

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at87c52x2-3csum

Email: info@E-XFL.COM

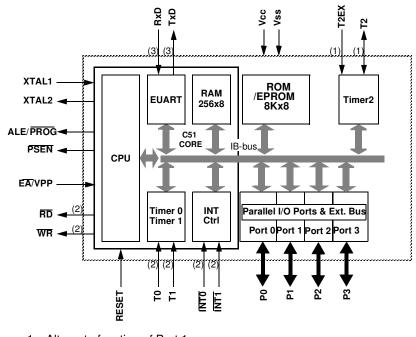

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1. Memory Size

	ROM (bytes)	EPROM (bytes)	TOTAL RAM (bytes)
TS80C32X2	0	0	256
TS80C52X2	8k	0	256
TS87C52X2	0	8k	256

Block Diagram

Notes: 1. Alternate function of Port 1 2. Alternate function of Port 3

	Bit							
	Addressable			No	on Bit Addressal	ole		
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
F8h								
F0h	B 0000 0000							
E8h								
E0h	ACC 0000 0000							
D8 h								
D0 h	PSW 0000 0000							
C8 h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000		
C0 h								
B8h	IP XX00 0000	SADEN 0000 0000						
B0h	P3 1111 1111							IPH XX00 0000
A8h	IE 0X00 0000	SADDR 0000 0000						
A0h	P2 1111 1111		AUXR1 XXXX XXX0					

TL1

0000 0000

DPH

0000 0000

3/B

TH0

0000 0000

4/C

TH1

0000 0000

5/D

AUXR

XXXXXXX0

6/E

Tak

Reserved

SCON

0000 0000

P1

1111 1111 TCON

0000 0000

P0

1111 1111

0/8

98h

90h

88h

80h

SBUF

XXXX XXXX

TMOD

0000 0000

SP

0000 0111

1/9

TL0

0000 0000

DPL

0000 0000

2/A

FFh

F7h

EFh

E7h

DFh

D7h

CFh

C7h

BFh

B7h

AFh

A7h

9Fh

97h

8Fh

87h

CKCON

XXXX XXX0

PCON

00X1 0000

7/F

Mnemonic	Pin Number			Туре	Name and Function
	DIL	LCC	VQFP 1.4		
V _{SS}	20	22	16	I	Ground: 0V reference
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation
P0.0-P0.7	39- 32	43- 36	37-30	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs.Port 0 pins must be polarized to Vcc or Vss in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus
					during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As
					inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification. Alternate functions for Port 1 include:
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout
	1	2	40	1/0	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction
	2	3	41	I	Control
P2.0-P2.7	21- 28	24- 31	18-25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As
					inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the high- order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX atDPTR). In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX atRi), port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.4
P3.0-P3.7	10- 17	11, 13- 19	5, 7-13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source
					current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below.
	10	11	5	1	RXD (P3.0): Serial input port
	11	13	7	0	TXD (P3.1): Serial output port
	12	14	8	I	INT0 (P3.2): External interrupt 0

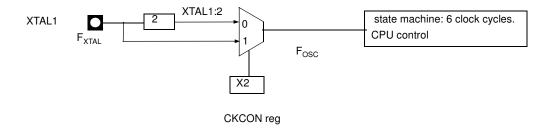
6 **TS8xCx2X2**

Mnemonic	Pin Number			Туре	Name and Function
	DIL	LCC	VQFP 1.4		
	13	15	9	I	INT1 (P3.3): External interrupt 1
	14	16	10	I	T0 (P3.4): Timer 0 external input
	15	17	11	I	T1 (P3.5): Timer 1 external input
	16	18	12	0	WR (P3.6): External data memory write strobe
	17	19	13	0	RD (P3.7): External data memory read strobe
Reset	9	10	4	I	Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .
ALE/PROG	30	33	27	O (I)	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR's AUXR.0 bit. With this bit set, ALE will be inactive during internal fetches.
PSEN	29	32	26	0	Program Store ENable: The read strobe to external program memory. When executing code from the external program memory, <u>PSEN</u> is activated twice each machine cycle, except that two <u>PSEN</u> activations are skipped during each access to external data memory. <u>PSEN</u> is not activated during fetches from internal program memory.
ĒĀ/V _{PP}	31	35	29	I	External Access Enable/Programming Supply Voltage: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H and 3FFFH (RB) or 7FFFH (RC), or FFFFH (RD). If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 3FFFH (RB) or 7FFFH (RC) EA must be held low for ROMless devices. This pin also receives the 12.75V programming supply voltage (V _{PP}) during EPROM programming. If security level 1 is programmed, EA will be internally latched on Reset.
XTAL1	19	21	15	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	18	20	14	0	Crystal 2: Output from the inverting oscillator amplifier

