

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	30/20MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at87c52x2-3csul

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Configuration

*NIC: No Internal Connection

Mnemonic	I	Pin Nu	mber	Туре	Name and Function
	DIL	LCC	VQFP 1.4		
	13	15	9	I	INT1 (P3.3): External interrupt 1
	14	16	10	I	T0 (P3.4): Timer 0 external input
	15	17	11	I	T1 (P3.5): Timer 1 external input
	16	18	12	0	WR (P3.6): External data memory write strobe
	17	19	13	0	RD (P3.7): External data memory read strobe
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, <u>PSEN</u> is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. <u>PSEN</u> is not activated during fetches from internal program memory.
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) EA must be held low for ROMless devices. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, EA will be internally latched on Reset.
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

TS80C52X2 In comparison to the original 80C52, the TS80C52X2 implements some new features, which are: **Enhanced Features**

- The X2 option
- The Dual Data Pointer
- The 4 level interrupt priority system
- The power-off flag ٠
- The ONCE mode
- The ALE disabling
- Some enhanced features are also located in the UART and the Timer 2

X2 Feature The TS80C52X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power ٠
- Save power consumption while keeping same CPU power (oscillator power saving)
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes
- Increase CPU power by 2 while keeping same crystal frequency

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2 shows the mode switching waveforms.

Figure 1. Clock Generation Diagram

Timer 2	The timer 2 in the TS80C52X2 is compatible with the timer 2 in the 80C52. It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in cascade. It is controlled by T2CON register (See Table 5) and T2MOD register (See Table 6). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.
	Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON), as described in the Atmel 8-bit Microcontroller Hardware description.
	Refer to the Atmel 8-bit Microcontroller Hardware description for the description of Cap- ture and Baud Rate Generator Modes.
	In TS80C52X2 Timer 2 includes the following enhancements:
	Auto-reload mode with up or down counter
	Programmable clock-output
Auto-reload Mode	The Auto-reload mode configures timer 2 as a 16-bit timer or event counter with auto- matic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in Figure 4. In this mode the T2EX pin controls the direction of count.
	When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.
	When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.
	The EXF2 bit toggles when timer 2 overflows or underflows according to the the direc- tion of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.

Table 9. SCON RegisterSCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0		
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI		
Bit Number	Bit Mnemonic	Description	·	·					
7	FE	Framing Error Clear to reset Set by hardwa SMOD0 must	Framing Error bit (SMOD0=1) Clear to reset the error state, not cleared by a valid stop bit. Set by hardware when an invalid stop bit is detected. SMOD0 must be set to enable access to the FE bit						
	SM0	Serial port Mo Refer to SM1 f SMOD0 must	Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit						
6	SM1	Serial port Mo SM0 SM1 0 0 1 0 1 1 1 1	Description Description Mode Description 0 Shift 1 8-bit 2 9-bit 3 9-bit	ription <u>B</u> Register F ₂ JART V JART F ₂ JART V	aud Rate _{(TAL} /12 (/6 in X2 ariable _{(TAL} /64 or F _{XTAL} /3 ariable	mode) 32 (/32, /16 ir	n X2 mode)		
5	SM2	Serial port Mode 2 bit / Multiprocessor Communication Enable bit Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and 3, and eventually mode 1. This bit should be cleared in mode 0.							
4	REN	Reception Enable bit Clear to disable serial reception. Set to enable serial reception.							
3	TB8	Transmitter Bit 8 / Ninth bit to transmit in modes 2 and 3. Clear to transmit a logic 0 in the 9th bit. Set to transmit a logic 1 in the 9th bit.							
2	RB8	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is not used.							
1	ТІ	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.					nning of the		
0	RI	Receive Intern Clear to ackno Set by hardwa 8. in the other	rupt flag wledge interru re at the end o modes.	upt. of the 8th bit	time in mode 0,	see Figure 7	7. and Figure		

Reset Value = 0000 0000b Bit addressable

are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 12. IE Register

IE - Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0		
EA	-	ET2	ES	ET1	EX1	ET0	EX0		
Bit Number	Bit Mnemonic	Description	Description						
7	EA	Enable All int Clear to disab Set to enable If EA=1, each clearing its ow	inable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. EA=1, each interrupt source is individually enabled or disabled by setting or learing its own interrupt enable bit.						
6	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.						
5	ET2	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.							
4	ES	Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.							
3	ET1	Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.							
2	EX1	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.							
1	ET0	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.							
0	EX0	External inter Clear to disab Set to enable	rupt 0 Enable le external int external interr	e bit errupt 0. rupt 0.					

