E·XFL

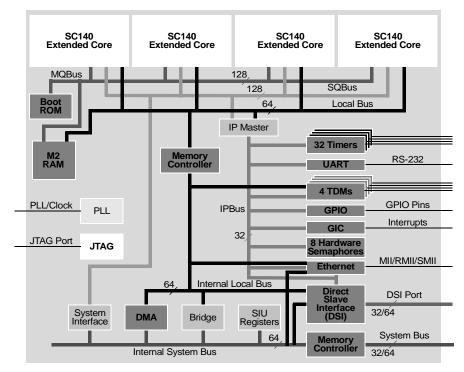
NXP USA Inc. - MSC8122TVT4800V Datasheet

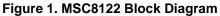
Welcome to E-XFL.COM

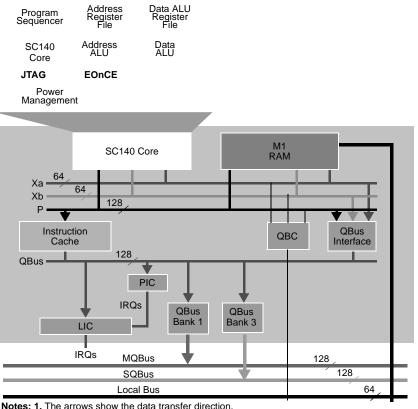
Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>


Details


Details	
Product Status	Obsolete
Туре	SC140 Core
Interface	DSI, Ethernet, RS-232
Clock Rate	300MHz
Non-Volatile Memory	External
On-Chip RAM	1.436MB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	431-BFBGA, FCBGA
Supplier Device Package	431-FCPBGA (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8122tvt4800v


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notes: 1. The arrows show the data transfer direction.
2. The QBus interface includes a bus switch, write buffer, fetch unit, and a control unit that defines four QBus banks. In addition, the QBC handles internal memory contentions.

Figure 2. StarCore SC140 DSP Extended Core Block Diagram

ssignments

1 Pin Assignments

This section includes diagrams of the MSC8122 package ball grid array layouts and pinout allocation tables.

1.1 FC-PBGA Ball Layout Diagrams

Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.

1.2 Signal List By Ball Location

 Table 1 presents signal list sorted by ball number.

```
Table 1. MSC8122 Signal Listing by Ball Designator
```

Des.	Signal Name	Des.	Signal Name
B3	V _{DD}	C18	GPIO1/TIMER0/CHIP_ID1/IRQ5/ETHTXD1
B4	GND	C19	GPIO7/TDM3RCLK/IRQ5/ETHTXD3
B5	GND	C20	GPIO3/TDM3TSYN/IRQ1/ETHTXD2
B6	NMI_OUT	C21	GPIO5/TDM3TDAT/IRQ3/ETHRXD3
B7	GND	C22	GPIO6/TDM3RSYN/IRQ4/ETHRXD2
B8	V _{DD}	D2	TDI
B9	GND	D3	EE0
B10	V _{DD}	D4	EE1
B11	GND	D5	GND
B12	V _{DD}	D6	V _{DDH}
B13	GND	D7	HCID2
B14	V _{DD}	D8	HCID3/HA8
B15	GND	D9	GND
B16	V _{DD}	D10	V _{DD}
B17	GND	D11	GND
B18	V _{DD}	D12	V _{DD}
B19	GPIO0/CHIP_ID0/IRQ4/ETHTXD0	D13	GND
B20	V _{DD}	D14	V _{DD}
B21	V _{DD}	D15	V _{DD}
B22	GND	D16	GPIO31/TIMER3/SCL
C2	GND	D17	GPIO29/CHIP_ID3/ETHTX_EN
C3	V _{DD}	D18	V _{DDH}
C4	TDO	D19	GPIO4/TDM3TCLK/IRQ2/ETHTX_ER
C5	SRESET	D20	V _{DDH}
C6	GPIO28/UTXD/DREQ2	D21	GND
C7	HCID1	D22	GPIO8/TDM3RDAT/IRQ6/ETHCOL
C8	GND	E2	ТСК
C9	V _{DD}	E3	TRST
C10	GND	E4	TMS
C11	V _{DD}	E5	HRESET
C12	GND	E6	GPIO27/URXD/DREQ1
C13	V _{DD}	E7	HCID0
C14	GND	E8	GND
C15	GND	E9	V _{DD}
C16	GPIO30/TIMER2/TMCLK/SDA	E10	GND
C17	GPIO2/TIMER1/CHIP_ID2/IRQ6	E11	V _{DD}