TS80C52X2 In comparison to the original 80C52, the TS80C52X2 implements some new features, which are: **Enhanced Features**

- The X2 option
- The Dual Data Pointer
- The 4 level interrupt priority system
- The power-off flag ٠
- The ONCE mode
- The ALE disabling
- Some enhanced features are also located in the UART and the Timer 2

X2 Feature The TS80C52X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:

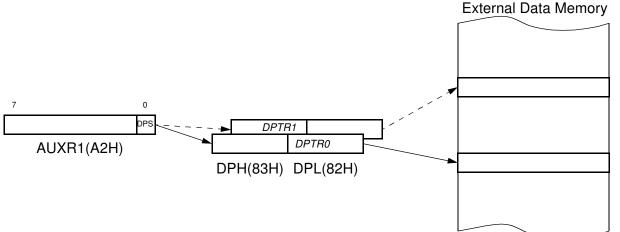

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power ٠
- Save power consumption while keeping same CPU power (oscillator power saving)
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes
- Increase CPU power by 2 while keeping same crystal frequency

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2 shows the mode switching waveforms.

Figure 1. Clock Generation Diagram


Dual Data Pointer Register (Ddptr)

The additional data pointer can be used to speed up code execution and reduce code size in a number of ways.

The dual DPTR structure is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called

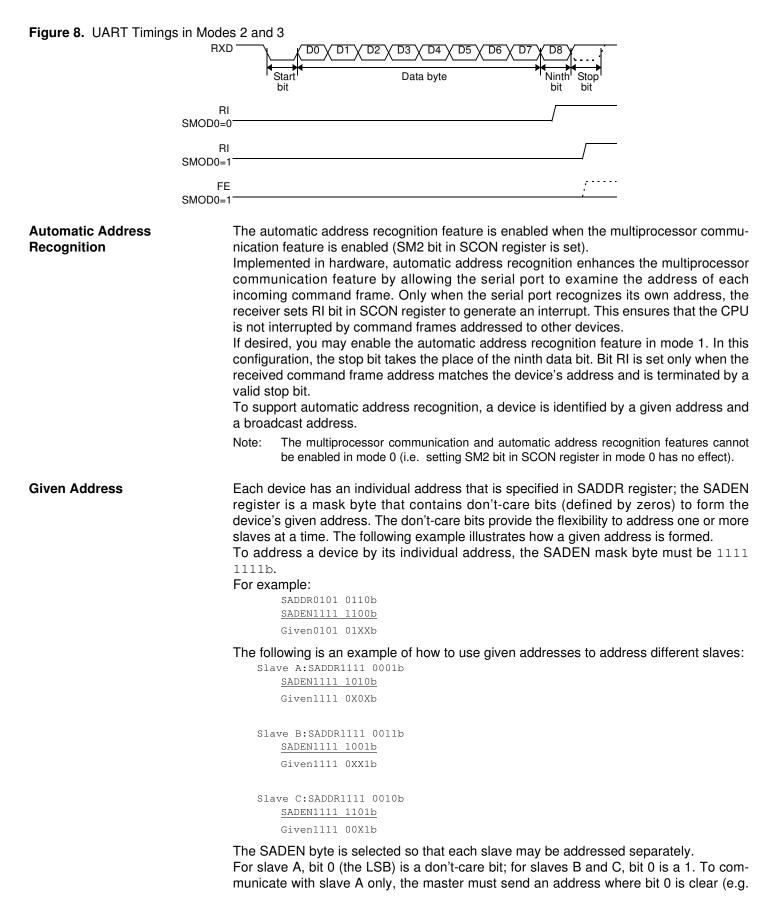
DPS = AUXR1/bit0 (See Table 5.) that allows the program code to switch between them (Refer to Figure 3).

