

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	48
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-64-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1402q064x0064aaxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2016-10 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM[®], ARM Powered[®], Cortex[®], Thumb[®] and AMBA[®] are registered trademarks of ARM, Limited.

CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1400 series devices.

The document describes the characteristics of a superset of the XMC1400 series devices. For simplicity, the various device types are referred to by the collective term XMC1400 throughout this document.

XMC1000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.

Derivative	Value	Marking
XMC1403-Q064X0200	00014093 07CF00FF 1E071FF7 00B00000 00000D00 00001000 00033000 10204083 _H	AA
XMC1404-Q048X0064	00014083 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00011000 10204083 _H	AA
XMC1404-Q048X0128	00014083 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00021000 10204083 _H	AA
XMC1404-Q048X0200	00014083 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00033000 10204083 _H	AA
XMC1404-Q064X0064	00014093 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00011000 10204083 _H	AA
XMC1404-Q064X0128	00014093 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00021000 10204083 _H	AA
XMC1404-Q064X0200	00014093 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00033000 10204083 _H	AA
XMC1404-F064X0064	000140A3 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00011000 10204083 _H	AA
XMC1404-F064X0128	000140A3 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00021000 10204083 _H	AA
XMC1404-F064X0200	000140A3 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00033000 10204083 _H	AA

Table 3 XMC1400 Chip Identification Number (cont'd)

General Device Information

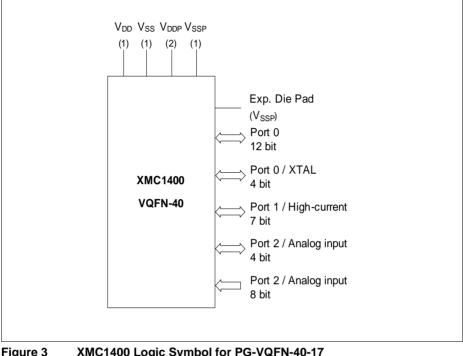
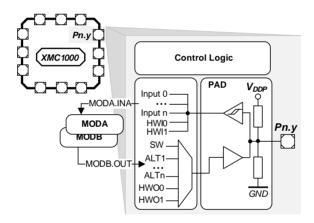


Figure 3 XMC1400 Logic Symbol for PG-VQFN-40-17

General Device Information

Table 5	Packa	ge Pin Ma	apping (c	ont'd)		
Function	LQFP 64, VQFN 64	VQFN 48	VQFN 40	TSSOP 38	Pad Type	Notes
VDD	24	18	14	10	Power	Supply VDD, ADC reference voltage/ ORC reference voltage
VDDP	25	19	15	10	Power	When VDD is supplied, VDDP has to be supplied with the same voltage.
VDDP	2	-	-	-	Power	I/O port supply
VDDP	35	27	-	-	Power	I/O port supply
VDDP	50	38	32	26	Power	I/O port supply
VSSP	1	-	-	-	Power	I/O port ground
VSSP	49	37	31	25	Power	I/O port ground
VSSP	Exp. Pad (in VQFN 64 only)	Exp. Pad	Exp. Pad	-	Power	Exposed Die PadThe exposed diepad is connectedinternally to VSSP.For properoperation, it ismandatory toconnect theexposed pad tothe board ground.For thermalaspects, pleaserefer to thePackage andReliability chapter.


General Device Information

2.2.3 Port I/O Function Description

The following general building block is used to describe the I/O functions of each PORT pin:

Table 7 Port I/O Function Description

Function	Outputs		Inputs	Inputs				
	ALT1	ALTn	Input	Input				
P0.0		MODA.OUT	MODC.INA					
Pn.y	MODA.OUT		MODA.INA	MODC.INB				

Figure 10 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to nine alternate output functions (ALT1 to ALT9) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

Please refer to the Port I/O Functions table for the complete Port I/O function mapping.

