implemented via weak pull-down resistors.
- CLKIN can be held low or allowed to toggle during the beginning of the power-up sequence. However, CLKIN must start toggling before the deassertion of PORESET and after both power supplies have reached nominal voltage levels.
- If possible, bring up V_{DD}/V_{CCSYN} and V_{DDH} together. If it is not possible, raise V_{DD}/V_{CCSYN} first and then bring up V_{DDH}. V_{DDH} should not exceed V_{DD}/V_{CCSYN} until V_{DD}/V_{CCSYN} reaches its nominal voltage level. Similarly, bring both voltage levels down together. If that is not possible reverse the power-up sequence, with V_{DDH} going down first and then V_{DD}/V_{CCSYN}.
- **Note:** This recommended power sequencing for the MSC8122 is different from the MSC8102. See Section 2.5.2 for start-up timing specifications.

External voltage applied to any input line must not exceed the I/O supply V_{DDH} by more than 0.8 V at any time, including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes. This is an acceptable exception to the rule. However, each such input can draw up to 80 mA per input pin per device in the system during start-up.

During the power-up sequence, if V_{DD} rises before V_{DDH} (see **Figure 6**), current can pass from the V_{DD} supply through the device ESD protection circuits to the V_{DDH} supply. The ESD protection diode can allow this to occur when V_{DD} exceeds V_{DDH} by more than 0.8 V. Design the power supply to prevent or minimize this effect using one of the following optional methods:

7 Revision History

Table 31 provides a revision history for this data sheet.

Table 31. Document Revision History

Revision	Date	Description	
0	May 2004	Initial release.	
1	Jun. 2004	Updated timing number 32b.Updated DSI timing specifications.	
2	Sep 2004	 New orderable parts added with other core voltage and temperature options. Updated thermal characteristics. In Table 2-14, removed references to 30 pF. Design guidelines and layout recommendations updated. 	
3	Nov. 2004	 Added 500 MHz core and 166 MHz bus speed options. Definitions of GPIO[27–28] updated. Bus, TDM, and GPIO timing updated. I²C timing changed to GPIO timing. GPIO[27–28] connections updated. MWBEn replaced with correct name HWBEn. Design guidelines update. 	
4	Jan. 2005	 Package type changed to FC-PBGA for all frequencies. Low-voltage 300 MHz power changed to 1.1 V. HRESET and SRESET definitions updated. Undershoot and overshoot values added for V_{DDH}. RMII timing updated. Design guidelines updated and reorganized. 	
5	Apr. 2005	 Added 400 MHz, 1.1 V core part. Temperature range descriptions changed to standard and extended. CLKOUT timing specifications added. Device start-up guidelines added to design considerations and updated power supply guidelines. Ordering information updated. 	
6	May 2005	Multiple AC timing specifications updated.	
7	May 2005	Multiple AC timing specifications updated.	
8	Jul. 2005	Multiple AC timing specifications updated.	
9	Jul. 2005	AC specification table layout modified.	
10	Sep. 2005	 ETHTX_EN type and TRST description updated. Package drawing updated. Clock specifications updated. Start-up sequence updated. 	
11	Oct 2005	 V_{DDH} + 10% changed to V_{DDH} + 8% in Figure 2-1. V_{DDH} +20% changed to V_{DDH} + 17% in Figure 2-1. 	
12	Apr 2006	• Reset timing updated to reflect actual values in Table 2-11.	
13	Oct. 2006	• Added new timings 17 and 18 for IRQ set time and pulse width in Table 2-13	
14	Dec. 2007	 Converted to new data sheet format. Added PLL supply current to Table 5 in Section 2.4. Modified Figure 5 in Section 2.4 to make it clear that the time limits for undershoot referred to values below -0.3 V and not GND. Added cross-references between Sections 2.5.2 and Section 3.1 and 3.2. Added power-sequence guidelines to Sections 2.5.2. Added CLKIN jitter characteristic specifications to Table 9. Added additional guidelines to prevent reverse current to Section 3.1. Added connectivity guidelines for DSI in sliding windows mode to Section 3.3. 	
15	May 2008	• Changed V _{IL} maximum and reference value to 0.8 V in Table 5.	
16	Dec. 2008	• Clarified the wording of note 2 in Table 15 on p. 24.	