STMicroelectronics - ST72F325J4T6TR Datasheet

Details

Product Status

Core Processor

Core Size

Speed

Connectivity

Peripherals

Number of I/O

Program Memory Size
Program Memory Type
EEPROM Size

RAM Size

Voltage - Supply (Vcc/Vdd)
Data Converters
Oscillator Type
Operating Temperature
Mounting Type

Package / Case

Supplier Device Package

Purchase URL

Email: info@E-XFL.COM

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Obsolete

ST7

8-Bit

8MHz

12C, SCI, SPI

LVD, POR, PWM, WDT
32

16KB (16K x 8)
FLASH

512 x 8

3.8V ~ 5.5V

A/D 12x10b
Internal

-40°C ~ 85°C (TA)
Surface Mount
44-LQFP

https://www.e-xfl.com/product-detail/stmicroelectronics/st72f325j4t6tr

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st72f325j4t6tr-4431775
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ST72325xx

Figure 4. 44/42-Pin LQFP Package Pinouts

<
mRZRY)
g S rooa
RIS S 5
GRS S §
OoOoOoOoOooonoonn
44 43 42 41 40 39 38 37 36 35 34
RDI/PE1 1 @ 330 Vs 1
PBO 2 321 Vpp_4
PB1O3 | eio (311 PA3(HS)
PB2 4 | &2 3001 PC7/8S/AIN15
PB3 5 29[0 PC6/SCK/ICCCLK
(HS)PB4 6) ei3 28[1 PC5/MOSI/AIN14
AINO / PDO 7 270 PC4/MISO/ICCDATA
AIN1/PD1 s 26[1 PC3 (HS)/ICAP1_B
AIN2 / PD2]9 251 PC2 (HS)/ICAP2_B
AIN3/PD3 10 eil 240 PC1/OCMP1_B/AIN13
AIN4 / PD4 []11 AN 231 PCO/OCMP2_B/AIN12
12 13 14 15 16 17 18 19 20 21 22
OO0 ooogoog
BuWsgr @2k 22
E R W 8 3
s> 208580
z 2 Iz LI L
< << T2 ==
o 39
o H.ﬂ Y
=% £3¢
(HS) PB4 —] 1 Dei3 U 42— PB3
AINO/PDO — 2 41— PB2
AIN1/PD1 —| 3 2| 4ol= PB1
AIN2/PD2 — 4 39— PBO
AIN3/PD3 — 5 3g— PE1/RDI
AIN4/PD4 —| 6 37— PEO/TDO
AIN5/PD5 —| 7 36— Vpp_2
VaRer — 8 35— OSCt
Vgsa 0 9 34— 0OSC2
MCO / AIN8 / PFO — 10 33— Vgg 2
BEEP / (HS) PF1 = 11 |eit 32— RESET
(HS) PF2 — 12 31F= Vpp/ICCSEL
AIN10/OCMP1_A/PF4 —| 13 30= PA7 (HS)/SCLI
ICAP1_A/ (HS) PF6 —{ 14 29— PA6 (HS) / SDAI
EXTCLK_A/ (HS) PF7 — 15 28— PA5 (HS)
AIN12/OCMP2_B/PCO — 16 27— PA4 (HS)
AIN13/OCMP1_B/PC1 —{ 17 26F= Vss_1
ICAP2_B/ (HS) PC2 — 18 25 Vpp 1
ICAP1_B/ (HS) PC3 — 19 ei0 C24:| PA3 (HS)
ICCDATA/MISO / PC4 = 20 23— PC7/S8/AIN15
AIN14 / MOSI/ PC5 = 21 20— PC6/SCK /ICCCLK

(HS) 20mA high sink capability
eix associated external interrupt vector

10/197 ﬁ

ST72325xx

3 REGISTER & MEMORY MAP

As shown in Figure 6, the MCU is capable of ad-
dressing 64K bytes of memories and I/O registers.

The available memory locations consist of 128
bytes of register locations, up to 2Kbytes of RAM
and up to 60Kbytes of user program memory. The
RAM space includes up to 256 bytes for the stack
from 0100h to O1FFh.

The highest address bytes contain the user reset
and interrupt vectors.

Figure 6. Memory Map

IMPORTANT: Memory locations marked as “Re-
served” must never be accessed. Accessing a re-
seved area can have unpredictable effects on the
device.

Related Documentation
AN 985: Executing Code in ST7 RAM

0000h : .~ 0080h
HW R_?gljtef ' Short Addressing
007Fh (see Table 4) . : RAM (zero page)
0080h ' . OOFFh
I ! 0100h
(2048 ??3'\2 1024 :. R 256 Bytes Stack
or 512 Bytes) o %12'(:)';2 " S o00h
82;5: < 16-bit Addressing : 60 KBytes
! RAM , 4000h
OFFEh Reserved ' 027Fh . 48 KBytes
1000h . , or047Fh ! 8000h
Program Memory B 82;EE : 32 KBytes
(60,48, 32 or 16K) Lo ' COo00h
FFDFh , : 16 KByteS
FFEON | |nterrupt & Reset Vectors .L'”“'""""""""‘:
FFFFh (see Table 9) : ' FFFFh

4

17/197

ST72325xx

5 CENTRAL PROCESSING UNIT

5.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains
six internal registers allowing efficient 8-bit data
manipulation.

