

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40/20MHz
Connectivity	UART/USART
Peripherals	POR
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at87c52x2-rlrum

Email: info@E-XFL.COM

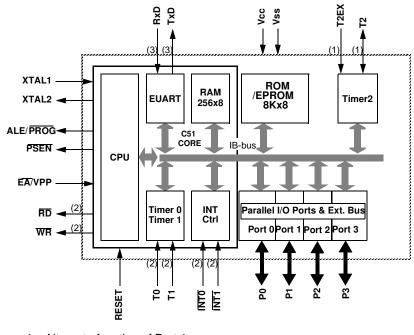

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1. Memory Size

	ROM (bytes)	EPROM (bytes)	TOTAL RAM (bytes)
TS80C32X2	0	0	256
TS80C52X2	8k	0	256
TS87C52X2	0	8k	256

Block Diagram

Notes: 1. Alternate function of Port 1 2. Alternate function of Port 3

SFR Mapping

The Special Function Registers (SFRs) of the TS80C52X2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP, AUXR1
- I/O port registers: P0, P1, P2, P3
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- Power and clock control registers: PCON
- Interrupt system registers: IE, IP, IPH
- Others: AUXR, CKCON

Table 2. All SFRs with their address and their reset value
--

	Bit Addressable		Non Bit Addressable							
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F		
F8h									FFh	
F0h	B 0000 0000								F7h	
E8h									EFh	
E0h	ACC 0000 0000								E7h	
D8 h									DFh	
D0 h	PSW 0000 0000								D7h	
C8 h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFh	
C0 h									C7h	
B8h	IP XX00 0000	SADEN 0000 0000							BFh	
B0h	P3 1111 1111							IPH XX00 0000	B7h	
A8h	IE 0X00 0000	SADDR 0000 0000							AFh	
A0h	P2 1111 1111		AUXR1 XXXX XXX0						A7h	
98h	SCON 0000 0000	SBUF XXXX XXXX							9Fh	
90h	P1 1111 1111								97h	
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XXXXXXX0	CKCON XXXX XXX0	8Fh	
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h	
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F		

Reserved

Mnemonic	I	Pin Nu	mber	Туре	Name and Function			
	DIL	LCC	VQFP 1.4					
V _{SS}	20	22	16	I	Ground: 0V reference			
Vss1		1	39	I	Optional Ground: Contact the Sales Office for ground connection.			
V _{CC}	40	44	38	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation			
P0.0-P0.7	39- 32	43- 36	37-30	I/O	Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs.Port 0 pins must be polarized to Vc or Vss in order to prevent any parasitic current consumptio Port 0 is also the multiplexed low-order address and data b during access to external program and data memory. In thi application, it uses strong internal pull-up when emitting 1s Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.			
P1.0-P1.7	1-8	2-9	40-44 1-3	I/O	pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As			
					inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming an verification. Alternate functions for Port 1 include:			
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout			
	2	3	41	I	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control			
P2.0-P2.7	21- 28	24- 31	18-25	I/O	Port 2 : Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled			
					high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 emits the hig order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX atDPTR). In this application, it uses strong internal pull-ups emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX atRi port 2 emits the contents of the P2 SFR. Some Port 2 pins receive the high order address bits during EPROM programming and verification: P2.0 to P2.4			
P3.0-P3.7	10- 17	11, 13- 19	5, 7-13	I/O	 pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also serves the special features of the 80C51 family, as listed below. 			
	10	11	5	1	RXD (P3.0): Serial input port			
	11	13	7	0	TXD (P3.1): Serial output port			
	12	14	8	I	INT0 (P3.2): External interrupt 0			

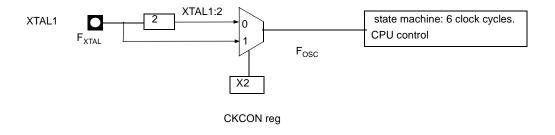
6 **TS8xCx2X2**

TS80C52X2 Enhanced Features

In comparison to the original 80C52, the TS80C52X2 implements some new features, which are:

- The X2 option
- The Dual Data Pointer
- The 4 level interrupt priority system
- The power-off flag
- The ONCE mode
- The ALE disabling
- Some enhanced features are also located in the UART and the Timer 2

X2 Feature The TS80C52X2 core needs only 6 clock periods per machine cycle. This feature called "X2" provides the following advantages:


- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power
- Save power consumption while keeping same CPU power (oscillator power saving)
- Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes
- Increase CPU power by 2 while keeping same crystal frequency

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.