ssignments

Des.	Signal Name	Des.	Signal Name
E12	GND	G6	HA17
E13	V _{DD}	G7	PWE0/PSDDQM0/PBS0
E14	GND	G8	V _{DD}
E15	GND	G9	V _{DD}
E16	V _{DD}	G10	IRQ3/BADDR31
E17	GND	G11	BM0/TC0/BNKSEL0
E18	GND	G12	ABB/IRQ4
E19	GPIO9/TDM2TSYN/IRQ7/ETHMDIO	G13	V _{DD}
E20	GPIO13/TDM2RCLK/IRQ11/ETHMDC	G14	IRQ7/INT_OUT
E21	GPIO10/TDM2TCLK/IRQ8/ETHRX_DV/ETHCRS_DV/NC	G15	ETHCRS/ETHRXD
E22	GPIO12/TDM2RSYN/IRQ10/ETHRXD1/ETHSYNC	G16	V _{DD}
F2	PORESET	G17	CS1
F3	RSTCONF	G18	BCTL0
F4	NMI	G19	GPIO15/TDM1TSYN/DREQ1
F5	HA29	G20	GND
F6	HA22	G21	GPIO17/TDM1TDAT/DACK1
F7	GND	G22	GPIO22/TDM0TCLK/DONE2/DRACK2
F8	V _{DD}	H2	HA20
F9	V _{DD}	H3	HA28
F10	V _{DD}	H4	V _{DD}
F11	GND	H5	HA19
F12	V _{DD}	H6	TEST
F13	GND	H7	PSDCAS/PGPL3
F14	V _{DD}	H8	PGTA/PUPMWAIT/PGPL4/PPBS
F15	ETHRX_CLK/ETHSYNC_IN	H9	V _{DD}
F16	ETHTX_CLK/ETHREF_CLK/ETHCLOCK	H10	BM1/TC1/BNKSEL1
F17	GPIO20/TDM1RDAT	H11	ARTRY
F18	GPIO18/TDM1RSYN/DREQ2	H12	AACK
F19	GPIO16/TDM1TCLK/DONE1/DRACK1	H13	DBB/IRQ5
F20	GPIO11/TDM2TDAT/IRQ9/ETHRX_ER/ETHTXD	H14	HTA
F21	GPIO14/TDM2RDAT/IRQ12/ETHRXD0/NC	H15	V _{DD}
F22	GPIO19/TDM1RCLK/DACK2	H16	TT4/CS7
G2	HA24	H17	CS4
G3	HA27	H18	GPIO24/TDM0RSYN/IRQ14
G4	HA25	H19	GPIO21/TDM0TSYN
G5	HA23	H20	V _{DD}

Des.	Signal Name	Des.	Signal Name
H21	V _{DDH}	K15	V _{DD}
H22	A31	K16	TT2/CS5
J2	HA18	K17	ALE
J3	HA26	K18	CS2
J4	V _{DD}	K19	GND
J5	HA13	K20	A26
J6	GND	K21	A29
J7	PSDAMUX/PGPL5	K22	A28
J8	BADDR27	L2	HA12
J9	V _{DD}	L3	HA14
J10	CLKIN	L4	HA11
J11	BM2/TC2/BNKSEL2	L5	V _{DDH}
J12	DBG	L6	V _{DDH}
J13	V _{DD}	L7	BADDR28
J14	GND	L8	IRQ5/BADDR29
J15	V _{DD}	L9	GND
J16	TT3/CS6	L10	GND
J17	PSDA10/PGPL0	L14	GND
J18	BCTL1/CS5	L15	V _{DDH}
J19	GPIO23/TDM0TDAT/IRQ13	L16	GND
J20	GND	L17	GND
J21	GPIO25/TDM0RCLK/IRQ15	L18	CS3
J22	A30	L19	V _{DDH}
K2	HA15	L20	A27
K3	HA21	L21	A25
K4	HA16	L22	A22
K5	PWE3/PSDDQM3/PBS3	M2	HD28
K6	PWE1/PSDDQM1/PBS1	M3	HD31
K7	POE/PSDRAS/PGPL2	M4	V _{DDH}
K8	IRQ2/BADDR30	M5	GND
K9	Reserved	M6	GND
K10	GND	M7	GND
K11	GND	M8	V _{DD}
K12	GND	M9	V _{DDH}
K13	GND	M10	GND
K14	CLKOUT	M14	GND

