
STMicroelectronics - ST72F325J4T6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ST7

Core Size 8-Bit

Speed 8MHz

Connectivity I²C, SCI, SPI

Peripherals LVD, POR, PWM, WDT

Number of I/O 32

Program Memory Size 16KB (16K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 3.8V ~ 5.5V

Data Converters A/D 12x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/st72f325j4t6tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/st72f325j4t6tr-4431775
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

ST72325xx
Figure 4. 44/42-Pin LQFP Package Pinouts

M
C

O
 /

A
IN

8
/ P

F
0

B
E

E
P

 /
(H

S
)

P
F

1

(H
S

)
P

F
2

O
C

M
P

1_
A

 /
A

IN
10

 /
P

F
4

IC
A

P
1_

A
 /

(H
S

)
P

F
6

E
X

T
C

LK
_A

 /
(H

S
)

P
F

7

V
D

D
_0

V
S

S
_0

A
IN

5
/ P

D
5

V
A

R
E

F

V
S

S
A

44 43 42 41 40 39 38 37 36 35 34
33

32

31

30

29

28

27

26

25

24

23
12 13 14 15 16 17 18 19 20 21 22

1

2

3

4

5

6

7

8

9

10

11

ei2

ei3

ei0

ei1

PB3

(HS) PB4

AIN0 / PD0

AIN1 / PD1

AIN2 / PD2

AIN3 / PD3

AIN4 / PD4

RDI / PE1

PB0

 PB1

PB2

PC6 / SCK / ICCCLK

PC5 / MOSI / AIN14

PC4 / MISO / ICCDATA

PC3 (HS) / ICAP1_B

PC2 (HS) / ICAP2_B

PC1 / OCMP1_B / AIN13

PC0 / OCMP2_B / AIN12

VSS_1

VDD_1

PA3 (HS)

PC7 / SS / AIN15
V

S
S
_2

R
E

S
E

T

V
P

P
 /

IC
C

S
E

L

P
A

7
(H

S
)

/ S
C

LI

P
A

6
(H

S
)

/ S
D

A
I

P
A

5
(H

S
)

P
A

4
(H

S
)

P
E

0
/ T

D
O

V
D

D
_2

O
S

C
1

O
S

C
2

38

37

36

35

34

33

32

31

30

29

28

2716

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

39

40

41

42(HS) PB4

AIN0 / PD0

AIN12 / OCMP2_B / PC0

EXTCLK_A / (HS) PF7

ICAP1_A / (HS) PF6

AIN10 / OCMP1_A / PF4

(HS) PF2

BEEP / (HS) PF1

MCO / AIN8 / PF0

AIN5 / PD5

AIN4 / PD4

AIN3 / PD3

AIN2 / PD2
AIN1 / PD1

VSSA

VAREF

PB3
PB2

PA4 (HS)

PA5 (HS)

PA6 (HS) / SDAI

PA7 (HS) / SCLI

VPP / ICCSEL

RESET

VSS_2

VDD_2

PE0 / TDO

PE1 / RDI

PB0

PB1

OSC1

OSC2

ei3

ei0

ei2

ei1

21

20

17

18

19

AIN14 / MOSI / PC5

ICCDATA / MISO / PC4

ICAP1_B / (HS) PC3

ICAP2_B/ (HS) PC2

AIN13 / OCMP1_B / PC1 26

25

24

23

22 PC6 / SCK / ICCCLK

PC7 / SS / AIN15

PA3 (HS)

VDD_1

VSS_1

eix associated external interrupt vector
(HS) 20mA high sink capability
10/197

ST72325xx
3 REGISTER & MEMORY MAP
As shown in Figure 6, the MCU is capable of ad-
dressing 64K bytes of memories and I/O registers.

The available memory locations consist of 128
bytes of register locations, up to 2Kbytes of RAM
and up to 60Kbytes of user program memory. The
RAM space includes up to 256 bytes for the stack
from 0100h to 01FFh.

The highest address bytes contain the user reset
and interrupt vectors.

IMPORTANT: Memory locations marked as “Re-
served” must never be accessed. Accessing a re-
seved area can have unpredictable effects on the
device.

Related Documentation
AN 985: Executing Code in ST7 RAM

Figure 6. Memory Map

0000h

RAM

Program Memory
(60,48, 32 or 16K)

Interrupt & Reset Vectors

HW Registers

0080h
007Fh

0FFFh

(see Table 4)

1000h

FFDFh
FFE0h

FFFFh
(see Table 9)

0880h
Reserved

087Fh

Short Addressing
RAM (zero page)

256 Bytes Stack

16-bit Addressing
RAM

0100h

01FFh

027Fh

0080h

0200h

00FFh

32 KBytes
8000h

FFFFh

(2048, 1536, 1024,

or 047Fh

16 KBytes
C000h

 or 512 Bytes)
60 KBytes

48 KBytes

1000h

4000h

or 087Fh
or 067Fh
17/197

ST72325xx
5 CENTRAL PROCESSING UNIT

5.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains
six internal registers allowing efficient 8-bit data
manipulation.

