

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	48
Program Memory Size	200KB (200K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-64-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1402q064x0200aaxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

CPU subsystem

- 32-bit ARM Cortex-M0 CPU Core
 - 0.84 DMIPS/MHz (Dhrystone 2.1) at 48 MHz
- Nested Vectored Interrupt Controller
- 64 interrupt nodes
- MATH coprocessor
 - 24-bit trigonometric calculation (CORDIC)
 - 32-bit divide operation
- 2x4 channels ERU for event interconnections

On-Chip Memories

- 8 Kbyte ROM
- 16 Kbyte SRAM (with parity)
- up to 200 Kbyte Flash (with ECC)

Supply, Reset and Clock

- 1.8 V to 5.5 V supply with power on reset and brownout detector
- On-chip clock monitor
- External crystal oscillator support (32 kHz and 4 to 20 MHz)
- Internal slow and fast oscillators without the need of PLL

System Control

- · Window watchdog
- Real time clock module
- Pseudo random number generator

Communication Peripherals

- Four USIC channels, usable as
 - UART (up to 12 Mb/s)
 - single-SPI (up to 12 Mb/s)
 - double-SPI (up to 2 × 12 Mb/s)
 - quad-SPI (up to 4 × 12 Mb/s)
 - IIC (up to 400 kb/s)
 - IIS (up to 12 Mb/s)
 - LIN interfaces (20kb/s)
- LEDTS in Human-Machine interface
 - up to 24 touch pads
 - drive up to 144 LEDs
- MultiCAN+, Full-CAN/Basic-CAN with 2 nodes, 32 message objects (up to 1 MBaud)

Analog Frontend Peripherals

- A/D Converters (up to 12 analog inputs)
 2 sample and hold stages
 - fast 12-bit ADC (up to 1.1 MS/s), adjustable gain
 - 0 V to 5.5 V input range
- Up to 8 channels out of range comparators
- Up to 4 fast analog comparators
- Temperature Sensor

Industrial Control Peripherals

- 2x4 16-bit 96 MHz CCU4 timers for signal monitoring and PWM
- 2x4 16-bit 96 MHz CCU8 timers for complex PWM, complementary high/low side switches and multi phase control
- 2x POSIF for hall and quadrature encoders, motor positioning
- 9 channel BCCU (brightness and color control) for LED lighting applications

Up to 56 Input/Output Ports

- 1.8 V to 5.5 V capable
- up to 8 high current pads (50 mA sink)

On-Chip Debug Support

- 4 breakpoints, 2 watchpoints
- ARM serial wire debug, single-pin debug interfaces

Programming Support

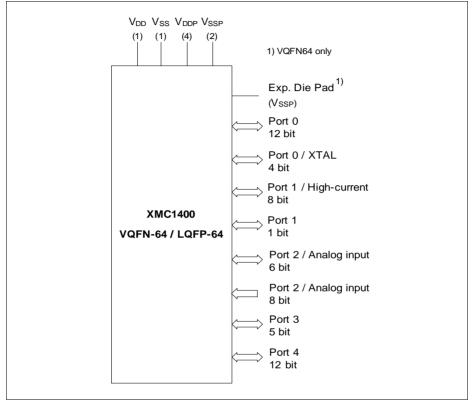
- Single-pin bootloader
- Secure bootstrap loader SBSL (optional)

Packages

- TSSOP-38 (9.7 × 6.4 mm²)
- VQFN-40/48/64 (5×5/7×7/8×8 mm²)
- LQFP-64 (12 × 12 mm²)

Tools

• Free DAVE[™] toolchain with low level drivers and apps



Derivative	Value	Marking
XMC1403-Q064X0200	00014093 07CF00FF 1E071FF7 00B00000 00000D00 00001000 00033000 10204083 _H	AA
XMC1404-Q048X0064	00014083 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00011000 10204083 _H	AA
XMC1404-Q048X0128	00014083 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00021000 10204083 _H	AA
XMC1404-Q048X0200	00014083 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00033000 10204083 _H	AA
XMC1404-Q064X0064	00014093 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00011000 10204083 _H	AA
XMC1404-Q064X0128	00014093 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00021000 10204083 _H	AA
XMC1404-Q064X0200	00014093 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00033000 10204083 _H	AA
XMC1404-F064X0064	000140A3 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00011000 10204083 _H	AA
XMC1404-F064X0128	000140A3 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00021000 10204083 _H	AA
XMC1404-F064X0200	000140A3 07FF00FF 1E071FF7 30BFF00F 00000D00 00001000 00033000 10204083 _H	AA