Signal Name Signal Name Des. Des. M15 P12 V_{DDH} V_{CCSYN} M16 HBRST P13 GND M17 V_{DDH} P14 GND TA M18 P15 V_{DDH} BR GND M19 P16 TEA M20 V_{DDH} P17 PSDVAL P18 M21 A24 DP0/DREQ1/EXT_BR2 M22 A21 P19 N2 HD26 P20 V_{DDH} GND HD30 P21 N3 N4 HD29 P22 A19 N5 HD24 R2 HD18 PWE2/PSDDQM2/PBS2 N6 R3 V_{DDH} N7 VDDH R4 GND HWBS0/HDBS0/HWBE0/HDBE0 R5 HD22 N8 HBCS HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6 R6 N9 GND HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4 N10 R7 GND N14 R8 TSZ1 HRDS/HRW/HRDE N15 R9 TSZ3 BG IRQ1/GBL N16 R10 HCS N17 R11 V_{DD} N18 CS0 R12 V_{DD} PSDWE/PGPL1 N19 R13 V_{DD} N20 GPIO26/TDM0RDAT R14 TT0/HA7 IRQ7/DP7/DREQ4 N21 A23 R15 IRQ6/DP6/DREQ3 N22 A20 R16 IRQ3/DP3/DREQ2/EXT_BR3 P2 HD20 R17 TS P3 HD27 R18 IRQ2/DP2/DACK2/EXT_DBG2 P4 HD25 R19 Ρ5 HD23 R20 A17 HWBS3/HDBS3/HWBE3/HDBE3 P6 R21 A18 HWBS2/HDBS2/HWBE2/HDBE2 R22 A16 P7 HWBS1/HDBS1/HWBE1/HDBE1 T2 HD17 P8 Ρ9 HCLKIN HD21 T3 P10 GND Τ4 HD1/DSISYNC P11 **GND**_{SYN} T5 HD0/SWTE

Signal Name Signal Name Des. Des. W15 AA9 V_{DDH} V_{DDH} W16 HD33/D33/reserved AA10 HD54/D54/ETHTX_EN W17 VDDH AA11 HD52/D52 W18 HD32/D32/reserved AA12 V_{DDH} GND W19 GND AA13 W20 GND AA14 VDDH W21 A7 AA15 HD46/D46/ETHTXT0 W22 A6 AA16 GND HD42/D42/ETHRXD2/reserved Y2 HD7 AA17 HD15 AA18 Y3 HD38/D38/reserved Y4 AA19 HD35/D35/reserved V_{DDH} Y5 HD9 AA20 A0 Y6 V_DD AA21 A2 Y7 HD60/D60/ETHCOL/reserved AA22 A3 HD58/D58/ETHMDC GND Y8 AB2 Y9 GND AB3 HD13 Y10 AB4 HD11 V_{DDH} HD51/D51 Y11 AB5 HD8 Y12 GND AB6 HD62/D62 HD61/D61 Y13 AB7 VDDH HD43/D43/ETHRXD3/reserved Y14 AB8 HD57/D57/ETHRX_ER Y15 GND AB9 HD56/D56/ETHRX_DV/ETHCRS_DV Y16 V_{DDH} AB10 HD55/D55/ETHTX_ER/reserved Y17 GND AB11 HD53/D53 Y18 HD37/D37/reserved AB12 HD50/D50 Y19 HD34/D34/reserved AB13 HD49/D49/ETHTXD3/reserved Y20 AB14 HD48/D48/ETHTXD2/reserved V_{DDH} Y21 A4 AB15 HD47/D47/ETHTXD1 Y22 A5 AB16 HD45/D45 AA2 AB17 HD44/D44 V_{DD} AA3 HD14 AB18 HD41/D41/ETHRXD1 AA4 HD12 AB19 HD39/D39/reserved AA5 HD10 AB20 HD36/D36/reserved AA6 HD63/D63 AB21 A1 HD59/D59/ETHMDIO AB22 AA7 V_{DD} AA8 GND

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Rating	Symbol	Value	Unit
Core and PLL supply voltage: • Standard — 400 MHz — 500 MHz • Reduced (300 and 400 MHz)	V _{DD} V _{CCSYN}	1.14 to 1.26 1.16 to 1.24 1.07 to 1.13	V V V
I/O supply voltage	V _{DDH}	3.135 to 3.465	V
Input voltage	V _{IN}	–0.2 to V _{DDH} +0.2	V
Operating temperature range: • Standard • Extended	T _J TJ	0 to 90 –40 to 105	℃ ℃

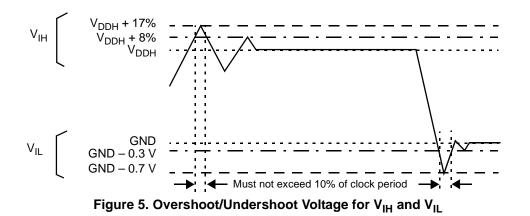
 Table 3. Recommended Operating Conditions

2.3 Thermal Characteristics

Table 4 describes thermal characteristics of the MSC8122 for the FC-PBGA packages.