5.2 MAIN FEATURES

■ Enable executing 63 basic instructions
■ Fast 8-bit by 8-bit multiply
■ 17 main addressing modes (with indirect

addressing mode)
■ Two 8-bit index registers
■ 16-bit stack pointer
■ Low power HALT and WAIT modes
■ Priority maskable hardware interrupts
■ Non-maskable software/hardware interrupts

5.3 CPU REGISTERS

The six CPU registers shown in Figure 1 are not
present in the memory mapping and are accessed
by specific instructions.

Accumulator (A)
The Accumulator is an 8-bit general purpose reg-
ister used to hold operands and the results of the
arithmetic and logic calculations and to manipulate
data.

Index Registers (X and Y)
These 8-bit registers are used to create effective
addresses or as temporary storage areas for data
manipulation. (The Cross-Assembler generates a
precede instruction (PRE) to indicate that the fol-
lowing instruction refers to the Y register.)

The Y register is not affected by the interrupt auto-
matic procedures.

Program Counter (PC)
The program counter is a 16-bit register containing
the address of the next instruction to be executed
by the CPU. It is made of two 8-bit registers PCL
(Program Counter Low which is the LSB) and PCH
(Program Counter High which is the MSB).

Figure 10. CPU Registers

ACCUMULATOR

X INDEX REGISTER

Y INDEX REGISTER

STACK POINTER

CONDITION CODE REGISTER

PROGRAM COUNTER

7 0

1 C1 I1 H I0 N Z

RESET VALUE = RESET VECTOR @ FFFEh-FFFFh

7 0

7 0

7 0

0715 8PCH PCL

15 8 7 0

RESET VALUE = STACK HIGHER ADDRESS

RESET VALUE = 1 X1 1 X 1 X X

RESET VALUE = XXh

RESET VALUE = XXh

RESET VALUE = XXh

X = Undefined Value
24/197

ST72325xx
CENTRAL PROCESSING UNIT (Cont’d)

Condition Code Register (CC)
Read/Write

Reset Value: 111x1xxx

The 8-bit Condition Code register contains the in-
terrupt masks and four flags representative of the
result of the instruction just executed. This register
can also be handled by the PUSH and POP in-
structions.

These bits can be individually tested and/or con-
trolled by specific instructions.

Arithmetic Management Bits

Bit 4 = H Half carry.

This bit is set by hardware when a carry occurs be-
tween bits 3 and 4 of the ALU during an ADD or
ADC instructions. It is reset by hardware during
the same instructions.

0: No half carry has occurred.
1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruc-
tion. The H bit is useful in BCD arithmetic subrou-
tines.

Bit 2 = N Negative.

This bit is set and cleared by hardware. It is repre-
sentative of the result sign of the last arithmetic,
logical or data manipulation. It’s a copy of the re-
sult 7th bit.
0: The result of the last operation is positive or null.
1: The result of the last operation is negative

(that is, the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instruc-
tions.

Bit 1 = Z Zero.

This bit is set and cleared by hardware. This bit in-
dicates that the result of the last arithmetic, logical
or data manipulation is zero.
0: The result of the last operation is different from

zero.
1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test
instructions.

Bit 0 = C Carry/borrow.
This bit is set and cleared by hardware and soft-
ware. It indicates an overflow or an underflow has
occurred during the last arithmetic operation.
0: No overflow or underflow has occurred.
1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions
and tested by the JRC and JRNC instructions. It is
also affected by the “bit test and branch”, shift and
rotate instructions.

Interrupt Management Bits

Bit 5,3 = I1, I0 Interrupt

The combination of the I1 and I0 bits gives the cur-
rent interrupt software priority.

These two bits are set/cleared by hardware when
entering in interrupt. The loaded value is given by
the corresponding bits in the interrupt software pri-
ority registers (IxSPR). They can be also set/
cleared by software with the RIM, SIM, IRET,
HALT, WFI and PUSH/POP instructions.

See the interrupt management chapter for more
details.

7 0

1 1 I1 H I0 N Z C

Interrupt Software Priority I1 I0
Level 0 (main) 1 0
Level 1 0 1
Level 2 0 0
Level 3 (= interrupt disable) 1 1
25/197

ST72325xx
CENTRAL PROCESSING UNIT (Cont’d)

Stack Pointer (SP)
Read/Write

Reset Value: 01 FFh

The Stack Pointer is a 16-bit register which is al-
ways pointing to the next free location in the stack.
It is then decremented after data has been pushed
onto the stack and incremented before data is
popped from the stack (see Figure 2).

Since the stack is 256 bytes deep, the 8 most sig-
nificant bits are forced by hardware. Following an
MCU Reset, or after a Reset Stack Pointer instruc-
tion (RSP), the Stack Pointer contains its reset val-
ue (the SP7 to SP0 bits are set) which is the stack
higher address.

The least significant byte of the Stack Pointer
(called S) can be directly accessed by a LD in-
struction.

Note: When the lower limit is exceeded, the Stack
Pointer wraps around to the stack upper limit, with-
out indicating the stack overflow. The previously
stored information is then overwritten and there-
fore lost. The stack also wraps in case of an under-
flow.