5.2 MAIN FEATURES

m Enable executing 63 basic instructions
m Fast 8-bit by 8-bit multiply

m 17 main addressing modes
addressing mode)

Two 8-bit index registers

16-bit stack pointer

Low power HALT and WAIT modes

Priority maskable hardware interrupts
Non-maskable software/hardware interrupts

(with indirect

Figure 10. CPU Registers

5.3 CPU REGISTERS

The six CPU registers shown in Figure 1 are not
present in the memory mapping and are accessed
by specific instructions.

Accumulator (A)

The Accumulator is an 8-bit general purpose reg-
ister used to hold operands and the results of the
arithmetic and logic calculations and to manipulate
data.

Index Registers (X and Y)

These 8-bit registers are used to create effective
addresses or as temporary storage areas for data
manipulation. (The Cross-Assembler generates a
precede instruction (PRE) to indicate that the fol-
lowing instruction refers to the Y register.)

The Y register is not affected by the interrupt auto-
matic procedures.

Program Counter (PC)

The program counter is a 16-bit register containing
the address of the next instruction to be executed
by the CPU. It is made of two 8-bit registers PCL
(Program Counter Low which is the LSB) and PCH
(Program Counter High which is the MSB).

7 0

RESET VALUE = XXh
7 0

RESET VALUE = XXh
7 0

RESET VALUE = XXh

[15 PCH 8|7 PCL 0

RESET VALUE = RESET VECTOR @ FFFEh-FFFFh
7 0

111 |n|H|10[N|Z]|C|

RESETVALUE=1 1 1 X 1 X X X

15 8|7 0]

RESET VALUE = STACK HIGHER ADDRESS

ACCUMULATOR

X INDEX REGISTER

Y INDEX REGISTER

PROGRAM COUNTER

CONDITION CODE REGISTER

STACK POINTER

X = Undefined Value

24/197

(574

ST72325xx

CENTRAL PROCESSING UNIT (Cont'd)
Condition Code Register (CC)
Read/Write

Reset Value: 111x1xxx

7 0

1 1 11 H 10 N 4 C

The 8-bit Condition Code register contains the in-
terrupt masks and four flags representative of the
result of the instruction just executed. This register
can also be handled by the PUSH and POP in-
structions.

These bits can be individually tested and/or con-
trolled by specific instructions.

Arithmetic Management Bits
Bit 4 = H Half carry.

This bit is set by hardware when a carry occurs be-
tween bits 3 and 4 of the ALU during an ADD or
ADC instructions. It is reset by hardware during
the same instructions.

0: No half carry has occurred.
1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruc-
tion. The H bit is useful in BCD arithmetic subrou-
tines.

Bit 2 = N Negative.

This bit is set and cleared by hardware. It is repre-
sentative of the result sign of the last arithmetic,
logical or data manipulation. It's a copy of the re-
sult 71" bit.
0: The result of the last operation is positive or null.
1: The result of the last operation is negative

(that is, the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instruc-
tions.

4

Bit 1 = Z Zero.

This bit is set and cleared by hardware. This bit in-

dicates that the result of the last arithmetic, logical

or data manipulation is zero.

0: The result of the last operation is different from
zero.

1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test
instructions.

Bit 0 = C Carry/borrow.

This bit is set and cleared by hardware and soft-
ware. It indicates an overflow or an underflow has
occurred during the last arithmetic operation.

0: No overflow or underflow has occurred.

1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions
and tested by the JRC and JRNC instructions. It is
also affected by the “bit test and branch”, shift and
rotate instructions.

Interrupt Management Bits

Bit 5,3 = 1, 10 Interrupt

The combination of the 11 and 10 bits gives the cur-
rent interrupt software priority.

Interrupt Software Priority h] 10
Level 0 (main) 1 0
Level 1 0 1
Level 2 0 0
Level 3 (= interrupt disable) 1 1

These two bits are set/cleared by hardware when
entering in interrupt. The loaded value is given by
the corresponding bits in the interrupt software pri-
ority registers (IxXSPR). They can be also set/
cleared by software with the RIM, SIM, IRET,
HALT, WFI and PUSH/POP instructions.

See the interrupt management chapter for more
details.

25/197

ST72325xx

CENTRAL PROCESSING UNIT (Cont'd)

Stack Pointer (SP)
Read/Write
Reset Value: 01 FFh

15 8

0 0 0 0 0 0 0 1

7 0

SP7 | SP6 | SP5 | SP4 | SP3 | SP2 | SP1 | SPO

The Stack Pointer is a 16-bit register which is al-
ways pointing to the next free location in the stack.
It is then decremented after data has been pushed
onto the stack and incremented before data is
popped from the stack (see Figure 2).

Since the stack is 256 bytes deep, the 8 most sig-
nificant bits are forced by hardware. Following an
MCU Reset, or after a Reset Stack Pointer instruc-
tion (RSP), the Stack Pointer contains its reset val-
ue (the SP7 to SPO bits are set) which is the stack
higher address.