Characteristic		Symbol	FC- 20 ×		
			Natural Convection	200 ft/min (1 m/s) airflow	Unit
Junction-to-a	imbient ^{1, 2}	R _{θJA}	26	21	°C/W
Junction-to-a	imbient, four-layer board ^{1, 3}	R _{θJA}	19	15	°C/W
Junction-to-board (bottom) ⁴		R _{θJB}	9		°C/W
Junction-to-case ⁵		R _{θJC}	0.9		°C/W
Junction-to-package-top ⁶		Ψ _{JT}	1		°C/W
Notes: 1. 2. 3. 4. 5.	Junction temperature is a function of die size temperature, ambient temperature, air flow, p resistance. Per SEMI G38-87 and JEDEC JESD51-2 wit Per JEDEC JESD51-6 with the board horizon Thermal resistance between the die and the the top surface of the board near the packag Thermal resistance between the die and the 1012.1).	bower dissipation of o h the single layer boo htal. printed circuit board e.	other components on th ard horizontal. per JEDEC JESD 51-8	e board, and board therm . Board temperature is me	easured on

Thermal characterization parameter indicating the temperature difference between package top and the junction temperature


Table 4. Thermal Characteristics for the MSC8122

Section 3.5, *Thermal Considerations* provides a detailed explanation of these characteristics.

6.

per JEDEC JESD51-2.

2.5 AC Timings

The following sections include illustrations and tables of clock diagrams, signals, and parallel I/O outputs and inputs. When systems such as DSP farms are developed using the DSI, use a device loading of 4 pF per pin. AC timings are based on a 20 pF load, except where noted otherwise, and a 50 Ω transmission line. For loads smaller than 20 pF, subtract 0.06 ns per pF down to 10 pF load. For loads larger than 20 pF, add 0.06 ns for SIU/Ethernet/DSI delay and 0.07 ns for GPIO/TDM/timer delay. When calculating overall loading, also consider additional RC delay.

2.5.1 Output Buffer Impedances

Table 6. Output Buffer Impedances

Output Buffers	Typical Impedance (Ω)		
System bus	50		
Memory controller	50		
Parallel I/O	50		
Note: These are typical values at 65°C. The impedance may vary by ±25% depending on device process and operating temperature.			

2.5.2 Start-Up Timing

Starting the device requires coordination among several input sequences including clocking, reset, and power. **Section 2.5.3** describes the clocking characteristics. **Section 2.5.4** describes the reset and power-up characteristics. You must use the following guidelines when starting up an MSC8122 device:

- **PORESET** and **TRST** must be asserted externally for the duration of the power-up sequence. See **Table 11** for timing.
- If possible, bring up the V_{DD} and V_{DDH} levels together. For designs with separate power supplies, bring up the V_{DD} levels and then the V_{DDH} levels (see **Figure 7**).
- CLKIN should start toggling at least 16 cycles (starting after V_{DDH} reaches its nominal level) before PORESET deassertion to guarantee correct device operation (see Figure 6 and Figure 7).
- CLKIN must not be pulled high during V_{DDH} power-up. CLKIN can toggle during this period.
- **Note:** See Section 3.1 for start-up sequencing recommendations and Section 3.2 for power supply design recommendations.

The following figures show acceptable start-up sequence examples. Figure 6 shows a sequence in which V_{DD} and V_{DDH} are raised together. Figure 7 shows a sequence in which V_{DDH} is raised after V_{DD} and CLKIN begins to toggle as V_{DDH} rises.

Characteristic	Min	Max	Unit
Phase jitter between BCLK and CLKIN	—	0.3	ns
CLKIN frequency	20	see Table 8	MHz
CLKIN slope	—	3	ns
CLKIN period jitter ¹	—	150	ps
CLKIN jitter spectrum	150	—	KHz
PLL input clock (after predivider)	20	100	MHz
PLL output frequency (VCO output)	800		MHz
300 MHz core		1200	MHz
400 MHz core		1600	MHz
500 MHz core		2000	MHz
CLKOUT frequency jitter ¹	—	200	ps
CLKOUT phase jitter ¹ with CLKIN phase jitter of ±100 ps.	—	500	ps
Notes:1.Peak-to-peak.2.Not tested. Guaranteed by design.			

2.5.4 Reset Timing

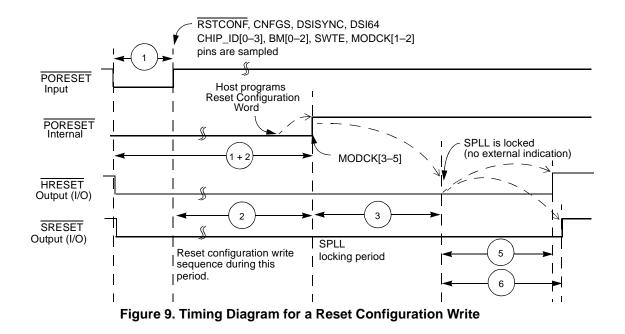
The MSC8122 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- Bus monitor reset
- Host reset command through JTAG

All MSC8122 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 10** describes the reset sources.