Description

The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 1. shows the clock generation block diagram. X2 bit is validated on XTAL1÷2 rising edge to avoid glitches when switching from X2 to STD mode. Figure 2 shows the mode switching waveforms.

Figure 1. Clock Generation Diagram

Timer 2	The timer 2 in the TS80C52X2 is compatible with the timer 2 in the 80C52. It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2, connected in cascade. It is controlled by T2CON register (See Table 5) and T2MOD register (See Table 6). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects $F_{OSC}/12$ (timer operation) or external pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by the selected input.
	Timer 2 has 3 operating modes: capture, autoreload and Baud Rate Generator. These modes are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON), as described in the Atmel 8-bit Microcontroller Hardware description.
	Refer to the Atmel 8-bit Microcontroller Hardware description for the description of Cap- ture and Baud Rate Generator Modes.
	In TS80C52X2 Timer 2 includes the following enhancements:
	Auto-reload mode with up or down counter
	Programmable clock-output
Auto-reload Mode	The Auto-reload mode configures timer 2 as a 16-bit timer or event counter with auto- matic reload. If DCEN bit in T2MOD is cleared, timer 2 behaves as in 80C52 (refer to the Atmel 8-bit Microcontroller Hardware description). If DCEN bit is set, timer 2 acts as an Up/down timer/counter as shown in Figure 4. In this mode the T2EX pin controls the direction of count.
	When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.
	When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.
	The EXF2 bit toggles when timer 2 overflows or underflows according to the the direc- tion of the count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.

Power-off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (See Table 17.). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

The POF value is only relevant with a Vcc range from 4.5V to 5.5V. For lower Vcc value, reading POF bit will return indeterminate value.

7	6	5	4	3	2	1	0		
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic	Descript	Description						
7	SMOD1		Serial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.						
6	SMOD0	Clear to s	cerial port Mode bit 0 Clear to select SM0 bit in SCON register. Set to to select FE bit in SCON register.						
5	-		Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	POF	Clear to r Set by ha	Power-off Flag Clear to recognize next reset type. Set by hardware when V _{CC} rises from 0 to its nominal voltage. Can also be set by software.						
3	GF1	Cleared b	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.						
2	GF0	Cleared b	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.						
1	PD	Cleared b	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL			en interrupt or	reset occurs.				

Table 17. PCON Register

PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

EPROM Programming and Verification Characteristics

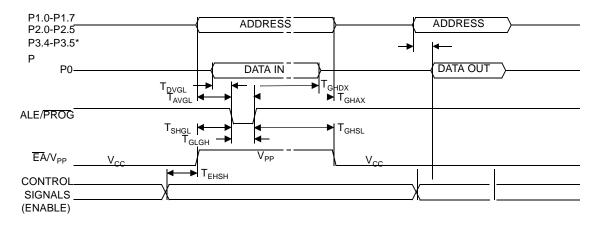

 T_A = 21°C to 27°C; V_{SS} = 0V; V_{CC} = 5V \pm 10% while programming. V_{CC} = operating range while verifying.

Table 35. EPROM Programming Parameters

Symbol	Parameter	Min	Max	Units
V _{PP}	Programming Supply Voltage	12.5	13	V
I _{PP}	Programming Supply Current		75	mA
1/T _{CLCL}	Oscillator Frquency	4	6	MHz
T _{AVGL}	Address Setup to PROG Low	48 T _{CLCL}		
T _{GHAX}	Adress Hold after PROG	48 T _{CLCL}		
T _{DVGL}	Data Setup to PROG Low	48 T _{CLCL}		
T _{GHDX}	Data Hold after PROG	48 T _{CLCL}		
T _{EHSH}	(Enable) High to V _{PP}	48 T _{CLCL}		
T _{SHGL}	V _{PP} Setup to PROG Low	10		ms
T _{GHSL}	V _{PP} Hold after PROG	10		ms
T _{GLGH}	PROG Width	90	110	ms
T _{AVQV}	Address to Valid Data		48 T _{CLCL}	
T _{ELQV}	ENABLE Low to Data Valid		48 T _{CLCL}	
T _{EHQZ}	Data Float after ENABLE	0	48 T _{CLCL}	