Figure 3. Use of Dual Pointer

Table 4. AUXR1: Auxiliary Register 1

7	6	5	4	3	2	1	0
-	-	-	-	GF3	0	-	DPS
Bit Number	Bit Mnemonic	Description	Description				
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.				
6	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.				
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.				
4	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.				
3	GF3	This bit is a	This bit is a general purpose user flag				
2	0	Reserved Always stud	Reserved Always stuck at 0				
1	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.				
0	DPS	Clear to sel	Data Pointer Selection Clear to select DPTR0. Set to select DPTR1.				

Reset Value = XXXX XXX0 Not bit addressable


T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#
Bit Number	Bit Mnemonic	Description					
7	TF2	Timer 2 overf Must be cleare Set by hardwa	ed by software		LK = 0 and T	CLK = 0.	
6	EXF2	Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1)					
5	RCLK	Clear to use ti	Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.				
4	TCLK	Clear to use ti	Transmit Clock bit Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.				
3	EXEN2	Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.					pin is
2	TR2	Timer 2 Run control bit Clear to turn off timer 2. Set to turn on timer 2.					
1	C/T2#	Timer/Counter 2 select bit Clear for timer operation (input from internal clock system: F _{OSC}). Set for counter operation (input from T2 input pin, falling edge trigger). Must be 0 for clock out mode.). Must be 0
0	CP/RL2#	Timer 2 Capture/Reload bit If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to Auto-reload on timer 2 overflow. Clear to Auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1. Set to capture on negative transitions on T2EX pin if EXEN2=1.					

Reset Value = 0000 0000b Bit addressable

18 **TS8xCx2X2 ■**

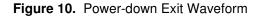
are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

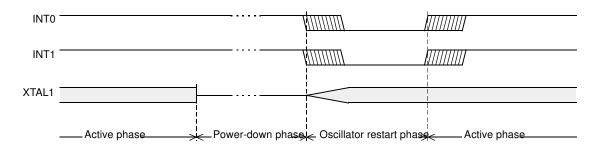
Table 12. IE Register

IE - Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0
EA	-	ET2	ES	ET1	EX1	ET0	EX0
Bit Number	Bit Mnemonic	Description					
7	EA	Clear to disab Set to enable If EA=1, each	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. f EA=1, each interrupt source is individually enabled or disabled by setting or clearing its own interrupt enable bit.				
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.				
5	ET2	Clear to disab	Timer 2 overflow interrupt Enable bit Clear to disable timer 2 overflow interrupt. Set to enable timer 2 overflow interrupt.				
4	ES	Clear to disab	Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.				
3	ET1	Clear to disab	Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.				
2	EX1	Clear to disab	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.				
1	ET0	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.					
0	EX0	Clear to disab	External interrupt 0 Enable bit Clear to disable external interrupt 0. Set to enable external interrupt 0.				

Reset Value = 0X00 0000b Bit addressable


Table 14. IPH RegisterIPH - Interrupt Priority High Register (B7h)


7	6	5	4	3	2	1	0
-	-	PT2H	PSH	PT1H	PX1H	РТОН	РХОН
Bit Number	Bit Mnemonic	Description					
7	-	Reserved The value rea	d from this bit	is indetermina	ate. Do not se	t this bit.	
6	-	Reserved The value rea	d from this bit	is indetermina	ate. Do not se	t this bit.	
5	PT2H	Timer 2 over PT2H PT2 0 0 1 0 1 1	flow interrupt Priority Leve Lowest Highest		ı bit		
4	PSH	Serial port P PSH PS 0 0 0 1 1 0 1 1	riority High b <u>Priority Leve</u> Lowest Highest				
3	PT1H	Timer 1 over PT1H PT1 0 0 1 0 1 1	flow interrupt <u>Priority Leve</u> Lowest Highest		ı bit		
2	PX1H		rrupt 1 Priori n <u>Priority Leve</u> Lowest Highest				
1	РТОН		flow interrupt Priority Leve Lowest Highest		ı bit		
0	РХОН		rrupt 0 Priori <u>Priority Leve</u> Lowest Highest				

Reset Value = XX00 0000b Not bit addressable

	ATTITUE ®
Idle mode	An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is pre- served in its entirely : the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.
	There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.
	The flag bits GF0 and GF1 can be used to give an indication if an interrupt occured dur- ing normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.
	The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.
Power-down Mode	To save maximum power, a power-down mode can be invoked by software (Refer to Table 10., PCON register).
	In power-down mode, the oscillator is stopped and the instruction that invoked power- down mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from power- down. To properly terminate power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.
	Only external interrupts INT0 and INT1 are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input. Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 10. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first input will be released. In this case the higher priority interrupt service routine is executed. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put TS80C52X2 into power-down mode.