Table 10. Reset Sources

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC8122 and configures various attributes of the MSC8122. On PORESET, the entire MSC8122 device is reset. SPLL states is reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The clock mode (MODCK bits), reset configuration mode, boot mode, Chip ID, and use of either a DSI 64 bits port or a System Bus 64 bits port are configured only when PORESET is asserted.
External hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC8122. While HRESET is asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The most configurable features are reconfigured. These features are defined in the 32-bit hard reset configuration word described in <i>Hard Reset Configuration Word</i> section of the <i>Reset</i> chapter in the <i>MSC8122 Reference Manual</i> .
External soft reset (SRESET)	Input/ Output	Initiates the soft reset flow. The MSC8122 detects an external assertion of SRESET only if it occurs while the MSC8122 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is driven, the SC140 extended cores are reset, and system configuration is maintained.
Software watchdog reset	Internal	When the MSC8122 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC8122 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
Host reset command through the TAP	Internal	When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the soft reset signal and an internal soft reset sequence is generated.



2.5.4.3 Reset Timing Tables

Table 12 and Figure 9 describe the reset timing for a reset configuration write through the direct slave interface (DSI) or through the system bus.

No.	Characteristics	Expression	Min	Max	Unit
1	Required external PORESET duration minimum • CLKIN = 20 MHz • CLKIN = 100 MHz (300 MHz core) • CLKIN = 133 MHz (400 MHz core) • CLKIN = 166 MHz (500 MHz core)	16/CLKIN	800 160 120 96		ns ns ns ns
2	Delay from deassertion of external PORESET to deassertion of internal PORESET • CLKIN = 20 MHz to 166 MHz	1024/CLKIN	6.17	51.2	μs
3	Delay from de-assertion of internal PORESET to SPLL lock CLKIN = 20 MHz (RDF = 1) CLKIN = 100 MHz (RDF = 1) (300 MHz core) CLKIN = 133 MHz (RDF = 2) (400 MHz core) CLKIN = 166 MHz (RDF = 2) (500 MHz core) 	6400/(CLKIN/RDF) (PLL reference clock-division factor)	320 64 96 77	320 64 96 77	hs hs hs
5	Delay from SPLL to HRESET deassertion REFCLK = 40 MHz to 166 MHz 	512/REFCLK	3.08	12.8	μs
6	Delay from SPLL lock to SRESET deassertion REFCLK = 40 MHz to 166 MHz 	515/REFCLK	3.10	12.88	μs
7	Setup time from assertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2] before deassertion of PORESET		3	_	ns
8	Hold time from deassertion of PORESET to deassertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2]		5	—	ns
Note:	Timings are not tested, but are guaranteed by design.		•	•	•

 Table 12. Timing for a Reset Configuration Write through the DSI or System Bus

System Bus Access Timing 2.5.5

Core Data Transfers 2.5.5.1

Generally, all MSC8122 bus and system output signals are driven from the rising edge of the reference clock (REFCLK). The REFCLK is the CLKIN signal. Memory controller signals, however, trigger on four points within a REFCLK cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge of REFCLK (and T3 at the falling edge), but the spacing of T2 and T4 depends on the PLL clock ratio selected, as Table 13 shows.

	Tick Spacing (T1 Occurs at the Rising Edge of REFCLK)					
BCLK/SC140 clock	T2	Т3	T4			
1:4, 1:6, 1:8, 1:10	1/4 REFCLK	1/2 REFCLK	3/4 REFCLK			
1:3	1/6 REFCLK	1/2 REFCLK	4/6 REFCLK			
1:5	2/10 REFCLK	1/2 REFCLK	7/10 REFCLK			

Table 13. Tick Spacing for Memory Controller Signals

Figure 10 is a graphical representation of Table 13.

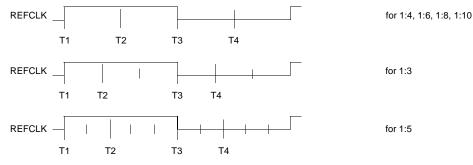


Figure 10. Internal Tick Spacing for Memory Controller Signals

The UPM machine and GPCM machine outputs change on the internal tick selected by the memory controller configuration. The AC timing specifications are relative to the internal tick. SDRAM machine outputs change only on the REFCLK rising edge.