Table 3 XMC1400 Chip Identification Number (cont'd)

General Device Information

Figure 5 XMC1400 Logic Symbol for PG-LQFP-64-26 / PG-VQFN-64-6

General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

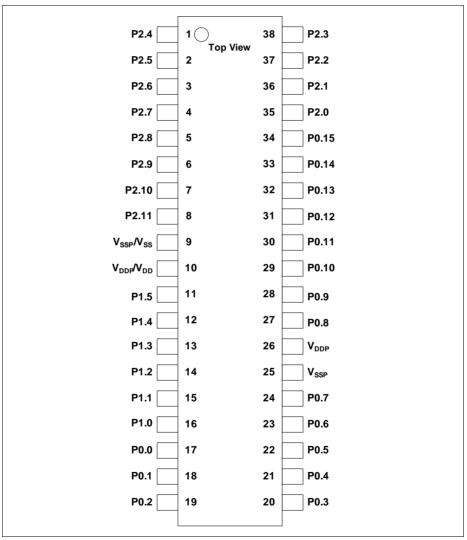


Figure 6 XMC1400 PG-TSSOP-38-9 Pin Configuration (top view)

22

XMC1400 AA-Step XMC1000 Family

General Device Information

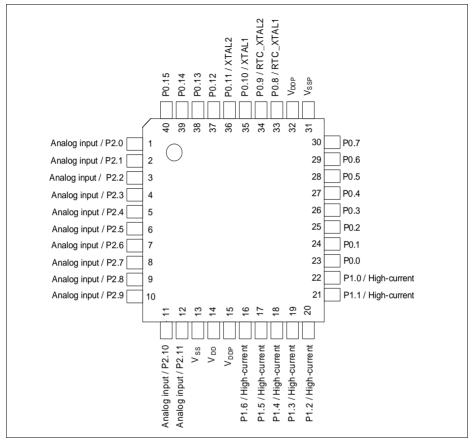


Figure 7 XMC1400 PG-VQFN-40-17 Pin Configuration (top view)

 Table 9
 Port I/O Functions (cont'd)

ata	
She	
eet	

Function	ion Outputs				Inputs																
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8	ALT9	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P4.10					CCU80. OUT00							CCU41.I N2BA		CCU81.I N3AB			· ·	USIC1_ CH1.DX 5A			
P4.11					CCU80. OUT01			CCU81. OUT33			CCU40.I N3AV	CCU41.I N3BA					CH0.D	USIC1_ CH1.DX 3A			

Infineon

Table 10 Hardware I/O Controlled Functions

Function	Outputs	Outputs	Inputs	Inputs	Pull Control	Pull Control	Pull Control	Pull Contro
	HWO0	HWO1	HWI0	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU
P1.3		USIC0_CH0.DOUT3		USIC0_CH0.HWIN3	BCCU0.OUT5	BCCU0.OUT5		
P1.4					BCCU0.OUT6	BCCU0.OUT6		
P1.5					BCCU0.OUT7	BCCU0.OUT7		
P1.6					BCCU0.OUT8	BCCU0.OUT8		
P1.7								
P1.8								
P2.0					BCCU0.OUT1	BCCU0.OUT1		
P2.1					BCCU0.OUT6	BCCU0.OUT6		
P2.2					BCCU0.OUT0	BCCU0.OUT0	CCU40.OUT3	CCU40.OUT3
P2.3					ACMP2.OUT	ACMP2.OUT		
P2.4					BCCU0.OUT8	BCCU0.OUT8		
P2.5					ACMP1.OUT	ACMP1.OUT		
P2.6					BCCU0.OUT2	BCCU0.OUT2	CCU40.OUT3	CCU40.OUT3
P2.7					BCCU0.OUT8	BCCU0.OUT8	CCU40.OUT3	CCU40.OUT3
P2.8					BCCU0.OUT1	BCCU0.OUT1	CCU40.OUT2	CCU40.OUT2
P2.9					BCCU0.OUT7	BCCU0.OUT7	CCU40.OUT2	CCU40.OUT2
P2.10					BCCU0.OUT4	BCCU0.OUT4		
P2.11					BCCU0.OUT5	BCCU0.OUT5		
P2.12					BCCU0.OUT3	BCCU0.OUT3	CCU41.OUT0	CCU41.OUT0
P2.13					BCCU0.OUT4	BCCU0.OUT4	CCU41.OUT2	CCU41.OUT2
P3.0								
P3.1		USIC1_CH0.DOUT3		USIC1_CH0.HWIN3				
P3.2		USIC1_CH0.DOUT2		USIC1_CH0.HWIN2				
P3.3		USIC1_CH0.DOUT1		USIC1_CH0.HWIN1				
P3.4		USIC1_CH0.DOUT0		USIC1_CH0.HWIN0				
P4.0								
P4.1								
P4.2								
P4.3								