EPROM Structure	The TS87C52X2 is divided in two different arrays:
-----------------	---

- the code array: 8 Kbytes
- the encryption array: 64 bytes

In addition a third non programmable array is implemented:

the signature array: 4 bytes

EPROM Lock System The program Lock system, when programmed, protects the on-chip program against software piracy.

Encryption Array Within the EPROM array are 64 bytes of encryption array that are initially unprogrammed (all FF's). Every time a byte is addressed during program verify, 6 address lines are used to select a byte of the encryption array. This byte is then exclusive-NOR'ed (XNOR) with the code byte, creating an encrypted verify byte. The algorithm, with the encryption array in the unprogrammed state, will return the code in its original, unmodified form.

When using the encryption array, one important factor needs to be considered. If a byte has the value FFh, verifying the byte will produce the encryption byte value. If a large block (>64 bytes) of code is left unprogrammed, a verification routine will display the content of the encryption array. For this reason all the unused code bytes should be programmed with random values. This will ensure program protection.

Program Lock Bits The three lock bits, when programmed according to Table 1., will provide different level of protection for the on-chip code and data.

Pi	ogram Lo	ock Bits		
Security level	LB1	LB2	LB3	Protection Description
1	U	U	U	No program lock features enabled. Code verify will still be encrypted by the encryption array if programmed. MOVC instruction executed from external program memory returns non encrypted data.
2	Ρ	U	U	MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on reset, and further programming of the EPROM is disabled.
3	U	Р	U	Same as 2, also verify is disabled.
4	U	U	Р	Same as 3, also external execution is disabled.

U: unprogrammed

P: programmed

WARNING: Security level 2 and 3 should only be programmed after EPROM and Core verification.

Signature Bytes

The TS80/87C52X2 contains 4 factory programmed signatures bytes. To read these bytes, perform the process described in section 9.

EPROM Programming

Set-up modes

In order to program and verify the EPROM or to read the signature bytes, the TS87C52X2 is placed in specific set-up modes (See Figure 11.).

32 **TS8xCx2X2**

12,000 μ W/cm² rating for 30 minutes, at a distance of about 25 mm, should be sufficient. An exposure of 1 hour is recommended with most of standard erasers.

Erasure of the EPROM begins to occur when the chip is exposed to light with wavelength shorter than approximately 4,000 Å. Since sunlight and fluorescent lighting have wavelengths in this range, exposure to these light sources over an extended time (about 1 week in sunlight, or 3 years in room-level fluorescent lighting) could cause inadvertent erasure. If an application subjects the device to this type of exposure, it is suggested that an opaque label be placed over the window.

Signature Bytes The TS80/87C52X2 has four signature bytes in location 30h, 31h, 60h and 61h. To read these bytes follow the procedure for EPROM verify but activate the control lines provided in Table 31. for Read Signature Bytes. Table 35. shows the content of the signature byte for the TS80/87C52X2.

Location	Contents	Comment
30h	58h	Manufacturer Code: Atmel
31h	57h	Family Code: C51 X2
60h	2Dh	Product name: TS80C52X2
60h	ADh	Product name:TS87C52X2
60h	20h	Product name: TS80C32X2
61h	FFh	Product revision number

 Table 21.
 Signature Bytes Content

Electrical Characteristics

Absolute Maximum Ratings⁽¹⁾

Ambiant Temperature Under Bias:	
C = commercial	0°C to 70°C
I = industrial	40°C to 85°C
Storage Temperature	65°C to + 150°C
Voltage on V _{CC} to V _{SS}	0.5V to + 7 V
Voltage on V _{PP} to V _{SS}	0.5V to + 13 V
Voltage on Any Pin to V _{SS}	0.5V to V _{CC} + 0.5V
Power Dissipation	1 W ⁽²⁾
•	
	······································

- Notes: 1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
 - 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

Power Consumption Measurement

Since the introduction of the first C51 devices, every manufacturer made operating lcc measurements under reset, which made sense for the designs were the CPU was running under reset. In Atmel new devices, the CPU is no more active during reset, so the power consumption is very low but is not really representative of what will happen in the customer system. That's why, while keeping measurements under Reset, Atmel presents a new way to measure the operating lcc:

Using an internal test ROM, the following code is executed:

Label: SJMP Label (80 FE)

Ports 1, 2, 3 are disconnected, Port 0 is tied to FFh, EA = Vcc, RST = Vss, XTAL2 is not connected and XTAL1 is driven by the clock.