		۱ N	Value for Bus Speed in MHz									
	Characteristic		ef = CLK	IN	Ref = CLKOUT	Units						
No.			1.2 V	1.2 V	1.2 V							
		100/ 133	133	166	133							
10	Hold time for all signals after the 50% level of the REFCLK rising edge	0.5	0.5	0.5	0.5	ns						
11a	ARTRY/ABB set-up time before the 50% level of the REFCLK rising edge	3.1	3.0	3.0	3.0	ns						
11b	rising edge		3.3	3.3	3.3	ns						
11c	AACK set-up time before the 50% level of the REFCLK rising edge	3.0	2.9	2.9	2.9	ns						
11d	TA/TEA/PSDVAL set-up time before the 50% level of the REFCLK rising edge											
	Data-pipeline modeNon-pipeline mode	3.5 4.4	3.4 4.0	3.4 4.0	3.4 4.0	ns ns						
12	Data bus set-up time before REFCLK rising edge in Normal mode Data-pipeline mode Non-pipeline mode 	1.9 4.2	1.8 4.0	1.7 4.0	1.8 4.0	ns ns						
13 ¹	Data bus set-up time before the 50% level of the REFCLK rising edge in ECC and PARITY modes • Data-pipeline mode • Non-pipeline mode	2.0 8.2	2.0 7.3	2.0 7.3	2.0 7.3	ns ns						
14 ¹	DP set-up time before the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode 	2.0 7.9	2.0 6.1	2.0 6.1	2.0 6.1	ns ns						
15a	 TS and Address bus set-up time before the 50% level of the REFCLK rising edge Extra cycle mode (SIUBCR[EXDD] = 0) No extra cycle mode (SIUBCR[EXDD] = 1) 	4.2 5.5	3.8 5.0	3.8 5.0	3.8 5.0	ns ns						
15b	Address attributes: TT/TBST/TSZ/GBL set-up time before the 50% level of the REFCLK rising edge • Extra cycle mode (SIUBCR[EXDD] = 0) • No extra cycle mode (SIUBCR[EXDD] = 1)	3.7 4.8	3.5 4.4	3.5 4.4	3.5 4.4	ns ns						
16	PUPMWAIT signal set-up time before the 50% level of the REFCLK rising edge	3.7	3.7	3.7	3.7	ns						
17	IRQx setup time before the 50% level; of the REFCLK rising edge ³	4.0	4.0	4.0	4.0	ns						
18	IRQx minimum pulse width ³	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	ns						
Notes:		restrictive	than MSC	8102 timin	 Timings specifications 13 and 14 in non-pipeline mode are more restrictive than MSC8102 timings. Values are measured from the 50% TTL transition level relative to the 50% level of the REFCLK rising edge. 							

Table 14. AC Timing for SIU Inputs

		Value for Bus Speed in MHz ³						
	Characteristic		ef = CLK	IN	Ref = CLKOUT			
No.			1.1 V 1.2 V		1.2 V	Units		
		100/ 133	133	166	100/133			
30 ²	Minimum delay from the 50% level of the REFCLK for all signals	0.9	0.8	0.8	1.0	ns		
31	PSDVAL/TEA/TA max delay from the 50% level of the REFCLK rising edge	6.0	4.9	4.9	5.8	ns		
32a	 Address bus max delay from the 50% level of the REFCLK rising edge Multi-master mode (SIUBCR[EBM] = 1) Single-master mode (SIUBCR[EBM] = 0) 	6.4 5.3	5.5 4.2	5.5 3.9	6.4 5.1	ns ns		
32b	Address attributes: TT[0–1]/TBST/TSZ/GBL max delay from the 50% level of the REFCLK rising edge	6.4	5.1	5.1	6.0	ns		
32c	Address attributes: TT[2–4]/TC max delay from the 50% level of the REFCLK rising edge	6.9	5.7	5.7	6.6	ns		
32d	BADDR max delay from the 50% level of the REFCLK rising edge	5.2	4.2	4.2	5.1	ns		
33a	Data bus max delay from the 50% level of the REFCLK rising edgeData-pipeline modeNon-pipeline mode	4.8 7.1	3.9 6.1	3.7 6.1	4.8 7.0	ns ns		
33b	DP max delay from the 50% level of the REFCLK rising edgeData-pipeline modeNon-pipeline mode	6.0 7.5	5.3 6.5	5.3 6.5	6.2 7.4	ns ns		
34	Memory controller signals/ALE/CS[0–4] max delay from the 50% level of the REFCLK rising edge	5.1	4.2	3.9	5.1	ns		
35a	DBG/BG/BR/DBB max delay from the 50% level of the REFCLK rising edge	6.0	4.7	4.7	5.6	ns		
35b	AACK/ABB/TS/CS[5–7] max delay from the 50% level of the REFCLK rising edge	5.5	4.5	4.5	5.4	ns		

Decreasing the load results in a timing decrease at the rate of 0.3 ns per 5 pF decrease in load. Increasing the load results in

• In 60x-compatible mode connected to another MSC8122 device, the frequency is determined by adding the input and output longest timing values, which results in the total delay for 20 pF output capacitance. You must also account for other

• To achieve maximum performance on the bus in single-master mode, disable the DBB signal by writing a 1 to the

influences that can affect timing, such as on-board clock skews, on-board noise delays, and so on.
In single-master mode, the frequency depends on the timing of the devices connected to the MSC8122.