Port I/O Function Table

Table 9 Port I/O Functions

Function	1	Outputs							Inputs												
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8	ALT9	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.0	ERU0.P DOUT0		ERU0.G OUT0	CCU40. OUT0	CCU80. OUT00	USIC0_ CH0.SE LO0				BCCU0. TRAPIN B	CCU40.I N0AC					USIC1_ CH1.DX 0A	USIC0_ CH0.D X2A	-	USIC0_ CH1.DX 2A		
P0.1	ERU0.P DOUT1		ERU0.G OUT1	CCU40. OUT1	CCU80. OUT01	BCCU0. OUT8	SCU.VD ROP	USIC1_ CH1.SC LKOUT			CCU40.I N1AC					USIC1_ CH1.DX 0B	USIC1_ CH1.D X1A	-			
P0.2	ERU0.P DOUT2		ERU0.G OUT2	CCU40. OUT2	CCU80. OUT02	VADC0. EMUX02		USIC1_ CH0.SC LKOUT			CCU40.I N2AC					USIC1_ CH0.DX 0A	USIC1_ CH0.D X1A	-			
P0.3	ERU0.P DOUT3		ERU0.G OUT3	CCU40. OUT3	CCU80. OUT03	VADC0. EMUX01		USIC1_ CH1.SC LKOUT			CCU40.I N3AC					USIC1_ CH0.DX 0B					
P0.4	BCCU0. OUT0	LEDTS0 .LINE3	LEDTS0 .COL3	CCU40. OUT1	CCU80. OUT13	VADC0. EMUX00	SERVIC	USIC1_ CH1.SE LO0	CAN.N0 _TXD			CCU41.I N0AB	CCU80.I NOAB							CAN.N0 _RXDA	
P0.5	BCCU0. OUT1	LEDTS0 .LINE2	LEDTS0 .COL2	CCU40. OUT0	CCU80. OUT12	ACMP2. OUT		VADC0. EMUX10				CCU41.I N1AB	CCU80.I N1AB							CAN.N0 _RXDB	
P0.6	BCCU0. OUT2	LEDTS0 .LINE1	LEDTS0 .COL1	CCU40. OUT0	CCU80. OUT11	USIC0_ CH1.MC LKOUT	CH1.DO	VADC0. EMUX11	CCU41. OUT0		CCU40.I N0AB	CCU41.I N2AB						USIC0_ CH1.DX 0C			
P0.7	BCCU0. OUT3	LEDTS0 .LINE0	LEDTS0 .COL0	CCU40. OUT1	CCU80. OUT10		CH1.DO	VADC0. EMUX12			CCU40.I N1AB	CCU41.I N3AB						USIC0_ CH1.DX 0D	USIC0_ CH1.DX 1C		
P0.8/ RTC_XTAL1	BCCU0. OUT4	LEDTS1 .LINE0	LEDTS0 .COLA	CCU40. OUT2	CCU80. OUT20	USIC0_ CH0.SC LKOUT	CH1.SC	CCU81. OUT20	CCU41. OUT2		CCU40.I N2AB						USIC0_ CH0.D X1B	-	USIC0_ CH1.DX 1B		
P0.9/ RTC_XTAL2	BCCU0. OUT5	LEDTS1 .LINE1	LEDTS0 .COL6	CCU40. OUT3	CCU80. OUT21	USIC0_ CH0.SE LO0	USIC0_ CH1.SE LO0		CCU41. OUT3		CCU40.I N3AB						USIC0_ CH0.D X2B	-	USIC0_ CH1.DX 2B		
P0.10/ XTAL1	BCCU0. OUT6	LEDTS1 .LINE2	LEDTS0 .COL5	ACMP0. OUT	CCU80. OUT22	USIC0_ CH0.SE LO1	USIC0_ CH1.SE LO1	CCU81. OUT22					CCU80.I N2AB	CCU81.I N2AB			USIC0_ CH0.D X2C	-	USIC0_ CH1.DX 2C		
P0.11/ XTAL2	BCCU0. OUT7	LEDTS1 .LINE3	LEDTS0 .COL4	USIC0_ CH0.MC LKOUT	CCU80. OUT23	USIC0_ CH0.SE LO2	USIC0_ CH1.SE LO2	CCU81. OUT23									USIC0_ CH0.D X2D	-	USIC0_ CH1.DX 2D		
P0.12	BCCU0. OUT6	LEDTS1 .LINE4	LEDTS0 .COL3	LEDTS1 .COL3	CCU80. OUT33	USIC0_ CH0.SE LO3	CCU80. OUT20		CAN.N1 _TXD	BCCU0. TRAPIN A	CCU40.I N0AA	CCU40.I N1AA	CCU40.I N2AA	CCU81.I N0AU	CCU40.I N3AA	CCU80.I N0AA	USIC0_ CH0.D X2E	CCU80.I N1AA	CCU80.I N2AA		CCU80 N3AA