The stack is used to save the return address dur-
ing a subroutine call and the CPU context during
an interrupt. The user may also directly manipulate
the stack by means of the PUSH and POP instruc-
tions. In the case of an interrupt, the PCL is stored
at the first location pointed to by the SP. Then the
other registers are stored in the next locations as
shown in Figure 2.

– When an interrupt is received, the SP is decre-
mented and the context is pushed on the stack.

– On return from interrupt, the SP is incremented
and the context is popped from the stack.

A subroutine call occupies two locations and an in-
terrupt five locations in the stack area.

Figure 11. Stack Manipulation Example

15 8

0 0 0 0 0 0 0 1

7 0

SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

PCH

PCL

SP

PCH

PCL

SP

PCL

PCH

X

A
CC

PCH

PCL

SP

PCL

PCH

X

A
CC

PCH

PCL

SP

PCL

PCH

X

A
CC

PCH

PCL

SP

SP

Y

CALL
Subroutine

Interrupt
Event

PUSH Y POP Y IRET RET
or RSP

@ 01FFh

@ 0100h

Stack Higher Address = 01FFh
Stack Lower Address = 0100h
26/197

ST72325xx
INTERRUPTS (Cont’d)

7.5 INTERRUPT REGISTER DESCRIPTION

CPU CC REGISTER INTERRUPT BITS
Read/Write

Reset Value: 111x 1010 (xAh)

Bit 5, 3 = I1, I0 Software Interrupt Priority

These two bits indicate the current interrupt soft-
ware priority.

These two bits are set/cleared by hardware when
entering in interrupt. The loaded value is given by
the corresponding bits in the interrupt software pri-
ority registers (ISPRx).

They can be also set/cleared by software with the
RIM, SIM, HALT, WFI, IRET and PUSH/POP in-
structions (see “Interrupt Dedicated Instruction
Set” table).

*Note: TRAP and RESET events can interrupt a
level 3 program.

INTERRUPT SOFTWARE PRIORITY REGIS-
TERS (ISPRX)
Read/Write (bit 7:4 of ISPR3 are read only)

Reset Value: 1111 1111 (FFh)

These four registers contain the interrupt software
priority of each interrupt vector.

– Each interrupt vector (except RESET and TRAP)
has corresponding bits in these registers where
its own software priority is stored. This corre-
spondance is shown in the following table.

– Each I1_x and I0_x bit value in the ISPRx regis-
ters has the same meaning as the I1 and I0 bits
in the CC register.

– Level 0 can not be written (I1_x=1, I0_x=0). In
this case, the previously stored value is kept. (ex-
ample: previous=CFh, write=64h, result=44h)

The TLI, RESET, and TRAP vectors have no soft-
ware priorities. When one is serviced, the I1 and I0
bits of the CC register are both set.

*Note: Bits in the ISPRx registers which corre-
spond to the TLI can be read and written but they
are not significant in the interrupt process man-
agement.

Caution: If the I1_x and I0_x bits are modified
while the interrupt x is executed the following be-
haviour has to be considered: If the interrupt x is
still pending (new interrupt or flag not cleared) and
the new software priority is higher than the previ-
ous one, the interrupt x is re-entered. Otherwise,
the software priority stays unchanged up to the
next interrupt request (after the IRET of the inter-
rupt x).

7 0

1 1 I1 H I0 N Z C

Interrupt Software Priority Level I1 I0
Level 0 (main) Low

High

1 0
Level 1 0 1
Level 2 0 0
Level 3 (= interrupt disable*) 1 1

7 0

ISPR0 I1_3 I0_3 I1_2 I0_2 I1_1 I0_1 I1_0 I0_0

ISPR1 I1_7 I0_7 I1_6 I0_6 I1_5 I0_5 I1_4 I0_4

ISPR2 I1_11 I0_11 I1_10 I0_10 I1_9 I0_9 I1_8 I0_8

ISPR3 1 1 1 1 I1_13 I0_13 I1_12 I0_12

Vector address ISPRx bits

FFFBh-FFFAh I1_0 and I0_0 bits*
FFF9h-FFF8h I1_1 and I0_1 bits

... ...
FFE1h-FFE0h I1_13 and I0_13 bits
39/197

ST72325xx
POWER SAVING MODES (Cont’d)

8.4.2 HALT MODE
The HALT mode is the lowest power consumption
mode of the MCU. It is entered by executing the
‘HALT’ instruction when the OIE bit of the Main
Clock Controller Status register (MCCSR) is
cleared (see section 10.2 on page 61 for more de-
tails on the MCCSR register).

The MCU can exit HALT mode on reception of ei-
ther a specific interrupt (see Table 9, “Interrupt
Mapping,” on page 41) or a RESET. When exiting
HALT mode by means of a RESET or an interrupt,
the oscillator is immediately turned on and the 256
or 4096 CPU cycle delay is used to stabilize the
oscillator. After the start up delay, the CPU
resumes operation by servicing the interrupt or by
fetching the reset vector which woke it up (see Fig-
ure 32).
When entering HALT mode, the I[1:0] bits in the
CC register are forced to ‘10b’to enable interrupts.
Therefore, if an interrupt is pending, the MCU
wakes up immediately.