Reset Value = 0X00 0000b Bit addressable

Table 13. IP RegisterIP - Interrupt Priority Register (B8h)

7	6	5	4	3	2	1	0	
-	-	PT2	PS	PT1	PX1	PT0	PX0	
Bit Number	Bit Mnemonic	Descriptio	n					
7	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					
5	PT2	Timer 2 ov Refer to P	Timer 2 overflow interrupt Priority bit Refer to PT2H for priority level.					
4	PS	Serial port Priority bit Refer to PSH for priority level.						
3	PT1	Timer 1 overflow interrupt Priority bit Refer to PT1H for priority level.						
2	PX1	External interrupt 1 Priority bit Refer to PX1H for priority level.						
1	PT0	Timer 0 ov Refer to P	verflow interr TOH for priority	upt Priority b / level.	it			
0	PX0	External in Refer to P	nterrupt 0 Pri	ority bit y level.				

Reset Value = XX00 0000b Bit addressable

TS80C52X2

ROM Structure

The TS80C52X2 ROM memory is divided in three different arrays:

- the code array:8 Kbytes.
- the encryption array:64 bytes.
- the signature array:4 bytes.

ROM Lock System The program Lock system, when programmed, protects the on-chip program against software piracy.

Encryption Array Within the ROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

Program Lock BitsThe lock bits when programmed according to Table 19. will provide different level of pro-
tection for the on-chip code and data.

Table 19. P	ogram Lock bits
-------------	-----------------

Program Lock Bits				
Security level	LB1	LB2	LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Ρ	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset.

U: unprogrammed

P: programmed

Signature bytes

The TS80C52X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 9.

Verify Algorithm

Refer to Section "Verify Algorithm".

Programming Algorithm	The Improved Quick Pulse algorithm is based on the Quick Pulse algorithm and decreases the number of pulses applied during byte programming from 25 to 1.
	 To program the TS87C52X2 the following sequence must be exercised: Step 1: Activate the combination of control signals. Step 2: Input the valid address on the address lines. Step 3: Input the appropriate data on the data lines. Step 4: Raise EA/VPP from VCC to VPP (typical 12.75V). Step 5: Pulse ALE/PROG once. Step 6: Lower EA/VPP from VPP to VCC
Verify Algorithm	 Code array verify must be done after each byte or block of bytes is programmed. In either case, a complete verify of the programmed array will ensure reliable programming of the TS87C52X2. P 2.7 is used to enable data output. To verify the TS87C52X2 code the following sequence must be exercised:

- Step 1: Activate the combination of program and control signals.
- Step 2: Input the valid address on the address lines.
- Step 3: Read data on the data lines.

Repeat step 2 through 3 changing the address for the entire array verification (See Figure 12.)

The encryption array cannot be directly verified. Verification of the encryption array is done by observing that the code array is well encrypted.

Figure 12. Programming and Verification Signal's Waveform

EPROM Erasure (Windowed Packages Only)

Erasing the EPROM erases the code array, the encryption array and the lock bits returning the parts to full functionality.

Erasure leaves all the EPROM cells in a 1's state (FF).

The recommended erasure procedure is exposure to ultraviolet light (at 2537 Å) to an integrated dose at least 15 W-sec/cm². Exposing the EPROM to an ultraviolet lamp of

Erasure Characteristics

12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

Signature Bytes The TS80/87C52X2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 35. shows the content of the signature byte for the TS80/87C52X2.