EPROM Programming and Verification Waveforms

Figure 22. EPROM Programming and Verification Waveforms

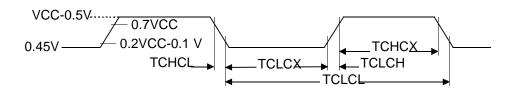
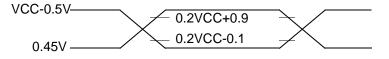

External Clock Drive Characteristics (XTAL1)

Table 36. AC Parameters

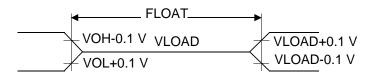
Symbol	Parameter	Min	Max	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

External Clock Drive Waveforms


Figure 23. External Clock Drive Waveforms

AC Testing Input/Output Waveforms

Figure 24. AC Testing Input/Output Waveforms


INPUT/OUTPUT

AC inputs during testing are driven at V_{CC} - 0.5 for a logic "1" and 0.45V for a logic "0". Timing measurement are made at V_{IH} min for a logic "1" and V_{IL} max for a logic "0".

Float Waveforms

Figure 25. Float Waveforms

For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a 100 mV change from the loaded V_{OH}/V_{OL} level occurs. $I_{OL}/I_{OH} \ge \pm 20$ mA.

Table 37. Possible Ordering Entries (Continued)

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing				
AT80C52X2zzz-RLTUM	8K ROM	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray				
AT80C52X2zzz-3CSUL	8K ROM	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick				
AT80C52X2zzz-SLSUL	8K ROM	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick				
AT80C52X2zzz-RLTUL	8K ROM	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray				
AT80C52X2zzz-3CSUV	8K ROM	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick				
AT80C52X2zzz-SLSUV	8K ROM	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick				
AT80C52X2zzz-RLTUV	8K ROM	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Tray				
TS87C52X2 -MCA										
TS87C52X2-MCB	•									
TS87C52X2-MCC										
TS87C52X2-MCE										
TS87C52X2 -LCA										
TS87C52X2-LCB										
TS87C52X2-LCC										
TS87C52X2-LCE										
TS87C52X2-VCA										
TS87C52X2-VCB	•									
TS87C52X2-VCC	•									
TS87C52X2-VCE			0.5	001 575						
TS87C52X2-MIA			OB	SOLETE						
TS87C52X2-MIB										
TS87C52X2-MIC										
TS87C52X2-MIE										
TS87C52X2-LIA										
TS87C52X2-LIB										
TS87C52X2-LIC										
TS87C52X2-LIE										
TS87C52X2 -VIA										
TS87C52X2 -VIB										
TS87C52X2-VIC										
TS87C52X2-VIE										
AT87C52X2-3CSUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PDIL40	Stick				

Table 37. Possible Ordering Entries (Continued)

Part Number ⁽³⁾	Memory Size	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
AT87C52X2-SLSUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	PLCC44	Stick
AT87C52X2-RLTUM	8K OTP	5V ±10%	Industrial & Green	40 MHz ⁽¹⁾	VQFP44	Tray
AT87C52X2-3CSUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PDIL40	Stick
AT87C52X2-SLSUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	PLCC44	Stick
AT87C52X2-RLTUL	8K OTP	2.7 to 5.5V	Industrial & Green	30 MHz ⁽¹⁾	VQFP44	Tray
AT87C52X2-3CSUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PDIL40	Stick
AT87C52X2-SLSUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	PLCC44	Stick
AT87C52X2-RLTUV	8K OTP	5V ±10%	Industrial & Green	60 MHz ⁽³⁾	VQFP44	Tray

Notes: 1. 20 MHz in X2 Mode.

2. Tape and Reel available for SL, PQFP and RL packages

3. 30 MHz in X2 Mode.