Figure 11. Stack Manipulation Example

The least significant byte of the Stack Pointer
(called S) can be directly accessed by a LD in-
struction.

Note: When the lower limit is exceeded, the Stack
Pointer wraps around to the stack upper limit, with-
out indicating the stack overflow. The previously
stored information is then overwritten and there-
fore lost. The stack also wraps in case of an under-
flow.

The stack is used to save the return address dur-
ing a subroutine call and the CPU context during
an interrupt. The user may also directly manipulate
the stack by means of the PUSH and POP instruc-
tions. In the case of an interrupt, the PCL is stored
at the first location pointed to by the SP. Then the
other registers are stored in the next locations as
shown in Figure 2.

— When an interrupt is received, the SP is decre-
mented and the context is pushed on the stack.

— On return from interrupt, the SP is incremented
and the context is popped from the stack.

A subroutine call occupies two locations and an in-
terrupt five locations in the stack area.

CALL Interrupt PUSHY POP Y IRET RET
Subroutine Event or RSP
@ 0100h
SP
SP SP
— > Y —p
cC CcC CC
A A A
X X X
op PCH PCH PCH | o
—p PCL PCL PCL >
PCH PCH PCH PCH PCH |
@ 01FFh| PCL PCL PCL PCL PCL | —»p
Stack Higher Address = 01FFh
Stack Lower Address = 0100h
26/197 ‘y,

ST72325xx

INTERRUPTS (Contd)

7.5 INTERRUPT REGISTER DESCRIPTION

CPU CC REGISTER INTERRUPT BITS
Read/Write
Reset Value: 111x 1010 (xAh)

7 0

1 1 h] H 10 N 4 C

Bit 5, 3 =1, 10 Software Interrupt Priority

These two bits indicate the current interrupt soft-
ware priority.

Interrupt Software Priority | Level h| 10
Level 0 (main) Low 1 0
Level 1 i 0 1
Level 2 0 0
Level 3 (= interrupt disable*) | High 1 1

These two bits are set/cleared by hardware when
entering in interrupt. The loaded value is given by
the corresponding bits in the interrupt software pri-
ority registers (ISPRXx).

They can be also set/cleared by software with the
RIM, SIM, HALT, WFI, IRET and PUSH/POP in-
structions (see “Interrupt Dedicated Instruction
Set” table).

*Note: TRAP and RESET events can interrupt a
level 3 program.

4

INTERRUPT SOFTWARE PRIORITY REGIS-
TERS (ISPRX)

Read/Write (bit 7:4 of ISPR3 are read only)

Reset Value: 1111 1111 (FFh)
7 0

ISPRO 113|103 |11_2(10_2|11_1]10_1|11_0]|l10_0

ISPR1 1_7(10_7|11_6[10_6|11_5]|10_5|11_4]|10_4

ISPR2 [11_11{l0_11|11_10(l0_10| 11_9|10_9 | 11_8|10_8

ISPR3 1 1 1 1 [1_13[l0_13|I1_12]l0_12

These four registers contain the interrupt software
priority of each interrupt vector.

— Each interrupt vector (except RESET and TRAP)
has corresponding bits in these registers where
its own software priority is stored. This corre-
spondance is shown in the following table.

ISPRx bits

11_0 and 10_0 bits*
11_1 and 10_1 bits

Vector address

FFFBh-FFFAh
FFF9h-FFF8h

FFE1h-FFEOh 11_13 and 10_13 bits

— Each [1_x and 10_x bit value in the ISPRXx regis-
ters has the same meaning as the |1 and 10 bits
in the CC register.

— Level 0 can not be written (I11_x=1, 10_x=0). In
this case, the previously stored value is kept. (ex-
ample: previous=CFh, write=64h, result=44h)

The TLI, RESET, and TRAP vectors have no soft-
ware priorities. When one is serviced, the 11 and |0
bits of the CC register are both set.

*Note: Bits in the ISPRx registers which corre-
spond to the TLI can be read and written but they
are not significant in the interrupt process man-
agement.

Caution: If the 11_x and 10_x bits are modified
while the interrupt x is executed the following be-
haviour has to be considered: If the interrupt x is
still pending (new interrupt or flag not cleared) and
the new software priority is higher than the previ-
ous one, the interrupt x is re-entered. Otherwise,
the software priority stays unchanged up to the
next interrupt request (after the IRET of the inter-
rupt x).

39/197

ST72325xx

POWER SAVING MODES (Cont'd)
8.4.2 HALT MODE

The HALT mode is the lowest power consumption
mode of the MCU. It is entered by executing the
‘HALT’ instruction when the OIE bit of the Main
Clock Controller Status register (MCCSR) is
cleared (see section 10.2 on page 61 for more de-
tails on the MCCSR register).

The MCU can exit HALT mode on reception of ei-
ther a specific interrupt (see Table 9, “Interrupt
Mapping,” on page 41) or a RESET. When exiting
HALT mode by means of a RESET or an interrupt,
the oscillator is immediately turned on and the 256
or 4096 CPU cycle delay is used to stabilize the
oscillator. After the start up delay, the CPU
resumes operation by servicing the interrupt or by
fetching the reset vector which woke it up (see Fig-
ure 32).