SIUMCR[BDD] bit. See the SIU chapter in the MSC8122 Reference Manual for details.

a timing increase at the rate of 0.15 ns per 5 pF increase in load.

The maximum bus frequency depends on the mode:

Table 15. AC Timing for SIU Outputs

3.

2.5.5.2 CLKIN to CLKOUT Skew

Table 17 describes the CLKOUT-to-CLKIN skew timing.

No.	Characteristic	Min ¹	Max ¹	Units
20	Rise-to-rise skew			
	• V _{DD} = 1.1 V	0.0	0.95	ns
	• V _{DD} = 1.2 V	0.0	0.85	ns
21	Fall-to-fall skew			
	• V _{DD} = 1.1 V	-1.5	1.0	ns
	• V _{DD} = 1.2 V	-0.8	1.0	ns
22	CLKOUT phase (1.2 V, 133 MHz)			
	Phase high	2.8	_	ns
	Phase low	2.8	—	ns
23	CLKOUT phase (1.1 V, 133 MHz)			
	Phase high	2.2	_	ns
	Phase low	2.2	—	ns
24	CLKOUT phase (1.1 V, 100 MHz)			
	Phase high	3.3	_	ns
	Phase low	3.3	—	ns
Notes:	1. A positive number indicates that CLKOUT precedes CLKIN, A negative nur	mber indicates that C	LKOUT follows CLK	IN.
	2. Skews are measured in clock mode 29, with a CLKIN:CLKOUT ratio of 1:1.	The same skew is v	alid for all clock mo	des.
	3. CLKOUT skews are measured using a load of 10 pF.			
	4. CLKOUT skews and phase are not measured for 500/166 Mhz parts becau	se these parts only	use CLKIN mode.	

Table	16.	CLKO	UT Skew
-------	-----	------	---------

For designs that use the CLKOUT synchronization mode, use the skew values listed in **Table 16** to adjust the rise-to-fall timing values specified for CLKIN synchronization. **Figure 12** shows the relationship between the CLKOUT and CLKIN timings.

Figure 12. CLKOUT and CLKIN Signals.

2.5.5.3 DMA Data Transfers

Table 17 describes the DMA signal timing.

No.	Characteristic		Ref = CLKIN		LKOUT only)	Units
		Min	Max	Min	Max	
37	DREQ set-up time before the 50% level of the falling edge of REFCLK	5.0	—	5.0	—	ns
38	DREQ hold time after the 50% level of the falling edge of REFCLK	0.5	_	0.5	—	ns
39	DONE set-up time before the 50% level of the rising edge of REFCLK	5.0	_	5.0	—	ns
40	DONE hold time after the 50% level of the rising edge of REFCLK	0.5	_	0.5	—	ns
41	DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge	0.5	7.5	0.5	8.4	ns

Table 17. DMA Signals

The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ according to the timings in **Table 17**. Figure 13 shows synchronous peripheral interaction.

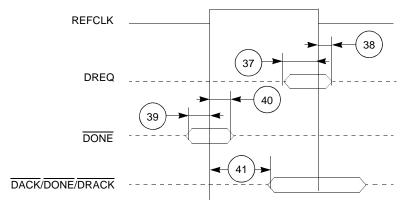


Figure 13. DMA Signals

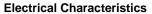
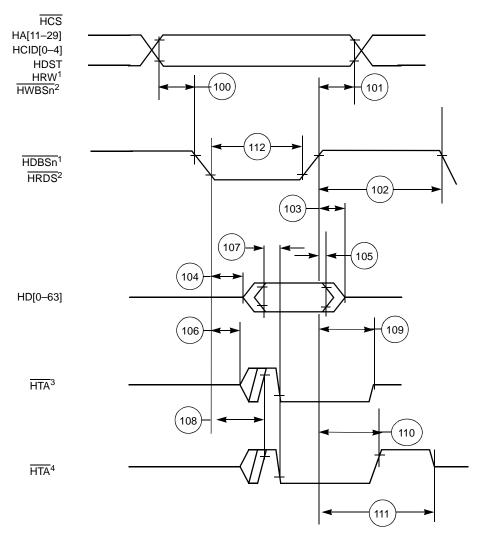



Figure 14 shows DSI asynchronous read signals timing.