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel
31h	57h	Family Code: C51 X2
60h	2Dh	Product name: TS80C52X2
60h	ADh	Product name:TS87C52X2
60h	20h	Product name: TS80C32X2
61h	FFh	Product revision number

 Table 21. Signature Bytes Content

Electrical Characteristics

Absolute Maximum Ratings⁽¹⁾

Ambiant Temperature Under Bias:	
C = commercial	0°C to 70°C
I = industrial	40°C to 85°C
Storage Temperature	65°C to + 150°C
Voltage on V _{CC} to V _{SS}	0.5V to + 7 V
Voltage on V _{PP} to V _{SS}	0.5V to + 13 V
Voltage on Any Pin to V _{SS}	0.5V to V _{CC} + 0.5V
Power Dissipation	1 W ⁽²⁾

- Notes: 1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
 - 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

Power Consumption Measurement

Since the introduction of the first C51 devices, every manufacturer made operating lcc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating lcc:

Using an internal test ROM, the following code is executed:

Label: SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating lcc.

DC Parameters for	TA = 0°C to +70°C; $V_{SS} = 0$ V; $V_{CC} = 5V \pm 10\%$; F = 0 to 40 MHz.
Standard Voltage	TA = -40°C to +85°C; V_{SS} = 0 V; V_{CC} = 5V ± 10%; F = 0 to 40 MHz.

Table 22.	DC Parameters	in	Standard	Voltage
-----------	---------------	----	----------	---------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.3 0.45 1.0	> > >	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	> > >	$\begin{split} I_{OL} &= 200 \ \mu A^{(4)} \\ I_{OL} &= 3.2 \ m A^{(4)} \\ I_{OL} &= 7.0 \ m A^{(4)} \end{split}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$

TS8xCx2X2

Table 22.	DC Parameters in Standard Voltage	(Continued)
-----------	-----------------------------------	-------------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OH}	Output High Voltage, ports 1, 2, 3	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$ $V_{CC} = 5V \pm 10\%$
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$ $V_{CC} = 5V \pm 10\%$
V _{OH2}	Output High Voltage, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -100 \ \mu A$ $I_{OH} = -1.6 \ m A$ $I_{OH} = -3.5 \ m A$ $V_{CC} = 5V \pm 10\%$
R _{RST}	RST Pulldown Resistor	50	90 (5)	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μA	Vin = 0.45V
I _{LI}	Input Leakage Current			±10	μA	$0.45V < Vin < V_{CC}$
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μA	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz Ta = 25°C
I _{PD}	Power Down Current		20 (5)	50	μA	$2.0 \text{ V} < \text{V}_{\text{CC}} < 5.5 \text{V}^{(3)}$
I _{CC} under RESET	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.4 Freq (MHz) at12MHz 5.8 at16MHz 7.4	mA	$V_{CC} = 5.5 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: (7)			3 + 0.6 Freq (MHz) at12MHz 10.2 at16MHz 12.6	mA	$V_{CC} = 5.5 V^{(8)}$
I _{CC} idle	Power Supply Current Maximum values, X1 mode: (7)			0.25+0.3 Freq (MHz) at12MHz 3.9 at16MHz 5.1	mA	$V_{\rm CC} = 5.5 V^{(2)}$

Figure 16. I_{CC} Test Condition, Power-down Mode

All other pins are disconnected.

Figure 17. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes

ALE / PSEN

AC Parameters

Symbols	time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.								
	Example:T _{AVLL} = Time for Addr <u>ess Va</u> lid to ALE Low. T _{LLPL} = Time for ALE Low to PSEN Low.								
	T _A = 0 to +70 ranges.	°C (commercial temperat	ure range); V _{SS} = 0 V; V _C	$_{\rm CC}$ = 5V ± 10%; -M and -V					
	TA = -40°C to +85°C (industrial temperature range); $V_{SS} = 0$ V; $V_{CC} = 5V \pm 10\%$; -M and								
	TA = 0 to +70°C (commercial temperature range); $V_{SS} = 0 V$; 2.7 V < $V_{CC} < 5.5V$; -L range.								
	$T_{A} \stackrel{\sim}{=}$ -40°C to +85°C (industrial temperature range); V_{SS} = 0 V; 2.7 V < V_{CC} < 5.5V; -L range.								
	Table 24. gives the maximum applicable load capacitance for Port 0, Port 1, 2 and 3, and ALE and PSEN signals. Timings will be guaranteed if these capacitances are respected. Higher capacitance values can be used, but timings will then be degraded.								
		au Dapacitance versus s	peeu range, in pi						
		-М	-V	-L					
	Port 0	100	50	100					
	Port 1, 2, 3	80	50	80					