When entering HALT mode, the 1[1:0] bits in the
CC register are forced to ‘“10b’to enable interrupts.
Therefore, if an interrupt is pending, the MCU
wakes up immediately.

In HALT mode, the main oscillator is turned off
causing all internal processing to be stopped, in-
cluding the operation of the on-chip peripherals.
All peripherals are not clocked except the ones
which get their clock supply from another clock
generator (such as an external or auxiliary oscilla-
tor).

The compatibility of Watchdog operation with
HALT mode is configured by the “WDGHALT” op-
tion bit of the option byte. The HALT instruction
when executed while the Watchdog system is en-
abled, can generate a Watchdog RESET (see sec-
tion 14.1 on page 181 for more details).

Figure 31. HALT Timing Overview

Figure 32. HALT Mode Flow-chart

HALT INSTRUCTION
(MCCSR.OIE=0)

ENABLE

WATCHDOG

@ 0 DISABLE
]
y
WATCHDOG OSCILLATOR OFF
RESET PERIPHERALS 2 OFF
CPU OFF
I[1:0] BITS 10

OSCILLATOR ON
PERIPHERALS OFF
5| CPU ON
I[1:0] BITS XX 4

v

256 OR 4096 CPU CLOCK
CYCLE DELAY

v

OSCILLATOR ON
PERIPHERALS ON
CPU ON
I[1:0] BITS XX 9

v
FETCH RESET VECTOR
OR SERVICE INTERRUPT

256 OR 4096 CPU
RUN | HALT |~ cyCLE DELAY RUN
- : >
I RESET
— OR
HALT INTERRUPT
INSTRUCTION FETCH
[MCCSR.OIE=0] VECTOR
48/197

Notes:

1. WDGHALT is an option bit. See option byte sec-
tion for more details.

2. Peripheral clocked with an external clock source
can still be active.

3. Only some specific interrupts can exit the MCU
from HALT mode (such as external interrupt). Re-
fer to Table 9, “Interrupt Mapping,” on page 41 for
more details.

4. Before servicing an interrupt, the CC register is
pushed on the stack. The I[1:0] bits of the CC reg-
ister are set to the current software priority level of
the interrupt routine and recovered when the CC
register is popped.

(574

ST72325xx

WATCHDOG TIMER (Cont’d)
10.1.4 How to Program the Watchdog Timeout

Figure 2 shows the linear relationship between the
6-bit value to be loaded in the Watchdog Counter
(CNT) and the resulting timeout duration in milli-
seconds. This can be used for a quick calculation
without taking the timing variations into account. If

Figure 36. Approximate Timeout Duration

more precision is needed, use the formulae in Fig-
ure 3.

Caution: When writing to the WDGCR register, al-
ways write 1 in the T6 bit to avoid generating an
immediate reset.

3F

38 F — — — — —

0 F — — — — — — — —

CNT Value (hex.)

00 |

28 F— — — — — — — — — —

20 F————— — — — — —

8- —-—"—= - _Z_

0 Fr———— 2= — = —

g+ — X — ——— —— —

1.5 18 34 50

65 82 98 114 128

Watchdog timeout (ms) @ 8 MHz. fogca

4

57/197

ST72325xx

ON-CHIP PERIPHERALS (Cont'd)

Input capture function

This mode allows the measurement of external
signal pulse widths through ARTICRXx registers.

Each input capture can generate an interrupt inde-
pendently on a selected input signal transition.
This event is flagged by a set of the corresponding
CFx bits of the Input Capture Control/Status regis-
ter (ARTICCSR).

These input capture interrupts are enabled
through the CIEXx bits of the ARTICCSR register.

The active transition (falling or rising edge) is soft-
ware programmable through the CSx bits of the
ARTICCSR register.

The read only input capture registers (ARTICRx)
are used to latch the auto-reload counter value
when a transition is detected on the ARTICx pin
(CFx bit set in ARTICCSR register). After fetching
the interrupt vector, the CFx flags can be read to
identify the interrupt source.

Note: After a capture detection, data transfer in
the ARTICRXx register is inhibited until it is read
(clearing the CFx bit).

The timer interrupt remains pending while the CFx
flag is set when the interrupt is enabled (CIEx bit
set). This means, the ARTICRXx register has to be
read at each capture event to clear the CFx flag.

The timing resolution is given by auto-reload coun-
ter cycle time (1/fcounTER)-

Note: During HALT mode, if both input capture
and external clock are enabled, the ARTICRx reg-
ister value is not guaranteed if the input capture
pin and the external clock change simultaneously.

Figure 44. Input Capture Timing Diagram

External interrupt capability

This mode allows the Input capture capabilities to
be used as external interrupt sources. The inter-
rupts are generated on the edge of the ARTICx
signal.

The edge sensitivity of the external interrupts is
programmable (CSx bit of ARTICCSR register)
and they are independently enabled through CIEx
bits of the ARTICCSR register. After fetching the
interrupt vector, the CFx flags can be read to iden-
tify the interrupt source.

During HALT mode, the external interrupts can be
used to wake up the micro (if the CIEx bit is set).