Notes: 1. Used for single-strobe mode access.

- **2.** Used for dual-strobe mode access.
- **3.** HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 14. Asynchronous Single- and Dual-Strobe Modes Read Timing Diagram

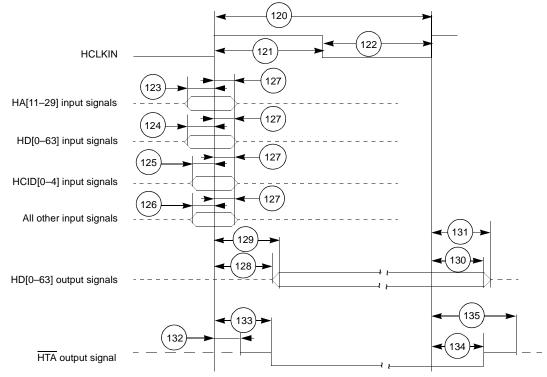

2.5.6.2 DSI Synchronous Mode

Table 19. DSI Inputs in Synchronous Mode

No.	Characteristic	Expression	1.1 V Core		1.2 V Core		Units
NO.			Min	Max	Min	Max	Units
120	HCLKIN cycle time ^{1,2}	HTC	10.0	55.6	10.0	55.6	ns
121	HCLKIN high pulse width	$(0.5\pm0.1) imes$ HTC	4.0	33.3	4.0	33.3	ns
122	HCLKIN low pulse width	$(0.5\pm0.1)\times HTC$	4.0	33.3	4.0	33.3	ns
123	HA[11–29] inputs set-up time	—	1.2	—	1.2	—	ns
124	HD[0–63] inputs set-up time	—	0.6	—	0.4	—	ns
125	HCID[0-4] inputs set-up time	—	1.3	—	1.3	—	ns
126	All other inputs set-up time	—	1.2	—	1.2	—	ns
127	All inputs hold time	—	1.5	—	1.5	_	ns
Notes:	 Values are based on a frequency range of 18–100 MHz. Refer to Table 7 for HCLKIN frequency limits. 						

Table 20. DSI Outputs in Synchronous Mode

No.	Characteristic	1.1 V	Core	1.2 V	Units	
NO.		Min	Max	Min	Max	Units
128	HCLKIN high to HD[0–63] output active	2.0	_	2.0	_	ns
129	HCLKIN high to HD[0–63] output valid		7.6	_	6.3	ns
130	HD[0–63] output hold time	1.7	—	1.7	_	ns
131	HCLKIN high to HD[0–63] output high impedance	_	8.3	_	7.6	ns
132	HCLKIN high to HTA output active	2.2	—	2.0	_	ns
133	HCLKIN high to HTA output valid	_	7.4	_	5.9	ns
134	HTA output hold time	1.7	_	1.7		ns
135	HCLKIN high to HTA high impedance	_	7.5	_	6.3	ns

2.5.10.4 SMII Mode

No.	Characteristics	Min	Max	Unit
808	ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge set-up time	1.0	_	ns
809	ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time	1.0	_	ns
810	ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay1.1 V core.1.2 V core.	1.5 ¹ 1.5 ¹	6.0 ² 5.0 ²	ns ns
Notes:	 Measured using a 5 pF load. Measured using a 15 pF load. 			

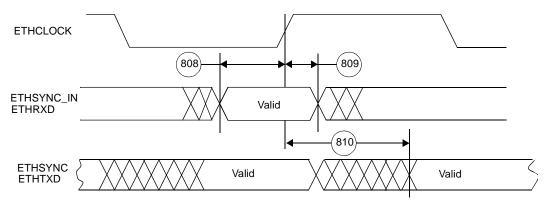


Figure 26. SMII Mode Signal Timing

2.5.11 GPIO Timing

Table 28. GPIO Timing

No.	Characteristics	Ref = CLKIN			LKOUT only)	Unit
		Min	Max	Min	Max	
601	REFCLK edge to GPIO out valid (GPIO out delay time)	-	6.1	_	6.9	ns
602	REFCLK edge to GPIO out not valid (GPIO out hold time)	1.1		1.3	—	ns
603	REFCLK edge to high impedance on GPIO out	—	5.4		6.2	ns
604	GPIO in valid to REFCLK edge (GPIO in set-up time)	3.5		3.7	—	ns
605	REFCLK edge to GPIO in not valid (GPIO in hold time)	0.5		0.5	_	ns

MSC8122 Quad Digital Signal Processor Data Sheet, Rev. 16