

Welcome to **E-XFL.COM**

Understanding <u>Embedded - DSP (Digital Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital Signal Processors)</u>

Active
SC140 Core
DSI, Ethernet, RS-232
500MHz
External
1.436MB
3.30V
1.20V
0°C ~ 90°C (TJ)
Surface Mount
431-BFBGA, FCBGA
431-FCPBGA (20x20)
https://www.e-xfl.com/pro/item?MUrl=&PartUrl=msc8122vt8000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

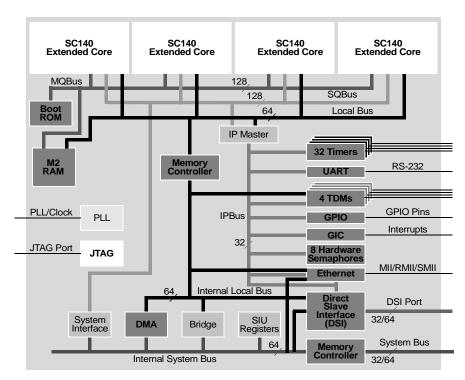
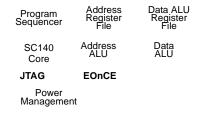



Figure 1. MSC8122 Block Diagram

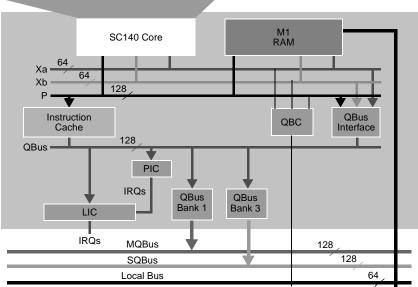


Figure 2. StarCore SC140 DSP Extended Core Block Diagram

MSC8122 Quad Digital Signal Processor Data Sheet, Rev. 16

<sup>Notes: 1. The arrows show the data transfer direction.
2. The QBus interface includes a bus switch, write buffer, fetch unit, and a control unit that defines four QBus banks. In addition, the QBC handles internal memory contentions.</sup>

1 Pin Assignments

This section includes diagrams of the MSC8122 package ball grid array layouts and pinout allocation tables.

1.1 FC-PBGA Ball Layout Diagrams

Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.

HD13

GND

HD11

HD8

HD62

HD61

HD57

Top View 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NMI_ OUT V_{DD} GND GND GND V_{DD} GND V_{DD} GND GND V_{DD} GND GND GPI00 GND $V_{\mathsf{D}\mathsf{D}}$ GND GPIO28 HCID1 V_{DD} V_{DD} V_{DD} GPIO2 GPIO6 EE0 GND HCID2 HCID3 GND GND GND , GPIO31 , GPIO29 GPIO4 GPIO8 TDI GPIO2 HCID0 GPIO9 GPIO1 , GPIO1 TRST TMS IRESE GND V_{DD} GND V_{DD} GND GND GND GND GND GPIO1 RST NMI V_{DD} $\rm V_{\rm DD}$ V_{DD} GPIO20 GPIO18 GPIO16 GPIO11 GPIO14 GPIO19 HA29 HA22 GND V_DD GND GND V_{DD} BADDR 31 ETHCF INT_ OUT ABB HA27 HA25 HA23 HA17 PWE0 ВМ0 BCTL0 GPIO15 GND GPIO17 GPIO22 HA24 HA28 HA19 TEST AACK HTA GPIO24 GPIO2 HA20 BM1 V_{DD} A31 PSDA BADDE HA26 HA13 GND V_{DD} CLKIN BM2 DBG V_{DD} GND TT3 SDA1 BCTL1 GPIO23 GND GPIO2 A30 HA18 BADDF PWE1 HA21 HA16 PWE3 GND GND GND LKOU A28 HA15 BADDF 29 BADDI GND GND GND GND CS3 HA12 HA14 HA11 V_{DDH} GND A22 HD31 V_{DDH} GND GND GND GND GND V_{DDH} HD28 V_{DD} V_{DDH} V_{DDH} V_{DDH} V_{DDH} A21 HWBS HD26 HD30 HD29 HD24 PWE2 HBCS GND GND HRDS BG CS0 PSDWE GPIO2 A20 PSD VAL V_{CCSYN} BR HD20 HCLKIN V_{DDH} A19 GND HD22 TSZ1 GBL TT0 DP6 DP3 TS DP2 TSZ3 A18 HD18 A16 HWBS HW<u>B</u>S HD21 HD1 TSZ0 TBST HD17 HD0 TSZ2 V_{DD} GND HD16 HD19 HD2 D6 D8 D9 D14 D15 D17 D22 D25 D26 D31 V_{DDH} A12 D3 D11 D19 D28 A13 GND D13 D18 D20 GND D24 D29 D10 D12 D27 A10 HD3 A11 HD6 HD4 GND V_{DDH} V_{DDH} HDST HDST V_{DDH} HD40 V_{DDH} HD33 V_{DDH} HD32 A6 HD15 HD58 GND V_{DDH} V_{DDH} GND HD7 HD9 HD60 HD51 GND HD43 GND HD37 HD34 A5 V_{DDH} HD12 HD10 HD63 HD59 GND HD52 GND HD46 GND HD42 HD38 HD35 V_{DD} HD14 HD54 АЗ