B I Y W 0 N O B

P LA LA

COUNTER (" o1n X o2h X oah X oan X osh X oeh X orh »

ARTICx PIN /

A INTERRUPT

CFx FLAG

xxh X

04h

ICRx REGISTER

68/197

4

ST72325xx

16-BIT TIMER (Cont'd)

Figure 52. Output Compare Timing Diagram, frjyer = fcpu/2

INTERNAL CPU CLOCK

TIMER CLOCK

COUNTER REGISTER

OUTPUT COMPARE REGISTER i (OCR)
OUTPUT COMPARE FLAG i (OCFi)

OCMPIi PIN (OLVLi = 1)

uuuvuuuuuuy
[T T T T JL

2ECF(2ED0 X 2ED1X2ED2) 2ED3X 2ED4(_

2ED3

—
——

Figure 53. Output Compare Timing Diagram, fyyer = fepu/4

INTERNAL CPU CLOCK

TIMER CLOCK

COUNTER REGISTER

OUTPUT COMPARE REGISTER i (OCRi)
OUTPUT COMPARE FLAG i (OCFJ)

OCMPI PIN (OLVLi = 1)

B R
] | |

2ECF{2EDOX 2ED1X2ED2) 2ED3Y 2ED4(

2ED3

—
—

4

81/197

ST72325xx

16-BIT TIMER (Cont'd)

Table 19. 16-Bit Timer Register Map and Reset Values

Address Register

(Hex.) Lgbel 7 6 5 4 3 2 1 0
Timer A: 32| CR1 ICIE OCIE TOIE FOLV2 FOLV1 OLvL2 IEDG1 OLVL1
Timer B: 42| Reset Value 0 0 0 0 0 0 0 0
Timer A: 31| CR2 OC1E OC2E OPM PWM CC1 CCo IEDG2 EXEDG
Timer B: 41| Reset Value 0 0 0 0 0 0 0 0
Timer A: 33| CSR ICF1 OCF1 TOF ICF2 OCF2 TIMD - -
Timer B: 43| Reset Value X X X X X 0 X X
Timer A: 34| IC1HR MSB LSB
Timer B: 44| Reset Value X X X X X X X X
Timer A: 35| IC1LR MSB LSB
Timer B: 45| Reset Value X X X X X X X X
Timer A: 36| OC1HR MSB LSB
Timer B: 46| Reset Value 1 0 0 0 0 0 0 0
Timer A: 37| OC1LR MSB LSB
Timer B: 47| Reset Value 0 0 0 0 0 0 0 0
Timer A: 3E| OC2HR MSB LSB
Timer B: 4E| Reset Value 1 0 0 0 0 0 0 0
Timer A: 3F| OC2LR MSB LSB
Timer B: 4F| Reset Value 0 0 0 0 0 0 0 0
Timer A: 38| CHR MSB LSB
Timer B: 48| Reset Value 1 1 1 1 1 1 1 1
Timer A: 39| CLR MSB LSB
Timer B: 49| Reset Value 1 1 1 1 1 1 0 0
Timer A: 3A| ACHR MSB LSB
Timer B: 4A| Reset Value 1 1 1 1 1 1 1 1
Timer A: 3B| ACLR MSB LSB
Timer B: 4B| Reset Value 1 1 1 1 1 1 0 0
Timer A: 3C| IC2HR MSB LSB
Timer B: 4C| Reset Value X X X X X X X X
Timer A: 3D| IC2LR MSB LSB
Timer B: 4D| Reset Value X X X X X X X X

Related Documentation

AN 973: SCI software communications using 16-
bit timer

AN 974: Real Time Clock with ST7 Timer Output
Compare

AN 976: Driving a buzzer through the ST7 Timer
PWM function

4

AN1041: Using ST7 PWM signal to generate ana-
log input (sinusoid)
AN1046: UART emulation software

AN1078: PWM duty cycle switch implementing
true 0 or 100 per cent duty cycle

AN1504: Starting a PWM signal directly at high
level using the ST7 16-Bit timer

91/197

ST72325xx

SERIAL PERIPHERAL INTERFACE (Cont'd)
10.5.6 Low Power Modes

Mode Description

No effect on SPI.
SPI interrupt events cause the device to exit
from WAIT mode.

WAIT

SPI registers are frozen.

In HALT mode, the SPI is inactive. SPI oper-
ation resumes when the MCU is woken up by
an interrupt with “exit from HALT mode” ca-
pability. The data received is subsequently
read from the SPIDR register when the soft-
ware is running (interrupt vector fetching). If
several data are received before the wake-
up event, then an overrun error is generated.
This error can be detected after the fetch of
the interrupt routine that woke up the device.

HALT

10.5.6.1 Using the SPI to wakeup the MCU from
Halt mode

In slave configuration, the SPI is able to wakeup
the ST7 device from HALT mode through a SPIF
interrupt. The data received is subsequently read
from the SPIDR register when the software is run-
ning (interrupt vector fetch). If multiple data trans-
fers have been performed before software clears
the SPIF bit, then the OVR bit is set by hardware.