This is much more representative of the real operating lcc.

DC Parameters for	TA = 0°C to +70°C; V_{SS} = 0 V; V_{CC} = 5V ± 10%; F = 0 to 40 MHz.
Standard Voltage	TA = -40°C to +85°C; $V_{SS} = 0 V$; $V_{CC} = 5V \pm 10\%$; F = 0 to 40 MHz.

Table 22.	DC Parameters in Standard Voltage
-----------	-----------------------------------

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3 ⁽⁶⁾			0.3 0.45 1.0	> > >	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$
V _{OL1}	Output Low Voltage, port 0 ⁽⁶⁾			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 200 \ \mu A^{(4)} \\ I_{OL} &= 3.2 \ m A^{(4)} \\ I_{OL} &= 7.0 \ m A^{(4)} \end{split}$
V _{OL2}	Output Low Voltage, ALE, PSEN			0.3 0.45 1.0	V V V	$\begin{split} I_{OL} &= 100 \; \mu A^{(4)} \\ I_{OL} &= 1.6 \; m A^{(4)} \\ I_{OL} &= 3.5 \; m A^{(4)} \end{split}$

TS8xCx2X2

Table 22.	DC Parameters in Standard	Voltage	(Continued)
-----------	---------------------------	---------	-------------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OH}	Output High Voltage, ports 1, 2, 3	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$ $V_{CC} = 5V \pm 10\%$
V _{OH1}	Output High Voltage, port 0	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -200 mu$ A $I_{OH} = -3.2 mu$ A $I_{OH} = -7.0 mu$ A $V_{CC} = 5V \pm 10\%$
V _{OH2}	Output High Voltage,ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			v v v	I _{OH} = -100 μA I _{OH} = -1.6 mA I _{OH} = -3.5 mA V _{CC} = 5V ± 10%
R _{RST}	RST Pulldown Resistor	50	90 ⁽⁵⁾	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2 and 3			-50	μA	Vin = 0.45V
I _{LI}	Input Leakage Current			±10	μA	0.45V < Vin < V _{CC}
I _{TL}	Logical 1 to 0 Transition Current, ports 1, 2, 3			-650	μA	Vin = 2.0 V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz Ta = 25°C
I _{PD}	Power Down Current		20 (5)	50	μA	$2.0 \text{ V} < \text{V}_{\text{CC}} < 5.5 \text{V}^{(3)}$
I _{cc} under RESET	Power Supply Current Maximum values, X1 mode: (7)			1 + 0.4 Freq (MHz) at12MHz 5.8 at16MHz 7.4	mA	$V_{CC} = 5.5 V^{(1)}$
I _{CC} operating	Power Supply Current Maximum values, X1 mode: (7)			3 + 0.6 Freq (MHz) at12MHz 10.2 at16MHz 12.6	mA	V _{CC} = 5.5V ⁽⁸⁾
l _{CC} idle	Power Supply Current Maximum values, X1 mode: (7)			0.25+0.3 Freq (MHz) at12MHz 3.9 at16MHz 5.1	mA	$V_{CC} = 5.5 V^{(2)}$

External Data Memory Read Cycle

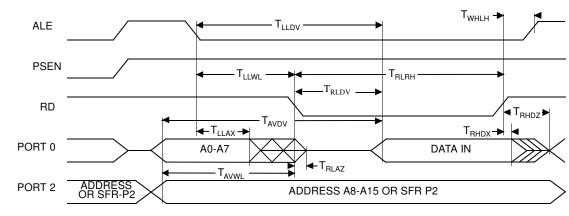


Figure 20. External Data Memory Read Cycle

Serial Port Timing - Shift Register Mode

Table 32. Symbol Description

Symbol	Parameter
T _{XLXL}	Serial port clock cycle time
T _{QVHX}	Output data set-up to clock rising edge
T _{XHQX}	Output data hold after clock rising edge
T _{XHDX}	Input data hold after clock rising edge
T _{XHDV}	Clock rising edge to input data valid