Figure 3. MSC8122 Package, Top View

HD47

HD45

HD44

HD41

HD39

HD36

Bottom View

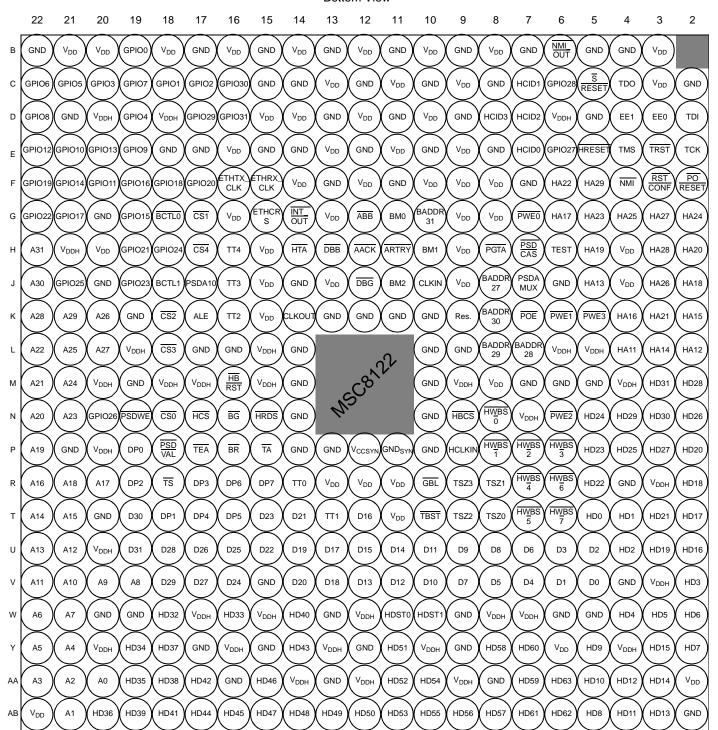


Figure 4. MSC8122 Package, Bottom View

Table 1. MSC8122 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
E12	GND	G6	HA17
E13	V_{DD}	G7	PWE0/PSDDQM0/PBS0
E14	GND	G8	V_{DD}
E15	GND	G9	V_{DD}
E16	V _{DD}	G10	ĪRQ3/BADDR31
E17	GND	G11	BM0/TC0/BNKSEL0
E18	GND	G12	ABB/IRQ4
E19	GPIO9/TDM2TSYN/IRQ7/ETHMDIO	G13	V _{DD}
E20	GPIO13/TDM2RCLK/IRQ11/ETHMDC	G14	ĪRQ7/ĪNT_OUT
E21	GPIO10/TDM2TCLK/IRQ8/ETHRX_DV/ETHCRS_DV/NC	G15	ETHCRS/ETHRXD
E22	GPIO12/TDM2RSYN/IRQ10/ETHRXD1/ETHSYNC	G16	V _{DD}
F2	PORESET	G17	CS1
F3	RSTCONF	G18	BCTL0
F4	NMI	G19	GPIO15/TDM1TSYN/DREQ1
F5	HA29	G20	GND
F6	HA22	G21	GPIO17/TDM1TDAT/DACK1
F7	GND	G22	GPIO22/TDM0TCLK/DONE2/DRACK2
F8	V_{DD}	H2	HA20
F9	V_{DD}	H3	HA28
F10	V _{DD}	H4	V _{DD}
F11	GND	H5	HA19
F12	V_{DD}	H6	TEST
F13	GND	H7	PSDCAS/PGPL3
F14	V _{DD}	H8	PGTA/PUPMWAIT/PGPL4/PPBS
F15	ETHRX_CLK/ETHSYNC_IN	H9	V _{DD}
F16	ETHTX_CLK/ETHREF_CLK/ETHCLOCK	H10	BM1/TC1/BNKSEL1
F17	GPIO20/TDM1RDAT	H11	ARTRY
F18	GPIO18/TDM1RSYN/DREQ2	H12	ĀĀCK
F19	GPIO16/TDM1TCLK/DONE1/DRACK1	H13	DBB/IRQ5
F20	GPIO11/TDM2TDAT/IRQ9/ETHRX_ER/ETHTXD	H14	HTA
F21	GPIO14/TDM2RDAT/IRQ12/ETHRXD0/NC	H15	V _{DD}
F22	GPIO19/TDM1RCLK/DACK2	H16	TT4/CS7
G2	HA24	H17	CS4
G3	HA27	H18	GPIO24/TDM0RSYN/IRQ14
G4	HA25	H19	GPIO21/TDM0TSYN
G5	HA23	H20	V_{DD}