4

Note: When waking up from Halt mode, if the SPI
remains in Slave mode, it is recommended to per-
form an extra communications cycle to bring the
SPI from Halt mode state to normal state. If the
SPI exits from Slave mode, it returns to normal
state immediately.

Caution: The SPI can wake up the ST7 from Halt
mode only if the Slave Select signal (external SS
pin or the SSI bit in the SPICSR register) is low
when the ST7 enters Halt mode. So if Slave selec-
tion is configured as external (see Section
10.5.3.2), make sure the master drives a low level
on the SS pin when the slave enters Halt mode.

10.5.7 Interrupts

Event Enable Exit Exit

Interrupt Event Fla Control | from from

9 Bit | Wait | Halt

SPI End of Transfer SPIF Yes Yes
Event

Master Mode Fault MODF SPIE Yes No
Event

Overrun Error OVR Yes No

Note: The SPI interrupt events are connected to
the same interrupt vector (see Interrupts chapter).
They generate an interrupt if the corresponding
Enable Control Bit is set and the interrupt mask in

99/197

ST72325xx

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

CONTROL REGISTER 2 (SCICR2)
Read/Write
Reset Value: 0000 0000 (00h)

7 0

TIE | TCIE | RIE ILIE TE RE | RWU | SBK

Bit 7 = TIE Transmitter interrupt enable.

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An SCl interrupt is generated whenever
TDRE=1 in the SCISR register

Bit 6 = TCIE Transmission complete interrupt ena-

ble

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An SClinterrupt is generated whenever TC=1 in
the SCISR register

Bit 5 = RIE Receiver interrupt enable.

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An SCl interrupt is generated whenever OR=1
or RDRF=1 in the SCISR register

Bit 4 = ILIE Idle line interrupt enable.

This bit is set and cleared by software.

0: Interrupt is inhibited

1: An SCl interrupt is generated whenever IDLE=1
in the SCISR register.

Bit 3 = TE Transmitter enable.

This bit enables the transmitter. It is set and
cleared by software.

0: Transmitter is disabled

1: Transmitter is enabled

4

Notes:

— During transmission, a “0” pulse on the TE bit
(“0” followed by “1”) sends a preambile (idle line)
after the current word.

— When TE is set there is a 1 bit-time delay before
the transmission starts.

CAUTION: The TDO pin is free for general pur-
pose 1/O only when the TE and RE bits are both
cleared (or if TE is never set).

Bit 2 = RE Receiver enable.

This bit enables the receiver. It is set and cleared

by software.

0: Receiver is disabled

1: Receiver is enabled and begins searching for a
start bit

Bit 1 = RWU Receiver wake-up.

This bit determines if the SCI is in mute mode or
not. It is set and cleared by software and can be
cleared by hardware when a wake-up sequence is
recognized.

0: Receiver in Active mode

1: Receiver in Mute mode

Note: Before selecting Mute mode (setting the
RWU bit), the SCI must receive some data first,
otherwise it cannot function in Mute mode with
wake-up by idle line detection.

Bit 0 = SBK Send break.

This bit set is used to send break characters. It is
set and cleared by software.

0: No break character is transmitted

1: Break characters are transmitted

Note: If the SBK bit is set to “1” and then to “0”, the
transmitter sends a BREAK word at the end of the
current word.

115/197

ST72325xx

SERIAL COMMUNICATION INTERFACE (Cont'd)
Table 24. SCI Register Map and Reset Values

Address Register
(Hex.) Label 7 6 5 4 3 2 1 0
0050h SCISR TDRE TC RDRF IDLE OVR NF FE PE
Reset Value 1 1 0 0 0 0 0 0
0051h SCIDR MSB LSB
Reset Value X X X X X X X X
0052h SCIBRR SCP1 SCPO SCT2 SCT1 SCTO SCR2 SCRi1 SCRO
Reset Value 0 0 0 0 0 0 0 0
0053h SCICR1 R8 T8 SCID M WAKE PCE PS PIE
Reset Value X 0 0 0 0 0 0 0
0054h SCICR2 TIE TCIE RIE ILIE TE RE RwWU SBK
Reset Value 0 0 0 0 0 0 0 0
SCIERPR MSB LSB
0055h Reset Value 0 0 0 0 0 0 0 0
SCIPETPR MSB LSB
0057h Reset Value 0 0 0 0 0 0 0 0
118/197 ﬁ

ST72325xx

I2C BUS INTERFACE (Cont'd)

Bit 1 = M/SL Master/Slave.

This bit is set by hardware as soon as the interface
is in Master mode (writing START=1). It is cleared
by hardware after detecting a Stop condition on
the bus or a loss of arbitration (ARLO=1). It is also
cleared when the interface is disabled (PE=0).

0: Slave mode

1: Master mode

Bit 0 = SB Start bit (Master mode).

This bit is set by hardware as soon as the Start
condition is generated (following a write
START=1). An interrupt is generated if ITE=1. It is
cleared by software reading SR1 register followed
by writing the address byte in DR register. It is also
cleared by hardware when the interface is disa-
bled (PE=0).