In HALT mode, the main oscillator is turned off
causing all internal processing to be stopped, in-
cluding the operation of the on-chip peripherals.
All peripherals are not clocked except the ones
which get their clock supply from another clock
generator (such as an external or auxiliary oscilla-
tor).

The compatibility of Watchdog operation with
HALT mode is configured by the “WDGHALT” op-
tion bit of the option byte. The HALT instruction
when executed while the Watchdog system is en-
abled, can generate a Watchdog RESET (see sec-
tion 14.1 on page 181 for more details).

Figure 31. HALT Timing Overview

Figure 32. HALT Mode Flow-chart

Notes:
1. WDGHALT is an option bit. See option byte sec-
tion for more details.
2. Peripheral clocked with an external clock source
can still be active.
3. Only some specific interrupts can exit the MCU
from HALT mode (such as external interrupt). Re-
fer to Table 9, “Interrupt Mapping,” on page 41 for
more details.
4. Before servicing an interrupt, the CC register is
pushed on the stack. The I[1:0] bits of the CC reg-
ister are set to the current software priority level of
the interrupt routine and recovered when the CC
register is popped.

HALTRUN RUN
256 OR 4096 CPU

CYCLE DELAY

RESET
OR

INTERRUPTHALT
INSTRUCTION FETCH

VECTOR[MCCSR.OIE=0]

HALT INSTRUCTION

RESET

INTERRUPT 3)

Y

N

N

Y

CPU

OSCILLATOR
PERIPHERALS 2)

I[1:0] BITS

OFF
OFF

10
OFF

FETCH RESET VECTOR
OR SERVICE INTERRUPT

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
OFF

XX 4)
ON

CPU

OSCILLATOR
PERIPHERALS

I[1:0] BITS

ON
ON

XX 4)
ON

256 OR 4096 CPU CLOCK
DELAY

WATCHDOGENABLE

DISABLEWDGHALT 1) 0

WATCHDOG
RESET

1

(MCCSR.OIE=0)

CYCLE
48/197

ST72325xx
WATCHDOG TIMER (Cont’d)

10.1.4 How to Program the Watchdog Timeout
Figure 2 shows the linear relationship between the
6-bit value to be loaded in the Watchdog Counter
(CNT) and the resulting timeout duration in milli-
seconds. This can be used for a quick calculation
without taking the timing variations into account. If

more precision is needed, use the formulae in Fig-
ure 3.

Caution: When writing to the WDGCR register, al-
ways write 1 in the T6 bit to avoid generating an
immediate reset.

Figure 36. Approximate Timeout Duration

C
N

T
 V

al
u

e
(h

ex
.)

Watchdog timeout (ms) @ 8 MHz. fOSC2

3F

00

38

1281.5 65

30

28

20

18

10

08

503418 82 98 114
57/197

ST72325xx
ON-CHIP PERIPHERALS (Cont’d)

Input capture function
This mode allows the measurement of external
signal pulse widths through ARTICRx registers.

Each input capture can generate an interrupt inde-
pendently on a selected input signal transition.
This event is flagged by a set of the corresponding
CFx bits of the Input Capture Control/Status regis-
ter (ARTICCSR).

These input capture interrupts are enabled
through the CIEx bits of the ARTICCSR register.

The active transition (falling or rising edge) is soft-
ware programmable through the CSx bits of the
ARTICCSR register.

The read only input capture registers (ARTICRx)
are used to latch the auto-reload counter value
when a transition is detected on the ARTICx pin
(CFx bit set in ARTICCSR register). After fetching
the interrupt vector, the CFx flags can be read to
identify the interrupt source.

Note: After a capture detection, data transfer in
the ARTICRx register is inhibited until it is read
(clearing the CFx bit).
The timer interrupt remains pending while the CFx
flag is set when the interrupt is enabled (CIEx bit
set). This means, the ARTICRx register has to be
read at each capture event to clear the CFx flag.

The timing resolution is given by auto-reload coun-
ter cycle time (1/fCOUNTER).

Note: During HALT mode, if both input capture
and external clock are enabled, the ARTICRx reg-
ister value is not guaranteed if the input capture
pin and the external clock change simultaneously.

External interrupt capability
This mode allows the Input capture capabilities to
be used as external interrupt sources. The inter-
rupts are generated on the edge of the ARTICx
signal.

The edge sensitivity of the external interrupts is
programmable (CSx bit of ARTICCSR register)
and they are independently enabled through CIEx
bits of the ARTICCSR register. After fetching the
interrupt vector, the CFx flags can be read to iden-
tify the interrupt source.

During HALT mode, the external interrupts can be
used to wake up the micro (if the CIEx bit is set).