Table 1. MSC8122 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
H21	V_{DDH}	K15	V_{DD}
H22	A31	K16	TT2/ CS 5
J2	HA18	K17	ALE
J3	HA26	K18	CS2
J4	V_{DD}	K19	GND
J5	HA13	K20	A26
J6	GND	K21	A29
J7	PSDAMUX/PGPL5	K22	A28
J8	BADDR27	L2	HA12
J9	V_{DD}	L3	HA14
J10	CLKIN	L4	HA11
J11	BM2/TC2/BNKSEL2	L5	V_{DDH}
J12	DBG	L6	V_{DDH}
J13	V_{DD}	L7	BADDR28
J14	GND	L8	ĪRQ5/BADDR29
J15	V_{DD}	L9	GND
J16	TT3/ <u>CS6</u>	L10	GND
J17	PSDA10/PGPL0	L14	GND
J18	BCTL1/CS5	L15	V_{DDH}
J19	GPIO23/TDM0TDAT/IRQ13	L16	GND
J20	GND	L17	GND
J21	GPIO25/TDM0RCLK/IRQ15	L18	CS3
J22	A30	L19	V_{DDH}
K2	HA15	L20	A27
K3	HA21	L21	A25
K4	HA16	L22	A22
K5	PWE3/PSDDQM3/PBS3	M2	HD28
K6	PWE1/PSDDQM1/PBS1	М3	HD31
K7	POE/PSDRAS/PGPL2	M4	V_{DDH}
K8	ĪRQ2/BADDR30	M5	GND
K9	Reserved	M6	GND
K10	GND	M7	GND
K11	GND	M8	V_{DD}
K12	GND	M9	V_{DDH}
K13	GND	M10	GND
K14	CLKOUT	M14	GND

Table 1. MSC8122 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
W15	V_{DDH}	AA9	V_{DDH}
W16	HD33/D33/reserved	AA10	HD54/D54/ETHTX_EN
W17	V _{DDH}	AA11	HD52/D52
W18	HD32/D32/reserved	AA12	V_{DDH}
W19	GND	AA13	GND
W20	GND	AA14	V_{DDH}
W21	A7	AA15	HD46/D46/ETHTXT0
W22	A6	AA16	GND
Y2	HD7	AA17	HD42/D42/ETHRXD2/reserved
Y3	HD15	AA18	HD38/D38/reserved
Y4	V_{DDH}	AA19	HD35/D35/reserved
Y5	HD9	AA20	A0
Y6	V_{DD}	AA21	A2
Y7	HD60/D60/ETHCOL/reserved	AA22	A3
Y8	HD58/D58/ETHMDC	AB2	GND
Y9	GND	AB3	HD13
Y10	V_{DDH}	AB4	HD11
Y11	HD51/D51	AB5	HD8
Y12	GND	AB6	HD62/D62
Y13	V_{DDH}	AB7	HD61/D61
Y14	HD43/D43/ETHRXD3/reserved	AB8	HD57/D57/ETHRX_ER
Y15	GND	AB9	HD56/D56/ETHRX_DV/ETHCRS_DV
Y16	V_{DDH}	AB10	HD55/D55/ETHTX_ER/reserved
Y17	GND	AB11	HD53/D53
Y18	HD37/D37/reserved	AB12	HD50/D50
Y19	HD34/D34/reserved	AB13	HD49/D49/ETHTXD3/reserved
Y20	V _{DDH}	AB14	HD48/D48/ETHTXD2/reserved
Y21	A4	AB15	HD47/D47/ETHTXD1
Y22	A5	AB16	HD45/D45
AA2	V_{DD}	AB17	HD44/D44
AA3	HD14	AB18	HD41/D41/ETHRXD1
AA4	HD12	AB19	HD39/D39/reserved
AA5	HD10	AB20	HD36/D36/reserved
AA6	HD63/D63	AB21	A1
AA7	HD59/D59/ETHMDIO	AB22	V_{DD}
AA8	GND		

2 Electrical Characteristics

This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the MSC8122 Reference Manual.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2 describes the maximum electrical ratings for the MSC8122.

Table 2. Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Core and PLL supply voltage	V_{DD}	-0.2 to 1.6	V
I/O supply voltage	V _{DDH}	-0.2 to 4.0	V
Input voltage	V _{IN}	-0.2 to 4.0	V
Maximum operating temperature: • Standard range • Extended range	TJ	90 105	°C °C
Minimum operating temperature • Standard range • Extended range	TJ	0 -40	°C °C
Storage temperature range	T _{STG}	-55 to +150	°C

Notes: 1. Functional operating conditions are given in Table 3.