XMC1400 AA-Step XMC1000 Family

Data Sheet

Table 10 Hardware I/O Controlled Functions

Function	Outputs	Outputs	Inputs	Inputs	Pull Control	Pull Control	Pull Control	Pull Control	
	HWO0	HWO1	HWIO	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU	
P4.4	LEDTS2. EXTENDED0		LEDTS2.TSIN0	LEDTS2.TSIN0	Reserved for LEDTS Scheme A:	Reserved for LEDTS Scheme A:		Scheme B: pull-down disabled, an	
P4.5	LEDTS2. EXTENDED1		LEDTS2.TSIN1	LEDTS2.TSIN1	pull-down disabled always	pull-down enabled always	vice versa		
P4.6	LEDTS2. EXTENDED2		LEDTS2.TSIN2	LEDTS2.TSIN2					
P4.7	LEDTS2. EXTENDED3		LEDTS2.TSIN3	LEDTS2.TSIN3					
P4.8	LEDTS2. EXTENDED4		LEDTS2.TSIN4	LEDTS2.TSIN4					
P4.9	LEDTS2. EXTENDED5		LEDTS2.TSIN5	LEDTS2.TSIN5					
P4.10	LEDTS2. EXTENDED6		LEDTS2.TSIN6	LEDTS2.TSIN6					
P4.11	LEDTS2. EXTENDED7		LEDTS2.TSIN7	LEDTS2.TSIN7					

Infineon

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symb	Symbol		Va	lues	Unit	Note /
			Min	Тур.	Max.		Test Cond ition
Junction temperature	T_{J}	SR	-40	-	115	°C	-
Storage temperature	$T_{\rm ST}$	SR	-40	-	125	°C	-
Voltage on power supply pin with respect to $V_{\rm SSP}$	V_{DDP}	SR	-0.3	-	6	V	-
Voltage on digital pins with respect to $V_{\rm SSP}^{1)}$	$V_{\rm IN}$	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Voltage on P2 pins with respect to $V_{\rm SSP}^{2)}$	$V_{\rm INP2}$	SR	-0.3	-	V _{DDP} + 0.3	V	-
Voltage on analog input pins with respect to $V_{\rm SSP}$	V_{AIN} V_{AREF}	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower
Input current on any pin during overload condition	I _{IN}	SR	-10	-	10	mA	-
Absolute maximum sum of all input currents during overload condition	$\Sigma I_{\rm IN}$	SR	-50	-	+50	mA	-

Table 11 Absolute Maximum Rating Parameters

1) Excluding port pins P2.[1,2,6,7,8,9,11].

2) Applicable to port pins P2.[1,2,6,7,8,9,11].

Parameter	Symbol		Values	5	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Input frequency	$f_{\rm OSC}{\rm SR}$	4	-	48	MHz	Direct Input Mode	
		4	-	20	MHz	External Crystal Mode	
Oscillator start-up time ¹⁾²⁾	t _{oscs} CC	-	-	10	ms		
Input voltage at XTAL1	$V_{\rm IX}$ SR	-0.3	-	1.5	V	External Crystal Mode	
		-0.3	-	5.5	V	Direct Input Mode	
Input amplitude (peak- to-peak) at XTAL1 ²⁾³⁾	$V_{\rm PPX}{\rm SR}$	0.6	_	1.7	V	External Crystal Mode	

Table 21 OSC_XTAL Parameters

1) t_{OSCS} is defined from the moment the oscillator is enabled wih SCU_ANAOSCHPCTRL.MODE until the oscillations reach an amplitude at XTAL1 of 0.9 * V_{PPX} .