0: No Start condition

1: Start condition generated

I2C STATUS REGISTER 2 (SR2)

Read Only

Reset Value: 0000 0000 (00h)
7 0
0 0 0 AF |STOPF| ARLO | BERR | GCAL

Bit 7:5 = Reserved. Forced to 0 by hardware.

Bit 4 = AF Acknowledge failure.

This bit is set by hardware when no acknowledge
is returned. An interrupt is generated if ITE=1. It is
cleared by software reading SR2 register or by
hardware when the interface is disabled (PE=0).

The SCL line is not held low while AF=1 but by oth-
er flags (SB or BTF) that are set at the same time.

0: No acknowledge failure

1: Acknowledge failure

Note:

— When an AF event occurs, the SCL line is not
held low; however, the SDA line can remain low
if the last bits transmitted are all 0. It is then nec-
essary to release both lines by software.

Bit 3 = STOPF Stop detection (Slave mode).

This bit is set by hardware when a Stop condition
is detected on the bus after an acknowledge (if
ACK=1). An interrupt is generated if ITE=1. It is
cleared by software reading SR2 register or by
hardware when the interface is disabled (PE=0).

128/197

The SCL line is not held low while STOPF=1.

0: No Stop condition detected
1: Stop condition detected

Bit 2 = ARLO Arbitration lost.

This bit is set by hardware when the interface los-
es the arbitration of the bus to another master. An
interrupt is generated if ITE=1. It is cleared by soft-
ware reading SR2 register or by hardware when
the interface is disabled (PE=0).

After an ARLO event the interface switches back
automatically to Slave mode (M/SL=0).

The SCL line is not held low while ARLO=1.

0: No arbitration lost detected

1: Arbitration lost detected

Note:

— In a Multimaster environment, when the interface
is configured in Master Receive mode it does not
perform arbitration during the reception of the
Acknowledge Bit. Mishandling of the ARLO bit
from the I2CSR2 register may occur when a sec-
ond master simultaneously requests the same
data from the same slave and the 1°C master
does not acknowledge the data. The ARLO bit is
then left at O instead of being set.

Bit 1 = BERR Bus error.

This bit is set by hardware when the interface de-
tects a misplaced Start or Stop condition. An inter-
rupt is generated if ITE=1. It is cleared by software
reading SR2 register or by hardware when the in-
terface is disabled (PE=0).

The SCL line is not held low while BERR=1.

0: No misplaced Start or Stop condition

1: Misplaced Start or Stop condition

Note:

— If a Bus Error occurs, a Stop or a repeated Start
condition should be generated by the Master to
re-synchronize communication, get the transmis-
sion acknowledged and the bus released for fur-
ther communication

Bit 0 = GCAL General Call (Slave mode).

This bit is set by hardware when a general call ad-
dress is detected on the bus while ENGC=1. It is
cleared by hardware detecting a Stop condition
(STOPF=1) or when the interface is disabled
(PE=0).

0: No general call address detected on bus
1: general call address detected on bus

4

ST72325xx

CLOCK CHARACTERISTICS (Cont'd)
12.5.4 RC Oscillators

Symbol Parameter Conditions Min Typ Max Unit
Internal RC oscillator frequency R

Figure 77. Typical fogcreinT) VS Ta

Note: To reduce disturbance to the RC oscillator,

—a—Vdd=5v ||

foscreint) (MHZ)

—e—Vdd = 5.5V

TA(C)

4

it is recommended to place decoupling capacitors
between Vpp and Vgg as shown in Figure 97

153/197

ST72325xx

CLOCK CHARACTERISTICS (Cont'd)
12.5.5 Clock Security System (CSS)

Symbol Parameter Conditions Min Typ Max Unit
fsrosc Safe Oscillator Frequency ") 3 MHz
Note:
1. Data based on characterization results.
12.5.6 PLL Characteristics
Symbol Parameter Conditions Min Typ Max Unit
fosc PLL input frequency range 2 4 MHz
A fepy/ fopy | Instantaneous PLL jitter Y fosc = 4 MHz. 0.7 2 %

Note:

1. Data characterized but not tested.
The user must take the PLL jitter into account in the application (for example in serial communication or

sampling of high frequency signals). The PLL jitter is a periodic effect, which is integrated over several
CPU cycles. Therefore the longer the period of the application signal, the less it will be impacted by the

PLL jitter.

Figure 78 shows the PLL jitter integrated on application signals in the range 125kHz to 4MHz. At frequen-
cies of less than 125KHz, the jitter is negligible.

Figure 78. Integrated PLL Jitter vs signal frequency1

+/-Jitter (%)
12
1 - —— Max
—A—Typ
0.8
0.6
0.4
0.2
O T T T T T
4MHz 2MHz 1MHz 500kHz 250 kHz 125 kHz
Application Frequency

Note 1: Measurement conditions: fopy = 8MHz.