- 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage.
- 3. Section 3.5, Thermal Considerations includes a formula for computing the chip junction temperature (T₁).

Table 9.	System	Clock I	Parameters
----------	---------------	---------	-------------------

Characteristic	Min	Max	Unit
Phase jitter between BCLK and CLKIN	_	0.3	ns
CLKIN frequency	20	see Table 8	MHz
CLKIN slope	_	3	ns
CLKIN period jitter ¹	_	150	ps
CLKIN jitter spectrum	150	_	KHz
PLL input clock (after predivider)	20	100	MHz
PLL output frequency (VCO output)	800		MHz
300 MHz core		1200	MHz
400 MHz core		1600	MHz
500 MHz core		2000	MHz
CLKOUT frequency jitter ¹	_	200	ps
CLKOUT phase jitter ¹ with CLKIN phase jitter of ±100 ps.	_	500	ps

Not tested. Guaranteed by design.

2.5.4 **Reset Timing**

The MSC8122 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- Bus monitor reset
- Host reset command through JTAG

All MSC8122 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. Table 10 describes the reset sources.

Table 10. Reset Sources

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC8122 and configures various attributes of the MSC8122. On PORESET, the entire MSC8122 device is reset. SPLL states is reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The clock mode (MODCK bits), reset configuration mode, boot mode, Chip ID, and use of either a DSI 64 bits port or a System Bus 64 bits port are configured only when PORESET is asserted.
External hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC8122. While HRESET is asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The most configurable features are reconfigured. These features are defined in the 32-bit hard reset configuration word described in Hard Reset Configuration Word section of the Reset chapter in the MSC8122 Reference Manual.
External soft reset (SRESET)	Input/ Output	Initiates the soft reset flow. The MSC8122 detects an external assertion of SRESET only if it occurs while the MSC8122 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is driven, the SC140 extended cores are reset, and system configuration is maintained.
Software watchdog reset	Internal	When the MSC8122 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC8122 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
Host reset command through the TAP	Internal	When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the soft reset signal and an internal soft reset sequence is generated.

MSC8122 Quad Digital Signal Processor Data Sheet, Rev. 16

The UPM machine and GPCM machine outputs change on the internal tick selected by the memory controller configuration. The AC timing specifications are relative to the internal tick. SDRAM machine outputs change only on the REFCLK rising edge.

Table 14. AC Timing for SIU Inputs

		•				ı
		٧	alue for	Bus Spe	ed in MHz	
		R	ef = CLK	IN	Ref = CLKOUT	
No.	Characteristic	1.1 V	1.2 V	1.2 V	1.2 V	Units
		100/ 133	133	166	133	
10	Hold time for all signals after the 50% level of the REFCLK rising edge	0.5	0.5	0.5	0.5	ns
11a	ARTRY/ABB set-up time before the 50% level of the REFCLK rising edge	3.1	3.0	3.0	3.0	ns
11b	DBG/DBB/BG/BR/TC set-up time before the 50% level of the REFCLK rising edge	3.6	3.3	3.3	3.3	ns
11c	AACK set-up time before the 50% level of the REFCLK rising edge	3.0	2.9	2.9	2.9	ns
11d	TA/TEA/PSDVAL set-up time before the 50% level of the REFCLK rising edge • Data-pipeline mode	3.5	3.4	3.4	3.4	ns
	Non-pipeline mode	4.4	4.0	4.0	4.0	ns
12	Data bus set-up time before REFCLK rising edge in Normal mode • Data-pipeline mode • Non-pipeline mode	1.9 4.2	1.8 4.0	1.7 4.0	1.8 4.0	ns ns
13 ¹	Data bus set-up time before the 50% level of the REFCLK rising edge in ECC and PARITY modes • Data-pipeline mode	2.0	2.0	2.0	2.0	ns
	Non-pipeline mode	8.2	7.3	7.3	7.3	ns
14 ¹	DP set-up time before the 50% level of the REFCLK rising edge • Data-pipeline mode • Non-pipeline mode	2.0 7.9	2.0 6.1	2.0 6.1	2.0 6.1	ns ns
15a	TS and Address bus set-up time before the 50% level of the REFCLK rising edge Extra cycle mode (SIUBCR[EXDD] = 0) No extra cycle mode (SIUBCR[EXDD] = 1)	4.2 5.5	3.8 5.0	3.8 5.0	3.8 5.0	ns ns
15b	Address attributes: TT/TBST/TSZ/GBL set-up time before the 50% level of the REFCLK rising edge Extra cycle mode (SIUBCR[EXDD] = 0) No extra cycle mode (SIUBCR[EXDD] = 1)	3.7 4.8	3.5 4.4	3.5 4.4	3.5 4.4	ns ns
16	PUPMWAIT signal set-up time before the 50% level of the REFCLK rising edge	3.7	3.7	3.7	3.7	ns
17	IRQx setup time before the 50% level; of the REFCLK rising edge ³	4.0	4.0	4.0	4.0	ns
18	IRQx minimum pulse width ³	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	6.0 + T _{REFCLK}	ns

Notes:

- 1. Timings specifications 13 and 14 in non-pipeline mode are more restrictive than MSC8102 timings.
 - 2. Values are measured from the 50% TTL transition level relative to the 50% level of the REFCLK rising edge.
 - 3. Guaranteed by design.