2) The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.

3) If the shaper unit is enabled and not bypassed.

Figure 18 shows typical graphs for sleep mode current for $V_{DDP} = 5 \text{ V}$, $V_{DDP} = 3.3 \text{ V}$, $V_{DDP} = 1.8 \text{ V}$ across different clock frequencies.

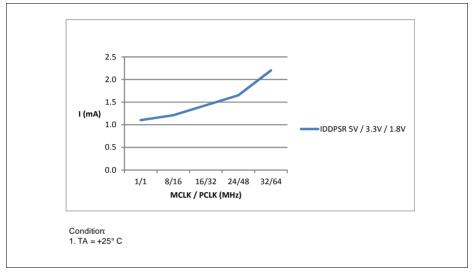


Figure 18 Sleep mode, peripherals clocks disabled, Flash powered down: Supply current I_{DDPSD} over supply voltage V_{DDP} for different clock frequencies

Table 24 provides the active current consumption of some modules operating at 5 V power supply at 25 °C. The typical values shown are used as a reference guide on the current consumption when these modules are enabled.

Active Current Consumption	Symbol	Limit Values	Unit	Test Condition
		Тур.		
Baseload current	I _{CPUDDC}	4.14	mA	Modules including Core, SCU, PORT, memories, ANATOP ¹⁾
VADC and SHS	I _{ADCDDC}	3.73	mA	Set CGATCLR0.VADC to 1 ²⁾
USICx	I _{USICODDC}	1.35	mA	Set CGATCLR0.USIC0 to 13)
CCU4x	I _{CCU40DDC}	0.99	mA	Set CGATCLR0.CCU40 to 1 ⁴⁾
CCU8x	I _{CCU80DDC}	1.00	mA	Set CGATCLR0.CCU80 to 1 ⁵⁾
POSIFx	I _{PIF0DDC}	1.05	mA	Set CGATCLR0.POSIF0 to 16)
LEDTSx	ILTSxDDC	1.14	mA	Set CGATCLR0.LEDTSx to 17)
BCCU0	I _{BCCU0DDC}	0.29	mA	Set CGATCLR0.BCCU0 to 18)
MATH	I _{MATHDDC}	0.50	mA	Set CGATCLR0.MATH to 19)
WDT	I _{WDTDDC}	0.03	mA	Set CGATCLR0.WDT to 1 ¹⁰⁾
RTC	I _{RTCDDC}	0.01	mA	Set CGATCLR0.RTC to 1 ¹¹⁾
MultiCAN	I _{MCANDDC}	1.38	mA	Set CGATCLR0.MCAN0 to 1 ¹²⁾

Table 24 Typical Active Current parameter table

1) Baseload current is measured with device running in user mode, MCLK=PCLK=48 MHz, with an endless loop in the flash memory. The clock to the modules stated in CGATSTAT0 are gated.

2) Active current is measured with: module enabled, MCLK=48 MHz, running in auto-scan conversion mode

- Active current is measured with: module enabled, each of the 2 USIC channels sending alternate messages at 57.6 kbaud every 200 ms
- 4) Active current is measured with: module enabled, MCLK=PCLK=48 MHz, 1 CCU4 slice for PWM switching at 20kHz with duty cycle varying at 10%-90%, 1 CCU4 slice in capture mode for reading period and duty cycle
- 5) Active current is measured with: module enabled, MCLK=PCLK=48 MHz, 3 CCU8 slices with PWM frequency at 20kHz and a period match interrupt used to toggle duty cycle between 10% and 90%
- 6) Active current is measured with: module enabled, MCLK=48 MHz, PCLK=96 MHz, hall sensor mode
- Active current is measured with: module enabled, MCLK=48 MHz, 1 LED column, 6 LED/TS lines, Pad Scheme A with large pad hysteresis config, time slice duration = 1.048 ms
- Active current is measured with: module enabled, MCLK=48 MHz, PCLK=96MHz, FCLK=0.8 MHz, Normal mode (BCCU clock = FCLK/4), 4 BCCU Channels with packers enabled and 1 Dimming Engine, change color or dim every 1s
- Active current is measured with: module enabled, MCLK=48 MHz, PCLK=96 MHz, tangent calculation in while loop; CORDIC circular rotation, no keep, autostart; 32-by-32 bit signed DIV, autostart, DVS right shift by 11

66

3.3.2 **Power-Up and Supply Threshold Characteristics**

 Table 26 provides the characteristics of the supply threshold in XMC1400.