Figure 44. Input Capture Timing Diagram

04hCOUNTER

t

01h

fCOUNTER

xxh

02h 03h 05h 06h 07h

04h

ARTICx PIN

CFx FLAG

ICRx REGISTER

INTERRUPT
68/197

ST72325xx
16-BIT TIMER (Cont’d)

Figure 52. Output Compare Timing Diagram, fTIMER = fCPU/2

Figure 53. Output Compare Timing Diagram, fTIMER = fCPU/4

INTERNAL CPU CLOCK

 TIMER CLOCK

COUNTER REGISTER

OUTPUT COMPARE REGISTER i (OCRi)

OUTPUT COMPARE FLAG i (OCFi)

 OCMPi PIN (OLVLi = 1)

2ED3

2ED0 2ED1 2ED2 2ED3 2ED42ECF

INTERNAL CPU CLOCK

 TIMER CLOCK

COUNTER REGISTER

OUTPUT COMPARE REGISTER i (OCRi) 2ED3

2ED0 2ED1 2ED2 2ED3 2ED42ECF

OUTPUT COMPARE FLAG i (OCFi)

 OCMPi PIN (OLVLi = 1)
81/197

ST72325xx
16-BIT TIMER (Cont’d)

Table 19. 16-Bit Timer Register Map and Reset Values

Related Documentation
AN 973: SCI software communications using 16-
bit timer

AN 974: Real Time Clock with ST7 Timer Output
Compare

AN 976: Driving a buzzer through the ST7 Timer
PWM function

AN1041: Using ST7 PWM signal to generate ana-
log input (sinusoid)

AN1046: UART emulation software

AN1078: PWM duty cycle switch implementing
true 0 or 100 per cent duty cycle

AN1504: Starting a PWM signal directly at high
level using the ST7 16-Bit timer

Address
(Hex.)

Register
Label

7 6 5 4 3 2 1 0

Timer A: 32
Timer B: 42

CR1
Reset Value

ICIE
0

OCIE
0

TOIE
0

FOLV2
0

FOLV1
0

OLVL2
0

IEDG1
0

OLVL1
0

Timer A: 31
Timer B: 41

CR2
Reset Value

OC1E
0

OC2E
0

OPM
0

PWM
0

CC1
0

CC0
0

IEDG2
0

EXEDG
0

Timer A: 33
Timer B: 43

CSR
Reset Value

ICF1
x

OCF1
x

TOF
x

ICF2
x

OCF2
x

TIMD
0

-
x

-
x

Timer A: 34
Timer B: 44

IC1HR
Reset Value

MSB
x x x x x x x

LSB
x

Timer A: 35
Timer B: 45

IC1LR
Reset Value

MSB
x x x x x x x

LSB
x

Timer A: 36
Timer B: 46

OC1HR
Reset Value

MSB
1 0 0 0 0 0 0

LSB
0

Timer A: 37
Timer B: 47

OC1LR
Reset Value

MSB
0 0 0 0 0 0 0

LSB
0

Timer A: 3E
Timer B: 4E

OC2HR
Reset Value

MSB
1 0 0 0 0 0 0

LSB
0

Timer A: 3F
Timer B: 4F

OC2LR
Reset Value

MSB
0 0 0 0 0 0 0

LSB
0

Timer A: 38
Timer B: 48

CHR
Reset Value

MSB
1 1 1 1 1 1 1

LSB
1

Timer A: 39
Timer B: 49

CLR
Reset Value

MSB
1 1 1 1 1 1 0

LSB
0

Timer A: 3A
Timer B: 4A

ACHR
Reset Value

MSB
1 1 1 1 1 1 1

LSB
1

Timer A: 3B
Timer B: 4B

ACLR
Reset Value

MSB
1 1 1 1 1 1 0

LSB
0

Timer A: 3C
Timer B: 4C

IC2HR
Reset Value

MSB
x x x x x x x

LSB
x

Timer A: 3D
Timer B: 4D

IC2LR
Reset Value

MSB
x x x x x x x

LSB
x

91/197

ST72325xx
SERIAL PERIPHERAL INTERFACE (Cont’d)

10.5.6 Low Power Modes

10.5.6.1 Using the SPI to wakeup the MCU from
Halt mode
In slave configuration, the SPI is able to wakeup
the ST7 device from HALT mode through a SPIF
interrupt. The data received is subsequently read
from the SPIDR register when the software is run-
ning (interrupt vector fetch). If multiple data trans-
fers have been performed before software clears
the SPIF bit, then the OVR bit is set by hardware.

Note: When waking up from Halt mode, if the SPI
remains in Slave mode, it is recommended to per-
form an extra communications cycle to bring the
SPI from Halt mode state to normal state. If the
SPI exits from Slave mode, it returns to normal
state immediately.

Caution: The SPI can wake up the ST7 from Halt
mode only if the Slave Select signal (external SS
pin or the SSI bit in the SPICSR register) is low
when the ST7 enters Halt mode. So if Slave selec-
tion is configured as external (see Section
10.5.3.2), make sure the master drives a low level
on the SS pin when the slave enters Halt mode.