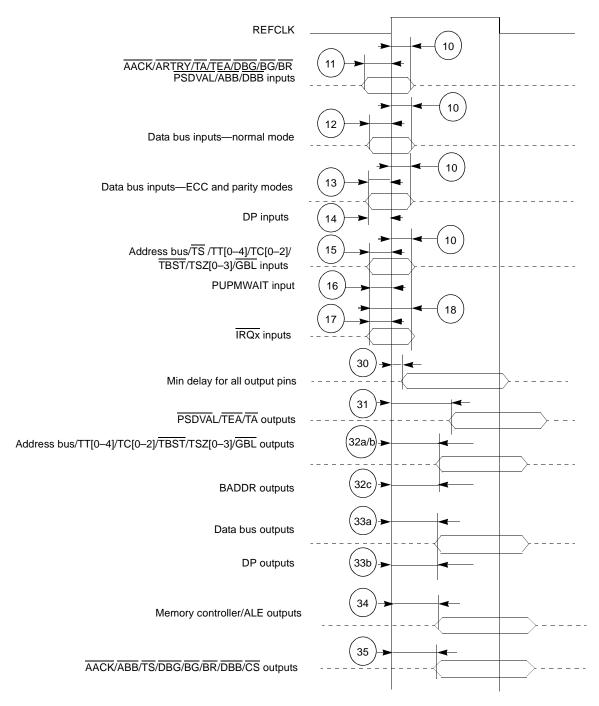


Figure 11. SIU Timing Diagram

2.5.5.3 **DMA Data Transfers**

Table 17 describes the DMA signal timing.

Table 17. DMA Signals

No.	Characteristic		Ref = CLKIN		LKOUT only)	Units
		Min	Max	Min	Max	
37	DREQ set-up time before the 50% level of the falling edge of REFCLK	5.0	_	5.0	_	ns
38	DREQ hold time after the 50% level of the falling edge of REFCLK	0.5	_	0.5	_	ns
39	DONE set-up time before the 50% level of the rising edge of REFCLK	5.0	_	5.0	_	ns
40	DONE hold time after the 50% level of the rising edge of REFCLK	0.5	_	0.5	_	ns
41	DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge	0.5	7.5	0.5	8.4	ns

The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ according to the timings in Table 17. Figure 13 shows synchronous peripheral interaction.

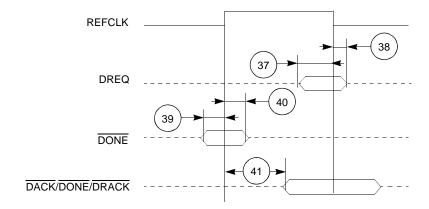


Figure 13. DMA Signals

2.5.6 DSI Timing

The timings in the following sections are based on a 20 pF capacitive load.