The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while V_{DDP} is outside its operating range.

The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	V	/alues		Unit	Note /
		Min.	Тур.	Max.		Test Condition
$V_{\rm DDP}$ ramp-up time	t _{RAMPUP} SR	$\begin{array}{c} V_{\rm DDP} / \\ S_{\rm VDDPrise} \end{array}$	-	10 ⁷	μS	
$V_{\rm DDP}$ slew rate	S_{VDDPOP} SR	0	-	0.1	V/µs	Slope during normal operation
	$S_{\rm VDDP10}~{ m SR}$	0	-	10	V/µs	Slope during fast transient within +/- 10% of V _{DDP}
	$S_{\rm VDDPrise}~{ m SR}$	0	-	10	V/µs	Slope during power-on or restart after brownout event
	S _{VDDPfall} ¹⁾ SR	0	-	0.25	V/µs	Slope during supply falling out of the +/-10% limits ²⁾
V _{DDP} prewarning voltage	V _{DDPPW} CC	2.1	2.25	2.4	V	ANAVDEL.VDEL_ SELECT = 00 _B
		2.85	3	3.15	V	ANAVDEL.VDEL_ SELECT = 01 _B
		4.2	4.4	4.6	V	ANAVDEL.VDEL_ SELECT = 10 _B

Table 26 Power-Up and Supply Threshold Parameters (Operating Conditions apply)

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_B and 1_B is 0.75 µs. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4, the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles (0.69 µs).

Sample Freq.	Sampling Factor	•	Sample Clocks 1 _B	Effective Decision Time ¹⁾	Remark							
8 MHz	4	1 to 5	6 to 12	0.69 µs	The other closest option $(0.81 \ \mu s)$ for the effective decision time is less robust.							

Table 30	Optimum	Number	of Sample	Clocks for SPD
	opunium	Number	or oumpic	

1) Nominal sample frequency period multiplied with $0.5 + (max. number of 0_B sample clocks)$

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/- 5%
- Effective decision time is between 0.69 µs and 0.75 µs (calculated with nominal sample frequency)

3.3.6 Peripheral Timings

3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. *Note: Operating Conditions apply.*

Parameter	Symbol	Va	lues		Unit	Note / Test Condition
		Min.	Тур.	Max.		
SCLKOUT master clock period	t _{CLK} CC	4/MCLK	-	-	ns	
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	t _{CLK} /2 - 28	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	0	-	-	ns	
Data output DOUT[3:0] valid time	t ₃ CC	-28	-	28	ns	
Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge	t ₄ SR	75	-	-	ns	
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	t ₅ SR	0	-	-	ns	

Table 31 USIC SSC Master Mode Timing

Table 32 USIC SSC Slave Mode Timing

Parameter	Symbol	Va	lues		Unit	Note /
		Min.	Тур.	Max.		Test Conditio n
DX1 slave clock period	t _{CLK} SR	4/MCLK	-	_	ns	
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	16	-	_	ns	

76

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 32	USIC SSC Slave Mode Timin	na

Parameter	Symbol		Values		Unit	Note / Test Conditio n
		Min.	Тур.	Max.		
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	^t 11 SR	17	-	-	ns	
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	^t 12 SR	21	-	-	ns	
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	^t 13 SR	15	-	-	ns	
Data output DOUT[3:0] valid time	t ₁₄ CC	-	-	71	ns	

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

3.3.6.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 33	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\sf b}{\sf SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Table 34 USIC IIC Fast Mode Timing¹⁾

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	100	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

2) C_b refers to the total capacitance of one bus line in pF.

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OI}} \times I_{\text{OI}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

www.infineon.com

Published by Infineon Technologies AG