10.5.7 Interrupts

Note: The SPI interrupt events are connected to
the same interrupt vector (see Interrupts chapter).
They generate an interrupt if the corresponding
Enable Control Bit is set and the interrupt mask in

Mode Description

WAIT
No effect on SPI.
SPI interrupt events cause the device to exit
from WAIT mode.

HALT

SPI registers are frozen.
In HALT mode, the SPI is inactive. SPI oper-
ation resumes when the MCU is woken up by
an interrupt with “exit from HALT mode” ca-
pability. The data received is subsequently
read from the SPIDR register when the soft-
ware is running (interrupt vector fetching). If
several data are received before the wake-
up event, then an overrun error is generated.
This error can be detected after the fetch of
the interrupt routine that woke up the device.

Interrupt Event Event
Flag

Enable
Control

Bit

Exit
from
Wait

Exit
from
Halt

SPI End of Transfer
Event

SPIF

SPIE

Yes Yes

Master Mode Fault
Event

MODF Yes No

Overrun Error OVR Yes No
99/197

ST72325xx
SERIAL COMMUNICATIONS INTERFACE (Cont’d)

CONTROL REGISTER 2 (SCICR2)
Read/Write

Reset Value: 0000 0000 (00h)

Bit 7 = TIE Transmitter interrupt enable.
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An SCI interrupt is generated whenever

TDRE=1 in the SCISR register

Bit 6 = TCIE Transmission complete interrupt ena-
ble
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An SCI interrupt is generated whenever TC=1 in

the SCISR register

Bit 5 = RIE Receiver interrupt enable.
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An SCI interrupt is generated whenever OR=1

or RDRF=1 in the SCISR register

Bit 4 = ILIE Idle line interrupt enable.
This bit is set and cleared by software.
0: Interrupt is inhibited
1: An SCI interrupt is generated whenever IDLE=1

in the SCISR register.

Bit 3 = TE Transmitter enable.
This bit enables the transmitter. It is set and
cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled

Notes:
– During transmission, a “0” pulse on the TE bit

(“0” followed by “1”) sends a preamble (idle line)
after the current word.

– When TE is set there is a 1 bit-time delay before
the transmission starts.

CAUTION: The TDO pin is free for general pur-
pose I/O only when the TE and RE bits are both
cleared (or if TE is never set).

Bit 2 = RE Receiver enable.
This bit enables the receiver. It is set and cleared
by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a

start bit

Bit 1 = RWU Receiver wake-up.
This bit determines if the SCI is in mute mode or
not. It is set and cleared by software and can be
cleared by hardware when a wake-up sequence is
recognized.
0: Receiver in Active mode
1: Receiver in Mute mode

Note: Before selecting Mute mode (setting the
RWU bit), the SCI must receive some data first,
otherwise it cannot function in Mute mode with
wake-up by idle line detection.

Bit 0 = SBK Send break.
This bit set is used to send break characters. It is
set and cleared by software.
0: No break character is transmitted
1: Break characters are transmitted

Note: If the SBK bit is set to “1” and then to “0”, the
transmitter sends a BREAK word at the end of the
current word.

7 0

TIE TCIE RIE ILIE TE RE RWU SBK
115/197

ST72325xx
SERIAL COMMUNICATION INTERFACE (Cont’d)

Table 24. SCI Register Map and Reset Values

Address
(Hex.)

Register
Label

7 6 5 4 3 2 1 0

0050h
SCISR
Reset Value

TDRE
1

TC
1

RDRF
0

IDLE
0

OVR
0

NF
0

FE
0

PE
0

0051h
SCIDR
Reset Value

MSB
x x x x x x x

LSB
x

0052h
SCIBRR
Reset Value

SCP1
0

SCP0
0

SCT2
0

SCT1
0

SCT0
0

SCR2
0

SCR1
0

SCR0
0

0053h
SCICR1
Reset Value

R8
x

T8
0

SCID
0

M
0

WAKE
0

PCE
0

PS
0

PIE
0

0054h
SCICR2
Reset Value

TIE
0

TCIE
0

RIE
0

ILIE
0

TE
0

RE
0

RWU
0

SBK
0

0055h
SCIERPR
Reset Value

MSB
0 0 0 0 0 0 0

LSB
0

0057h
SCIPETPR
Reset Value

MSB
0 0 0 0 0 0 0

LSB
0

118/197

ST72325xx
I2C BUS INTERFACE (Cont’d)

Bit 1 = M/SL Master/Slave.
This bit is set by hardware as soon as the interface
is in Master mode (writing START=1). It is cleared
by hardware after detecting a Stop condition on
the bus or a loss of arbitration (ARLO=1). It is also
cleared when the interface is disabled (PE=0).
0: Slave mode
1: Master mode

Bit 0 = SB Start bit (Master mode).
This bit is set by hardware as soon as the Start
condition is generated (following a write
START=1). An interrupt is generated if ITE=1. It is
cleared by software reading SR1 register followed
by writing the address byte in DR register. It is also
cleared by hardware when the interface is disa-
bled (PE=0).
0: No Start condition
1: Start condition generated

I2C STATUS REGISTER 2 (SR2)
Read Only
Reset Value: 0000 0000 (00h)

Bit 7:5 = Reserved. Forced to 0 by hardware.