154/197

4

ST72325xx

13 PACKAGE CHARACTERISTICS

13.1 PACKAGE MECHANICAL DATA

Figure 99. 64-Pin Low Profile Quad Flat Package (14x14)

D

HHAAARAAAAAARARAR

O

HAAAAAAAAAAAAARA i

b

e
E1 E

L

HEHEHEEHHEHEHEEE | “L’ﬁc

mm inches?
Dim.
Min | Typ | Max | Min | Typ | Max
A 1.60 0.0630
A1 | 0.05 0.15]0.0020 0.0059
A2 (1.35|1.40| 1.45|0.0531(0.0551|0.0571
b |0.30|0.37 | 0.45 [0.0118]0.0146(0.0177
c |0.09 0.20 |0.0035 0.0079
D 16.00 0.6299
D1 14.00 0.5512
E 16.00 0.6299
E1 14.00 0.5512
e 0.80 0.0315
(¢] 0° | 35°| 7° 0° 3.5° 7°
L |0.45]|0.60 | 0.75|0.0177(0.0236|0.0295
L1 1.00 0.0394
Number of Pins
N 64
ote 1. values In inches are converted from mm

and rounded to 4 decimal digits.

174/197

4

ST72325xx

PACKAGE MECHANICAL DATA (Cont'd)

Figure 105. 32-Pin Low Profile Quad Flat Package

D

D1

NOOARNON

ililatidilinili [

HHHHHHEHH

O
HEHHHHE

H

f £>

At~

" 1
eisisisisiei

=~ c

U
L

&

mm inches?)

Dim.
Min | Typ | Max [Min Typ | Max

A 1.60 0.0630
A1 [0.05 0.15 {0.0020 0.0059
A2 | 1.35|1.40 | 1.45|0.0531|0.0551|0.0571
b |0.30|0.37 | 0.45 (0.0118(0.0146|0.0177
C |0.09 0.20 |{0.0035 0.0079
D 9.00 0.3543
D1 7.00 0.2756
E 9.00 0.3543
E1 7.00 0.2756

0.80 0.0315
0 0° | 85°| 7° 0° 3.5° 7°
L |0.45(0.60|0.75 [{0.0177|0.0236|0.0295
L1 1.00 0.0394

Number of Pins

N 32

Note T.” Values in inches are converted from mm
and rounded to 4 decimal digits.

178/197

4

ST72325xx

15 KNOWN LIMITATIONS

15.1 ALL DEVICES

15.1.1 Unexpected Reset Fetch

If an interrupt request occurs while a “POP CC” in-
struction is executed, the interrupt controller does
not recognise the source of the interrupt and, by
default, passes the RESET vector address to the
CPU.

Workaround

To solve this issue, a “POP CC” instruction must
always be preceded by a “SIM” instruction.

15.1.2 External interrupt missed

To avoid any risk if generating a parasitic interrupt,
the edge detector is automatically disabled for one
clock cycle during an access to either DDR and
OR. Any input signal edge during this period will
not be detected and will not generate an interrupt.

This case can typically occur if the application re-
freshes the port configuration registers at intervals
during runtime.

Workaround

The workaround is based on software checking
the level on the interrupt pin before and after writ-
ing to the PxOR or PxDDR registers. If there is a
level change (depending on the sensitivity pro-
grammed for this pin) the interrupt routine is in-
voked using the call instruction with three extra
PUSH instructions before executing the interrupt
routine (this is to make the call compatible with the
IRET instruction at the end of the interrupt service
routine).

But detection of the level change does not make
sure that edge occurs during the critical 1 cycle du-
ration and the interrupt has been missed. This may
lead to occurrence of same interrupt twice (one
hardware and another with software call).

To avoid this, a semaphore is set to '1' before
checking the level change. The semaphore is
changed to level '0' inside the interrupt routine.
When a level change is detected, the semaphore
status is checked and if it is '1' this means that the
last interrupt has been missed. In this case, the in-
terrupt routine is invoked with the call instruction.

There is another possible case i.e. if writing to
PxOR or PxDDR is done with global interrupts dis-
abled (interrupt mask bit set). In this case, the
semaphore is changed to '1' when the level
change is detected. Detecting a missed interrupt is
done after the global interrupts are enabled (inter-
rupt mask bit reset) and by checking the status of

(574

the semaphore. If it is '1' this means that the last
interrupt was missed and the interrupt routine is in-
voked with the call instruction.

To implement the workaround, the following soft-
ware sequence is to be followed for writing into the
PxOR/PxDDR registers. The example is for for
Port PF1 with falling edge interrupt sensitivity. The
software sequence is given for both cases (global
interrupt disabled/enabled).

Case 1: Writing to PxOR or PxDDR with Global In-
terrupts Enabled:

LD A,#01

LD sema,A
LD A,PFDR
AND A,#02

LD X,A
PxOR/PxDDR

LD A,#$90

LD PFDDR,A ; Write to PFDDR
LD A,#$ff
LD PFOR,A
LD A,PFDR
AND A,#02

LDY,A
PxOR/PxDDR

LD A,X
cp A,#02
jrne OUT
TNZY
jrne OUT

LD A,sema ; check the semaphore status if
edge is detected

CP A#01

jrne OUT

call call_routine; call the interrupt routine
OUT:LD A,#00
LD sema,A
.call_routine
PUSH A
PUSH X
PUSH CC
.extl_rt

LD A,#00

; set the semaphore to '1'

; store the level before writing to

; Write to PFOR

; store the level after writing to

; check for falling edge

; entry to call_routine

; entry to interrupt routine

192/197