2.5.6.1 DSI Asynchronous Mode

Table 18. DSI Asynchronous Mode Timing

No.	Characteristics	Min	Max	Unit
100	Attributes ¹ set-up time before strobe (HWBS[n]) assertion	1.5	_	ns
101	Attributes ¹ hold time after data strobe deassertion	1.3	_	ns
102	Read/Write data strobe deassertion width: • DCR[HTAAD] = 1		_	
	Consecutive access to the same DSI Different device with DCR[HTADT] = 01 Different device with DCR[HTADT] = 40	1.8 + T _{REFCLK} 5 + T _{REFCLK}		ns ns
	Different device with DCR[HTADT] = 10 Different device with DCR[HTADT] = 11 DCR[HTAAD] = 0	$5 + (1.5 \times T_{REFCLK})$ $5 + (2.5 \times T_{REFCLK})$ $1.8 + T_{REFCLK}$		ns ns ns
103	Read data strobe deassertion to output data high impedance	—	8.5	ns
104	Read data strobe assertion to output data active from high impedance	2.0	_	ns
105	Output data hold time after read data strobe deassertion	2.2	_	ns
106	Read/Write data strobe assertion to HTA active from high impedance	2.2	_	ns
107	Output data valid to HTA assertion	3.2	_	ns
108	Read/Write data strobe assertion to HTA valid ² 1.1 V core	_	7.4	ns
400	• 1.2 V core	_	6.7	ns
109	Read/Write data strobe deassertion to output HTA high impedance. (DCR[HTAAD] = 0, HTA at end of access released at logic 0)	_	6.5	ns
110	Read/Write data strobe deassertion to output HTA deassertion. (DCR[HTAAD] = 1, HTA at end of access released at logic 1)	_	6.5	ns
111	Read/Write data strobe deassertion to output HTA high impedance. (DCR[HTAAD] = 1, HTA at end of access released at logic 1	_		
	DCR[HTADT] = 01		5 + T _{REFCLK}	ns
	DCR[HTADT] = 10 DCR[HTADT] = 11		5 + (1.5 × T _{REFCLK})	ns
112	Read/Write data strobe assertion width	1.8 + T _{REFCLK}	5 + (2.5 × T _{REFCLK})	ns ns
201		1.0 + TREFCLK 1.0		
201	Host data input set-up time before write data strobe deassertion Host data input hold time after write data strobe deassertion	1.0	_	ns
202	1.1 V core	1.7	_	ns
	• 1.2 V core	1.5	_	ns
Notes:	 Attributes refers to the following signals: HCS, HA[11–29], HCID[0– This specification is tested in dual-strobe mode. Timing in single-strostrobe. All values listed in this table are tested or guaranteed by design. 	_		1

2.5.6.2 DSI Synchronous Mode

Table 19. DSI Inputs in Synchronous Mode

No.	Characteristic	Everession	1.1 V	Core	1.2 V	Units	
NO.	Characteristic	Expression -	Min	Max	Min	Max	Units
120	HCLKIN cycle time ^{1,2}	HTC	10.0	55.6	10.0	55.6	ns
121	HCLKIN high pulse width	$(0.5 \pm 0.1) \times HTC$	4.0	33.3	4.0	33.3	ns
122	HCLKIN low pulse width	$(0.5 \pm 0.1) \times HTC$	4.0	33.3	4.0	33.3	ns
123	HA[11–29] inputs set-up time	_	1.2	_	1.2	_	ns
124	HD[0-63] inputs set-up time	_	0.6	_	0.4	_	ns
125	HCID[0-4] inputs set-up time	_	1.3	_	1.3	_	ns
126	All other inputs set-up time	_	1.2	_	1.2	_	ns
127	All inputs hold time	_	1.5	_	1.5	_	ns
Notes:	Values are based on a frequency range of 18–100 MHz.						

Refer to **Table 7** for HCLKIN frequency limits.

Table 20. DSI Outputs in Synchronous Mode

No.	Characteristic	1.1 V Core		1.2 V Core		Units
		Min	Max	Min	Max	Oilles
128	HCLKIN high to HD[0–63] output active	2.0	_	2.0	_	ns
129	HCLKIN high to HD[0–63] output valid	_	7.6	_	6.3	ns
130	HD[0–63] output hold time	1.7	_	1.7	_	ns
131	HCLKIN high to HD[0–63] output high impedance	_	8.3	_	7.6	ns
132	HCLKIN high to HTA output active	2.2	_	2.0	_	ns
133	HCLKIN high to HTA output valid	_	7.4	_	5.9	ns
134	HTA output hold time	1.7	_	1.7	_	ns
135	HCLKIN high to HTA high impedance	_	7.5	_	6.3	ns