100

Table 5., Table 29. and Table 32. give the description of each AC symbols.

30

Table 27., Table 30. and Table 33. give for each range the AC parameter.

External Program Memory Read Cycle

Figure 18. External Program Memory Read Cycle

External Data Memory Characteristics

Table 29. Symbol Description

Symbol	Parameter
T _{RLRH}	RD Pulse Width
T _{WLWH}	WR Pulse Width
T _{RLDV}	RD to Valid Data In
T _{RHDX}	Data Hold After RD
T _{RHDZ}	Data Float After RD
T _{LLDV}	ALE to Valid Data In
T _{AVDV}	Address to Valid Data In
T _{LLWL}	ALE to WR or RD
T _{AVWL}	Address to WR or RD
T _{QVWX}	Data Valid to WR Transition
Τ _{QVWH}	Data set-up to WR High
T _{WHQX}	Data Hold After WR
T _{RLAZ}	RD Low to Address Float
T _{WHLH}	RD or WR High to ALE high

External Data Memory Read Cycle

Figure 20. External Data Memory Read Cycle

Serial Port Timing - Shift Register Mode

Table 32. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Table 33. AC Parameters for	a Fix Clock
-----------------------------	-------------

Speed	-I 40 M	M MHz	-` X2 m 30 M 60 M equ	V node MHz MHz Jiv.	د۔ stan mod MI	V dard e 40 Hz	- X2 m 20 M 40 M equ	∟ node MHz MHz µiv.	ا۔ stan mo 30 M	L dard de MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns

Symbol	Туре	Standard Clock	X2 Clock	-М	-V	-L	Units
T _{XLXL}	Min	12 T	6 T				ns
T _{QVHX}	Min	10 T - x	5 T - x	50	50	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	20	20	ns
T _{XHDX}	Min	х	х	0	0	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	133	133	ns

Table 34. AC Parameters for a Variable Clock: Derating Formula

Shift Register Timing Waveforms

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

Table 37. Possible Ordering Entries (Continued)

	Ŭ	/				
Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
AT80C52X2zzz-RLTUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray
AT80C52X2zzz-3CSUL	8K ROM	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick
AT80C52X2zzz-SLSUL	8K ROM	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick
AT80C52X2zzz-RLTUL	8K ROM	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray
AT80C52X2zzz-3CSUV	8K ROM	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick
AT80C52X2zzz-SLSUV	8K ROM	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick
AT80C52X2zzz-RLTUV	8K ROM	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Tray
			••			•
TS87C52X2-MCA						
TS87C52X2-MCB						
TS87C52X2-MCC						
TS87C52X2-MCE						
TS87C52X2-LCA						
TS87C52X2-LCB						
TS87C52X2-LCC						
TS87C52X2-LCE						
TS87C52X2-VCA						
TS87C52X2-VCB						
TS87C52X2-VCC						
TS87C52X2-VCE						
TS87C52X2-MIA			OB	SOLETE		
TS87C52X2-MIB						
TS87C52X2-MIC						
TS87C52X2-MIE						
TS87C52X2-LIA						
TS87C52X2-LIB						
TS87C52X2-LIC						
TS87C52X2-LIE						
TS87C52X2-VIA						
TS87C52X2-VIB						
TS87C52X2-VIC						
TS87C52X2-VIE						
AT87C52X2-3CSUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site

http://www.atmel.com

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof, are registered trademarks, or are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.