Bit 4 = AF Acknowledge failure.
This bit is set by hardware when no acknowledge
is returned. An interrupt is generated if ITE=1. It is
cleared by software reading SR2 register or by
hardware when the interface is disabled (PE=0).

The SCL line is not held low while AF=1 but by oth-
er flags (SB or BTF) that are set at the same time.

0: No acknowledge failure
1: Acknowledge failure
Note:
– When an AF event occurs, the SCL line is not

held low; however, the SDA line can remain low
if the last bits transmitted are all 0. It is then nec-
essary to release both lines by software.

Bit 3 = STOPF Stop detection (Slave mode).
This bit is set by hardware when a Stop condition
is detected on the bus after an acknowledge (if
ACK=1). An interrupt is generated if ITE=1. It is
cleared by software reading SR2 register or by
hardware when the interface is disabled (PE=0).

The SCL line is not held low while STOPF=1.

0: No Stop condition detected
1: Stop condition detected

Bit 2 = ARLO Arbitration lost.
This bit is set by hardware when the interface los-
es the arbitration of the bus to another master. An
interrupt is generated if ITE=1. It is cleared by soft-
ware reading SR2 register or by hardware when
the interface is disabled (PE=0).

After an ARLO event the interface switches back
automatically to Slave mode (M/SL=0).

The SCL line is not held low while ARLO=1.

0: No arbitration lost detected
1: Arbitration lost detected
Note:
– In a Multimaster environment, when the interface

is configured in Master Receive mode it does not
perform arbitration during the reception of the
Acknowledge Bit. Mishandling of the ARLO bit
from the I2CSR2 register may occur when a sec-
ond master simultaneously requests the same
data from the same slave and the I2C master
does not acknowledge the data. The ARLO bit is
then left at 0 instead of being set.

Bit 1 = BERR Bus error.
This bit is set by hardware when the interface de-
tects a misplaced Start or Stop condition. An inter-
rupt is generated if ITE=1. It is cleared by software
reading SR2 register or by hardware when the in-
terface is disabled (PE=0).

The SCL line is not held low while BERR=1.

0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition
Note:
– If a Bus Error occurs, a Stop or a repeated Start

condition should be generated by the Master to
re-synchronize communication, get the transmis-
sion acknowledged and the bus released for fur-
ther communication

Bit 0 = GCAL General Call (Slave mode).
This bit is set by hardware when a general call ad-
dress is detected on the bus while ENGC=1. It is
cleared by hardware detecting a Stop condition
(STOPF=1) or when the interface is disabled
(PE=0).

0: No general call address detected on bus
1: general call address detected on bus

7 0

0 0 0 AF STOPF ARLO BERR GCAL
128/197

ST72325xx
CLOCK CHARACTERISTICS (Cont’d)

12.5.4 RC Oscillators

Figure 77. Typical fOSC(RCINT) vs TA Note: To reduce disturbance to the RC oscillator,
it is recommended to place decoupling capacitors
between VDD and VSS as shown in Figure 97

Symbol Parameter Conditions Min Typ Max Unit

fOSC (RCINT)
Internal RC oscillator frequency

See Figure 77
TA=25°C, VDD=5V 2 3.5 5.6 MHz

3

3.2

3.4

3.6

3.8

4

-45 0 25 70 130

TA(°C)

fO
S

C
(R

C
IN

T)
 (

M
H

z) Vdd = 5V
Vdd = 5.5V
153/197

ST72325xx
CLOCK CHARACTERISTICS (Cont’d)

12.5.5 Clock Security System (CSS)

Note:
1. Data based on characterization results.

12.5.6 PLL Characteristics

Note:
1. Data characterized but not tested.

The user must take the PLL jitter into account in the application (for example in serial communication or
sampling of high frequency signals). The PLL jitter is a periodic effect, which is integrated over several
CPU cycles. Therefore the longer the period of the application signal, the less it will be impacted by the
PLL jitter.

Figure 78 shows the PLL jitter integrated on application signals in the range 125kHz to 4MHz. At frequen-
cies of less than 125KHz, the jitter is negligible.

Figure 78. Integrated PLL Jitter vs signal frequency1

Note 1: Measurement conditions: fCPU = 8MHz.

Symbol Parameter Conditions Min Typ Max Unit

fSFOSC Safe Oscillator Frequency 1) 3 MHz

Symbol Parameter Conditions Min Typ Max Unit

fOSC PLL input frequency range 2 4 MHz

Δ fCPU/ fCPU Instantaneous PLL jitter 1) fOSC = 4 MHz. 0.7 2 %

0

0.2

0.4

0.6

0.8

1

1.2

4 MHz 2 MHz 1 MHz 500 kHz 250 kHz 125 kHz
Application Frequency

+/-Jitter (%)

Max
Typ
154/197

ST72325xx
13 PACKAGE CHARACTERISTICS

13.1 PACKAGE MECHANICAL DATA

Figure 99. 64-Pin Low Profile Quad Flat Package (14x14)

Dim.
mm inches1)