ယ္ထ

Data Sheet

3.2 DC Parameters

3.2.1 Input/Output Characteristics

- Table 16 provides the characteristics of the input/output pins of the XMC1400.
- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis.

Parameter	Symbo	ol	Limit	Values	Unit	Test Conditions	
			Min.	Max.			
Output low voltage on port pins	V_{OLP}	СС	-	1.0	V	I _{OL} = 11 mA (5 V) I _{OL} = 7 mA (3.3 V)	
(with standard pads)			-	0.4	V	I _{OL} = 5 mA (5 V) I _{OL} = 3.5 mA (3.3 V)	
Output low voltage on high current pads	V_{OLP1}	СС	-	1.0	V	I_{OL} = 50 mA (5 V) I_{OL} = 25 mA (3.3 V)	
			-	0.32	V	$I_{\rm OL}$ = 10 mA (5 V)	
			-	0.4	V	$I_{\rm OL}$ = 5 mA (3.3 V)	
Output high voltage on port pins	V_{OHP}	CC	V _{DDP} - 1.0	-	V	I _{OH} = -10 mA (5 V) I _{OH} = -7 mA (3.3 V)	
(with standard pads)			V _{DDP} - 0.4	-	V	I _{OH} = -4.5 mA (5 V) I _{OH} = -2.5 mA (3.3 V)	
Output high voltage on high current pads	V_{OHP1}	CC	V _{DDP} - 0.32	_	V	I _{OH} = -6 mA (5 V)	
			V _{DDP} - 1.0	_	V	I _{OH} = -8 mA (3.3 V)	
			V _{DDP} - 0.4	_	V	I _{OH} = -4 mA (3.3 V)	
Input low voltage on port pins (Standard Hysteresis)	V _{ILPS}	SR	-	$0.19 \times V_{ m DDP}$	V	CMOS Mode (5 V, 3.3 V & 2.2 V)	
Input high voltage on port pins (Standard Hysteresis)	V _{IHPS}	SR	$0.7 \times V_{ m DDP}$	-	V	CMOS Mode (5 V, 3.3 V & 2.2 V)	

 Table 16
 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum sample rate in 8-bit mode ⁴⁾	<i>f</i> _{C8} CC	-	-	f _{ADC} / 38.5	-	1 sample pending
		-	-	f _{ADC} / 54.5	-	2 samples pending
RMS noise ⁵⁾	EN _{RMS} CC	-	1.5	-	LSB 12	DC input, SHSCFG.AREF = 00_B , GNCTRxz.GAINy = 00_B (unity gain), V_{DD} = 5.0 V, V_{AIN} = 2.5 V, 25°C
DNL error	EA _{DNL} CC	-	±2.0	-	LSB 12	
INL error	EA _{INL} CC	-	±4.0	-	LSB 12	
Gain error with external reference	EA _{GAIN} CC	-	±0.5	-	%	SHSCFG.AREF = 00_B (calibrated)
Gain error with internal reference ⁶⁾	EA _{GAIN} CC	_	±3.6	-	%	SHSCFG.AREF = 1X _B (calibrated), -40°C - 110°C
		_	±2.0	-	%	SHSCFG.AREF = 1X _B (calibrated), 0°C - 85°C
Offset error	EA _{OFF} CC	-	±8.0	-	mV	Calibrated, $V_{\rm DD}$ = 5.0 V

Table 17 ADC Characteristics (Operating Conditions apply)¹⁾ (cont'd)

1) The parameters are defined for ADC clock frequencies f_{SH} = 32 MHz for the full supply range, and f_{SH} = 48 MHz at V_{DD_int} , V_{DD_ext} = 5 V. Usage of any other frequencies may affect the ADC performance.