Speed	-r 40 M		X2 n 30 l 60 l	V node MHz MHz uiv.	stan mod	V dard le 40 Hz	-	node MHz MHz	stan mo	L dard ode MHz	Units
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
T _{XLXL}	300		200		300		300		400		ns
T _{QVHX}	200		117		200		200		283		ns
T _{XHQX}	30		13		30		30		47		ns
T _{XHDX}	0		0		0		0		0		ns
T _{XHDV}		117		34		117		117		200	ns

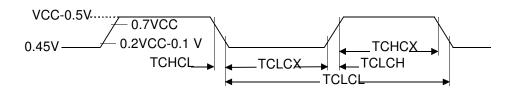
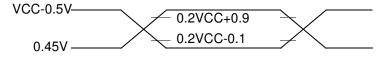

External Clock Drive Characteristics (XTAL1)

Table 36. AC Parameters

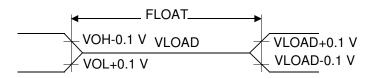
Symbol	Parameter	Min	Max	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

External Clock Drive Waveforms


Figure 23. External Clock Drive Waveforms

AC Testing Input/Output Waveforms

Figure 24. AC Testing Input/Output Waveforms


INPUT/OUTPUT

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

Float Waveforms

Figure 25. Float Waveforms

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

Ordering Information

Table 37	Possible Orderin	na Entries

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing			
TS80C32X2-MCA			L			4			
TS80C32X2-MCB									
TS80C32X2-MCC									
TS80C32X2-MCE									
TS80C32X2-LCA									
TS80C32X2-LCB									
TS80C32X2-LCC									
TS80C32X2-LCE									
TS80C32X2-VCA									
TS80C32X2-VCB									
TS80C32X2-VCC									
TS80C32X2-VCE		OBSOLETE							
TS80C32X2-MIA			ОВ	SOLETE					
TS80C32X2-MIB									
TS80C32X2-MIC									
TS80C32X2-MIE									
TS80C32X2-LIA									
TS80C32X2-LIB									
TS80C32X2-LIC									
TS80C32X2-LIE									
TS80C32X2-VIA									
TS80C32X2-VIB									
TS80C32X2-VIC									
TS80C32X2-VIE									
AT80C32X2-3CSUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick			
AT80C32X2-SLSUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick			
AT80C32X2-RLTUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray			
AT80C32X2-RLRUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tape & Reel			
AT80C32X2-SLRUM	ROMLess	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Tape & Reel			
AT80C32X2-3CSUL	ROMLess	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick			

Table 37. Possible Ordering Entries (Continued)

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing			
AT80C32X2-SLSUL	ROMLess	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick			
AT80C32X2-RLTUL	ROMLess	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray			
AT80C32X2-3CSUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick			
AT80C32X2-SLSUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick			
AT80C32X2-RLTUV	ROMLess	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Tray			
TS80C52X2zzz-MCA									
TS80C52X2zzz-MCB									
TS80C52X2zzz-MCC									
TS80C52X2zzz-MCE									
TS80C52X2zzz-LCA									
TS80C52X2zzz-LCB									
TS80C52X2zzz-LCC									
TS80C52X2zzz-LCE									
TS80C52X2zzz-VCA									
TS80C52X2zzz-VCB									
TS80C52X2zzz-VCC									
TS80C52X2zzz-VCE			0.5						
TS80C52X2zzz-MIA			OB	SOLETE					
TS80C52X2zzz-MIB									
TS80C52X2zzz-MIC									
TS80C52X2zzz-MIE									
TS80C52X2zzz-LIA									
TS80C52X2zzz-LIB									
TS80C52X2zzz-LIC									
TS80C52X2zzz-LIE									
TS80C52X2zzz-VIA									
TS80C52X2zzz-VIB									
TS80C52X2zzz-VIC									
TS80C52X2zzz-VIE									
T80C52X2zzz-3CSUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick			
T80C52X2zzz-SLSUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick			

Table 37. Possible Ordering Entries (Continued)

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
AT87C52X2-SLSUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick
AT87C52X2-RLTUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray
AT87C52X2-3CSUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick
AT87C52X2-SLSUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick
AT87C52X2-RLTUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray
AT87C52X2-3CSUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick
AT87C52X2-SLSUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick
AT87C52X2-RLTUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Tray

Notes: 1. 20 MHz in X2 Mode.

2. Tape and Reel available for SL, PQFP and RL packages

3. 30 MHz in X2 Mode.