Min Typ Max Min Typ Max

A 1.60 0.0630

A1 0.05 0.15 0.0020 0.0059

A2 1.35 1.40 1.45 0.0531 0.0551 0.0571

b 0.30 0.37 0.45 0.0118 0.0146 0.0177

c 0.09 0.20 0.0035 0.0079

D 16.00 0.6299

D1 14.00 0.5512

E 16.00 0.6299

E1 14.00 0.5512

e 0.80 0.0315

θ 0° 3.5° 7° 0° 3.5° 7°

L 0.45 0.60 0.75 0.0177 0.0236 0.0295

L1 1.00 0.0394

Number of Pins

N 64
Note 1. Values in inches are converted from mm
and rounded to 4 decimal digits.

c

h

L

L1

e

b

A

A1

A2

EE1

D

D1
174/197

ST72325xx
PACKAGE MECHANICAL DATA (Cont’d)

Figure 105. 32-Pin Low Profile Quad Flat Package-

Dim.
mm inches1)

Note 1. Values in inches are converted from mm
and rounded to 4 decimal digits.

Min Typ Max Min Typ Max

A 1.60 0.0630

A1 0.05 0.15 0.0020 0.0059

A2 1.35 1.40 1.45 0.0531 0.0551 0.0571

b 0.30 0.37 0.45 0.0118 0.0146 0.0177

C 0.09 0.20 0.0035 0.0079

D 9.00 0.3543

D1 7.00 0.2756

E 9.00 0.3543

E1 7.00 0.2756

e 0.80 0.0315

θ 0° 3.5° 7° 0° 3.5° 7°

L 0.45 0.60 0.75 0.0177 0.0236 0.0295

L1 1.00 0.0394

Number of Pins

N 32

h

c

 L

L1

b

e

A1

A2

A

EE1

D

D1
178/197

ST72325xx
15 KNOWN LIMITATIONS

15.1 ALL DEVICES

15.1.1 Unexpected Reset Fetch
If an interrupt request occurs while a “POP CC” in-
struction is executed, the interrupt controller does
not recognise the source of the interrupt and, by
default, passes the RESET vector address to the
CPU.

Workaround
To solve this issue, a “POP CC” instruction must
always be preceded by a “SIM” instruction.

15.1.2 External interrupt missed
To avoid any risk if generating a parasitic interrupt,
the edge detector is automatically disabled for one
clock cycle during an access to either DDR and
OR. Any input signal edge during this period will
not be detected and will not generate an interrupt.

This case can typically occur if the application re-
freshes the port configuration registers at intervals
during runtime.

Workaround
The workaround is based on software checking
the level on the interrupt pin before and after writ-
ing to the PxOR or PxDDR registers. If there is a
level change (depending on the sensitivity pro-
grammed for this pin) the interrupt routine is in-
voked using the call instruction with three extra
PUSH instructions before executing the interrupt
routine (this is to make the call compatible with the
IRET instruction at the end of the interrupt service
routine).

But detection of the level change does not make
sure that edge occurs during the critical 1 cycle du-
ration and the interrupt has been missed. This may
lead to occurrence of same interrupt twice (one
hardware and another with software call).

To avoid this, a semaphore is set to '1' before
checking the level change. The semaphore is
changed to level '0' inside the interrupt routine.
When a level change is detected, the semaphore
status is checked and if it is '1' this means that the
last interrupt has been missed. In this case, the in-
terrupt routine is invoked with the call instruction.

There is another possible case i.e. if writing to
PxOR or PxDDR is done with global interrupts dis-
abled (interrupt mask bit set). In this case, the
semaphore is changed to '1' when the level
change is detected. Detecting a missed interrupt is
done after the global interrupts are enabled (inter-
rupt mask bit reset) and by checking the status of

the semaphore. If it is '1' this means that the last
interrupt was missed and the interrupt routine is in-
voked with the call instruction.

To implement the workaround, the following soft-
ware sequence is to be followed for writing into the
PxOR/PxDDR registers. The example is for for
Port PF1 with falling edge interrupt sensitivity. The
software sequence is given for both cases (global
interrupt disabled/enabled).

Case 1: Writing to PxOR or PxDDR with Global In-
terrupts Enabled:

LD A,#01

LD sema,A ; set the semaphore to '1'

LD A,PFDR

AND A,#02

LD X,A ; store the level before writing to
PxOR/PxDDR

LD A,#$90

LD PFDDR,A ; Write to PFDDR

LD A,#$ff

LD PFOR,A ; Write to PFOR

LD A,PFDR

AND A,#02

LD Y,A ; store the level after writing to
PxOR/PxDDR

LD A,X ; check for falling edge

cp A,#02

jrne OUT

TNZ Y

jrne OUT

LD A,sema ; check the semaphore status if
edge is detected

CP A,#01

jrne OUT

call call_routine; call the interrupt routine

OUT:LD A,#00

LD sema,A

.call_routine ; entry to call_routine

PUSH A

PUSH X

PUSH CC

.ext1_rt ; entry to interrupt routine

LD A,#00
192/197