2) The alternate reference ground connection is separate for each converter. This mode, therefore, provides the lowest noise impact.

- 3) No pending samples assumed, excluding sampling time and calibration.
- 4) Includes synchronization and calibration (average of gain and offset calibration).
- 5) This parameter can also be defined as an SNR value: SNR[dB] = $20 \times \log(A_{MAXeff} / N_{RMS})$. With $A_{MAXeff} = 2^N / 2$, SNR[dB] = $20 \times \log (2048 / N_{RMS})$ [N = 12]. $N_{RMS} = 1.5$ LSB12, therefore, equals SNR = $20 \times \log (2048 / 1.5) = 62.7$ dB.
- 6) Includes error from the reference voltage.

3.2.4 Analog Comparator Characteristics

Table 19 below shows the Analog Comparator characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 19	Analog Comparator Characteristics (Operating Conditions apply)
----------	--

Parameter	Symbol		Li	mit Val	ues	Unit	Notes/ Test Conditions	
			Min.	Тур.	Max.			
Input Voltage	V _{CMP}	SR	-0.05	-	V _{DDP} + 0.05	V		
Input Offset	V _{CMPOFF}	CC	-	+/-3	-	mV	High power mode $\Delta V_{\rm CMP}$ < 200 mV	
Propagation Delay ¹⁾	t _{PDELAY}	СС	-	25	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 100 mV	
			-	80	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 25 mV	
			-	250	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 100 mV	
			-	700	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 25 mV	
Current Consumption	I _{ACMP}	CC	-	100	-	μA	First active ACMP in high power mode, $\Delta V_{\rm CMP}$ > 30 mV	
			-	66	-	μA	Each additional ACMP in high power mode, $\Delta V_{\rm CMP}$ > 30 mV	
			-	10	-	μΑ	First active ACMP in low power mode	
			-	6	-	μΑ	Each additional ACMP in low power mode	
Input Hysteresis	$V_{\rm HYS}$	CC	-	+/-15	-	mV		
Filter Delay ¹⁾	t _{FDELAY}	CC	-	5	-	ns		

56

1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.

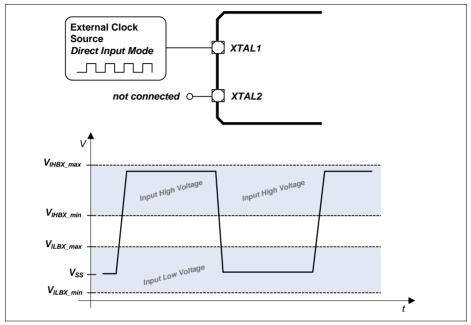


Figure 16 Oscillator in Direct Input Mode

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Input frequency	$f_{\rm OSC}$ SR	-	32.768	-	kHz	
Oscillator start-up time ¹⁾²⁾	t _{oscs} CC	-	-	5	s	
Input voltage at RTC_XTAL1	$V_{\rm IX}$ SR	-0.3	-	1.5	V	
Input amplitude (peak- to-peak) at RTC_XTAL1 ²⁾³⁾	$V_{PPX}SR$	0.2	-	1.2	V	

Table 22 RTC_XTAL Parameters

 t_{OSCS} is defined from the moment the oscillator is enabled by the user with SCU_ANAOSCLPCTRL.MODE until the oscillations reach an amplitude at RTC_XTAL1 of 0.9 * V_{PPX}.

 The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.

3) If the shaper unit is enabled and not bypassed.

Figure 18 shows typical graphs for sleep mode current for $V_{DDP} = 5 \text{ V}$, $V_{DDP} = 3.3 \text{ V}$, $V_{DDP} = 1.8 \text{ V}$ across different clock frequencies.