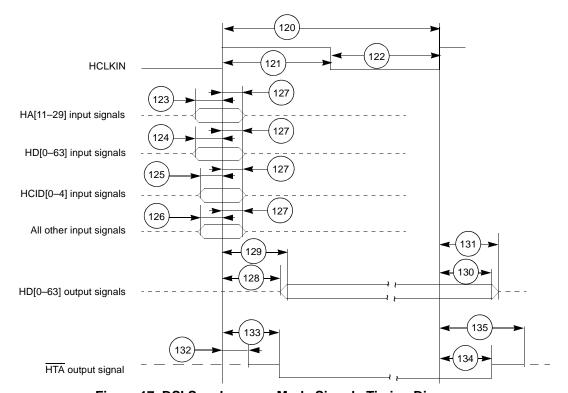


Figure 17. DSI Synchronous Mode Signals Timing Diagram

MSC8122 Quad Digital Signal Processor Data Sheet, Rev. 16

2.5.7 TDM Timing

Table 21. TDM Timing

No.	Characteristic	Expression	1.1 V Core		1.2 V Core		Units
			Min	Max	Min	Max	Units
300	TDMxRCLK/TDMxTCLK	TC ¹	16	_	16	_	ns
301	TDMxRCLK/TDMxTCLK high pulse width	$(0.5 \pm 0.1) \times TC$	7	_	7	_	ns
302	TDMxRCLK/TDMxTCLK low pulse width	$(0.5 \pm 0.1) \times TC$	7	_	7	_	ns
303	TDM receive all input set-up time		1.3	_	1.3	_	ns
304	TDM receive all input hold time		1.0	_	1.0	_	ns
305	TDMxTCLK high to TDMxTDAT/TDMxRCLK output active ^{2,3}		2.8	_	2.8	_	ns
306	TDMxTCLK high to TDMxTDAT/TDMxRCLK output		_	10.0	_	8.8	ns
307	All output hold time ⁴		2.5	_	2.5	_	ns
308	TDMxTCLK high to TDmXTDAT/TDMxRCLK output high impedance ^{2,3}		_	10.7	_	10.5	ns
309	TDMxTCLK high to TDMXTSYN output valid ²		_	9.7	_	8.5	ns
310	TDMxTSYN output hold time ⁴		2.5	_	2.5	_	ns

Notes:

- 1. Values are based on a a maximum frequency of 62.5 MHz. The TDM interface supports any frequency below 62.5 MHz. Devices operating at 300 MHz are limited to a maximum TDMxRCLK/TDMxTCLK frequency of 50 MHz.
- 2. Values are based on 20 pF capacitive load.
- 3. When configured as an output, TDMxRCLK acts as a second data link. See the MSC8122 Reference Manual for details.
- 4. Values are based on 10 pF capacitive load.

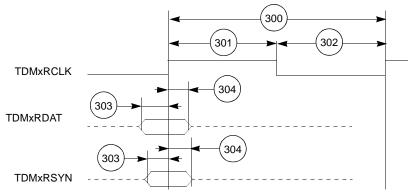


Figure 18. TDM Inputs Signals

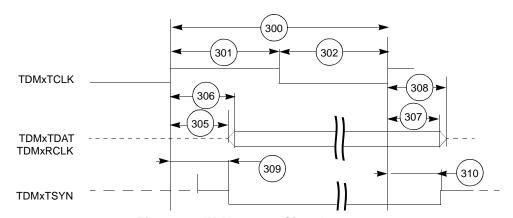


Figure 19. TDM Output Signals

2.5.10.4 SMII Mode

Table 27. SMII Mode Signal Timing

No.	Characteristics	Min	Max	Unit
808	ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge set-up time	1.0		ns
809	ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time	1.0	_	ns
810	 ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay 1.1 V core. 1.2 V core. 	1.5 ¹ 1.5 ¹	6.0 ² 5.0 ²	ns ns
Notes:	 Measured using a 5 pF load. Measured using a 15 pF load. 			

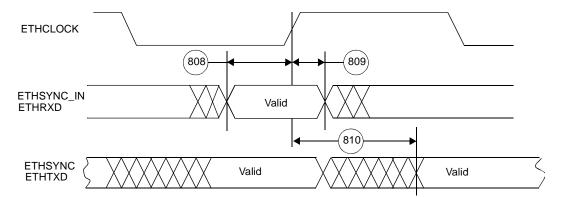


Figure 26. SMII Mode Signal Timing

2.5.11 GPIO Timing

Table 28. GPIO Timing

No.	Characteristics	Ref = CLKIN		Ref = CLKOUT (1.2 V only)		Unit
		Min	Max	Min	Max	
601	REFCLK edge to GPIO out valid (GPIO out delay time)	_	6.1	_	6.9	ns
602	REFCLK edge to GPIO out not valid (GPIO out hold time)	1.1	_	1.3	_	ns
603	REFCLK edge to high impedance on GPIO out	_	5.4	_	6.2	ns
604	GPIO in valid to REFCLK edge (GPIO in set-up time)	3.5		3.7	_	ns
605	REFCLK edge to GPIO in not valid (GPIO in hold time)	0.5	_	0.5	_	ns

Table 30. JTAG Timing (continued)

No.	Characteristics	All frequencies		Unit	
		Min	Max		
704	Boundary scan input data set-up time	5.0	_	ns	
705	Boundary scan input data hold time	20.0	_	ns	
706	TCK low to output data valid	0.0	30.0	ns	
707	TCK low to output high impedance	0.0	30.0	ns	
708	TMS, TDI data set-up time	5.0	_	ns	
709	TMS, TDI data hold time	20.0	_	ns	
710	TCK low to TDO data valid	0.0	20.0	ns	
711	TCK low to TDO high impedance	0.0	20.0	ns	
712	TRST assert time	100.0	_	ns	
713	TRST set-up time to TCK low	30.0	_	ns	
Note:	All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.				