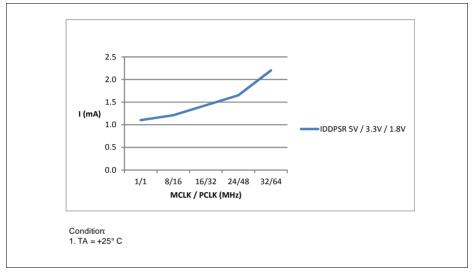


Figure 18 Sleep mode, peripherals clocks disabled, Flash powered down: Supply current I_{DDPSD} over supply voltage V_{DDP} for different clock frequencies

- 10) Active current is measured with: module enabled, MCLK=48 MHz, time-out mode; WLB = 0, WUB = 0x00008000; WDT serviced every 1 s
- 11) Active current is measured with: module enabled, MCLK=48 MHz, Periodic interrupt enabled
- 12) Active current is measured with: module enabled, MCLK=48 MHz, running at 20 MHz baudrate generator, 1 node activated, 1 transmit and 1 receive object active.

3.3.3 On-Chip Oscillator Characteristics

Table 27 provides the characteristics of the 96 MHz digital controlled oscillator DCO1.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Lin	nit Va	ues	Unit	Test Conditions
			Min.	Тур	Max.		
Nominal frequency	f _{nom}	CC	-	96	-	MHz	under nominal conditions ¹⁾ after trimming
Accuracy with adjustment based on XTAL as reference	$\Delta f_{\rm LTX}$	СС	-0.3	-	0.3	%	with respect to f_{NOM} (typ), over temperature (-40 °C to 105 °C)
Accuracy	$\Delta f_{\rm LT}$	СС	-1.7	-	3.4	%	with respect to f_{NOM} (typ), over temperature (0 °C to 85 °C)
			-3.9	-	4.0	%	with respect to $f_{\rm NOM}$ (typ), over temperature (-40 °C to 105 °C)

Table 27 96 MHz DCO1 Characteristics (Operating Conditions apply)

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

Table 28 provides the characteristics of the 32 kHz digital controlled oscillator DCO2.

				•				
Parameter	Symbo	Ы	Lin	nit Valu	ies	Unit	Test Conditions	
			Min.	Тур.	Max.			
Nominal frequency	f _{NOM} C	CC	-	32.75	-	kHz	under nominal conditions ¹⁾ after trimming	
Accuracy	Δf _{LT} C	CC	-1.7	-	3.4	%	with respect to f_{NOM} (typ), over temperature (0 °C to 85 °C)	
			-3.9	-	4.0	%	with respect to f_{NOM} (typ), over temperature (-40 °C to 105 °C) ¹⁾	

Table 28 32 kHz DCO2 Characteristics (Operating Conditions apply)

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample Freq.	Sampling Factor	•	Sample Clocks 1 _B	Effective Decision Time ¹⁾	Remark			
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option $(0.81 \ \mu s)$ for the effective decision time is less robust.			

Table 30	Optimum	Number	of Sample	Clocks for SPD
	opunium	Number	or oumpic	

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

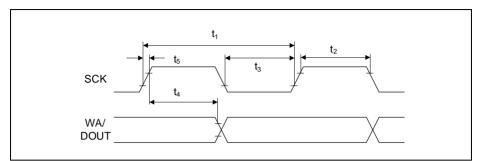
3.3.6.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 33	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Typ. Max.		Test Condition	
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\sf b}{\sf SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.


Table 34 USIC IIC Fast Mode Timing¹⁾

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	100	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

2) C_b refers to the total capacitance of one bus line in pF.

Figure 27	USIC IIS Master	Transmitter Timing	1
-----------	-----------------	--------------------	---

Parameter	Symbol	Values			Unit	Note /
		Min. Typ.		Max.		Test Condition
Clock period	t ₆ SR	4/f _{MCLK}	-	-	ns	
Clock HIGH	t ₇ SR	0.35 x t _{6min}	-	-	ns	
Clock Low	t ₈ SR	0.35 x t _{6min}	-	-	ns	
Set-up time	t ₉ SR	0.3 x t _{6min}	-	-	ns	
Hold time	t ₁₀ SR	15	-	-	ns	

Table 36 USIC IIS Slave Receiver 1	Timing
------------------------------------	--------

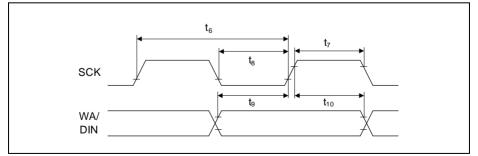


Figure 28 USIC IIS Slave Receiver Timing