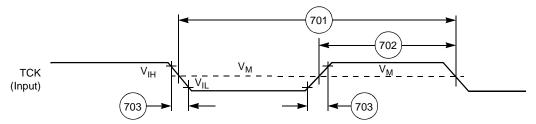


Figure 29. Test Clock Input Timing Diagram

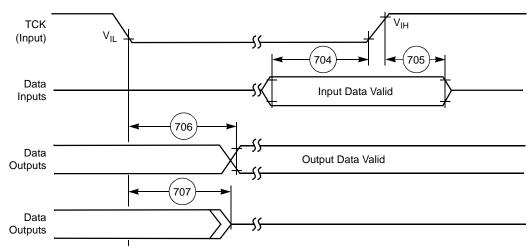


Figure 30. Boundary Scan (JTAG) Timing Diagram

ware Design Considerations

- Never allow V_{DD} to exceed $V_{DDH} + 0.8V$.
- Design the V_{DDH} supply to prevent reverse current flow by adding a minimum $10~\Omega$ resistor to GND to limit the current. Such a design yields an initial V_{DDH} level of $V_{DD}-0.8~V$ before it is enabled.

After power-up, V_{DDH} must not exceed V_{DD}/V_{CCSYN} by more than 2.6 V.

3.2 Power Supply Design Considerations

When used as a drop-in replacement in MSC8102 applications or when implementing a new design, use the guidelines described in *Migrating Designs from the MSC8102 to the MSC8122* (AN2716) and the *MSC8122 Design Checklist* (AN3374 for optimal system performance. *MSC8122 and MSC8126 Power Circuit Design Recommendations and Examples* (AN2937) provides detailed design information. See **Section 2.5.2** for start-up timing specifications.

Figure 33 shows the recommended power decoupling circuit for the core power supply. The voltage regulator and the decoupling capacitors should supply the required device current without any drop in voltage on the device pins. The voltage on the package pins should not drop below the minimum specified voltage level even for a very short spikes. This can be achieved by using the following guidelines:

- For the core supply, use a voltage regulator rated at 1.2 V with nominal rating of at least 3 A. This rating does not reflect actual average current draw, but is recommended because it resists changes imposed by transient spikes and has better voltage recovery time than supplies with lower current ratings.
- Decouple the supply using low-ESR capacitors mounted as close as possible to the socket. **Figure 33** shows three capacitors in parallel to reduce the resistance. Three capacitors is a recommended minimum number. If possible, mount at least one of the capacitors directly below the MSC8122 device.

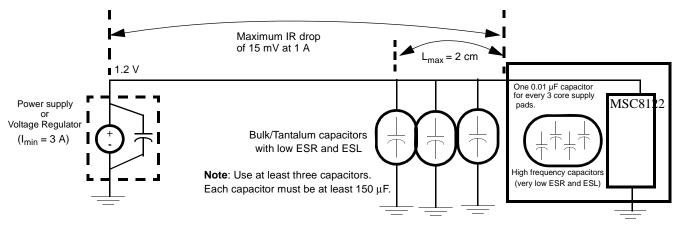


Figure 33. Core Power Supply Decoupling

Each V_{CC} and V_{DD} pin on the MSC8122 device should have a low-impedance path to the board power supply. Similarly, each GND pin should have a low-impedance path to the ground plane. The power supply pins drive distinct groups of logic on the chip. The V_{CC} power supply should have at least four 0.1 μ F by-pass capacitors to ground located as closely as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} , V_{DD} , and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MSC8122 have fast rise and fall times. PCB trace interconnection length should be minimized to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PCB trace lengths of six inches are recommended. For the DSI control signals in synchronous mode, ensure that the layout supports the DSI AC timing requirements and minimizes any signal crosstalk. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PCB traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC}, V_{DD}, and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.

Special care should be taken to minimize the noise levels on the PLL supply pins. There is one pair of PLL supply pins: V_{CCSYN} -GND_{SYN}. To ensure internal clock stability, filter the power to the V_{CCSYN} input with a circuit similar to the one in

5 Package Information

Notes:

- All dimensions in millimeters.
- Dimensioning and tolerancing per ASME Y14.5M–1994.
- Features are symmetrical about the package center lines unless dimensioned otherwise.
- Maximum solder ball diameter measured parallel to Datum A.
- Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
- Parallelism measurement shall exclude any effect of mark on top surface of package.
- Capacitors may not be present on all devices.
- Caution must be taken not to short capacitors or exposed metal capacitor pads on package top.
- FC CBGA (Ceramic) package code: 5238. FC PBGA (Plastic) package code: 5263.
- 10.Pin 1 indicator can be in the form of number 1 marking or an "L" shape marking.

Figure 35. MSC8122 Mechanical Information, 431-pin FC-PBGA Package

6 Product Documentation

- *MSC8122 Technical Data Sheet* (MSC8122). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8122 device.
- *MSC8122 Reference Manual* (MSC8122RM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8122 device.
- *SC140 DSP Core Reference Manual*. Covers the SC140 core architecture, control registers, clock registers, program control, and instruction set.