

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, LED, POR, PWM, WDT
Number of I/O	48
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-64-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1404q064x0064aaxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM[®], ARM Powered[®], Cortex[®], Thumb[®] and AMBA[®] are registered trademarks of ARM, Limited.

CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Features

CPU subsystem

- 32-bit ARM Cortex-M0 CPU Core
 - 0.84 DMIPS/MHz (Dhrystone 2.1) at 48 MHz
- Nested Vectored Interrupt Controller
- 64 interrupt nodes
- MATH coprocessor
 - 24-bit trigonometric calculation (CORDIC)
 - 32-bit divide operation
- 2x4 channels ERU for event interconnections

On-Chip Memories

- 8 Kbyte ROM
- 16 Kbyte SRAM (with parity)
- up to 200 Kbyte Flash (with ECC)

Supply, Reset and Clock

- 1.8 V to 5.5 V supply with power on reset and brownout detector
- On-chip clock monitor
- External crystal oscillator support (32 kHz and 4 to 20 MHz)
- Internal slow and fast oscillators without the need of PLL

System Control

- · Window watchdog
- Real time clock module
- Pseudo random number generator

Communication Peripherals

- Four USIC channels, usable as
 - UART (up to 12 Mb/s)
 - single-SPI (up to 12 Mb/s)
 - double-SPI (up to 2 × 12 Mb/s)
 - quad-SPI (up to 4 × 12 Mb/s)
 - IIC (up to 400 kb/s)
 - IIS (up to 12 Mb/s)
 - LIN interfaces (20kb/s)
- LEDTS in Human-Machine interface
 - up to 24 touch pads
 - drive up to 144 LEDs
- MultiCAN+, Full-CAN/Basic-CAN with 2 nodes, 32 message objects (up to 1 MBaud)

Analog Frontend Peripherals

- A/D Converters (up to 12 analog inputs)
 2 sample and hold stages
 - fast 12-bit ADC (up to 1.1 MS/s), adjustable gain
 - 0 V to 5.5 V input range
- Up to 8 channels out of range comparators
- Up to 4 fast analog comparators
- Temperature Sensor

Industrial Control Peripherals

- 2x4 16-bit 96 MHz CCU4 timers for signal monitoring and PWM
- 2x4 16-bit 96 MHz CCU8 timers for complex PWM, complementary high/low side switches and multi phase control
- 2x POSIF for hall and quadrature encoders, motor positioning
- 9 channel BCCU (brightness and color control) for LED lighting applications

Up to 56 Input/Output Ports

- 1.8 V to 5.5 V capable
- up to 8 high current pads (50 mA sink)

On-Chip Debug Support

- 4 breakpoints, 2 watchpoints
- ARM serial wire debug, single-pin debug interfaces

Programming Support

- Single-pin bootloader
- Secure bootstrap loader SBSL (optional)

Packages

- TSSOP-38 (9.7 × 6.4 mm²)
- VQFN-40/48/64 (5×5/7×7/8×8 mm²)
- LQFP-64 (12 × 12 mm²)

Tools

• Free DAVE[™] toolchain with low level drivers and apps

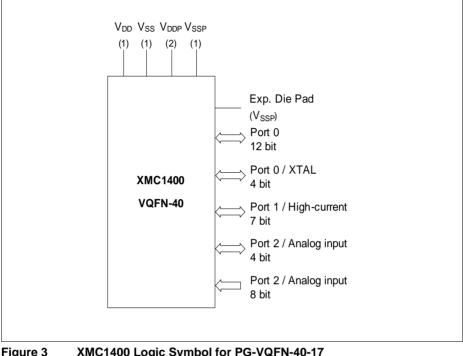


Figure 3 XMC1400 Logic Symbol for PG-VQFN-40-17

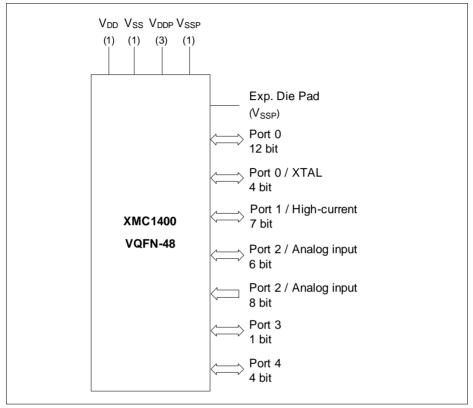


Figure 4 XMC1400 Logic Symbol for PG-VQFN-48-73

2.2.1 Package Pin Summary

The following general building block is used to describe each pin:

Table 4 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type
Px.y	Ν	Ν	Pad Class

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type:

- STD_INOUT (standard bi-directional pads)
- STD_INOUT/AN (standard bi-directional pads with analog input)
- STD_INOUT/clock (standard bi-directional pads with oscillator function)
- High Current (high current bi-directional pads)
- STD_IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameter chapter.

Function	LQFP 64, VQFN 64	VQFN 48	VQFN 40	TSSOP 38	Pad Type	Notes
P0.0	41	29	23	17	STD_INOUT	
P0.1	42	30	24	18	STD_INOUT	
P0.2	43	31	25	19	STD_INOUT	
P0.3	44	32	26	20	STD_INOUT	
P0.4	45	33	27	21	STD_INOUT	
P0.5	46	34	28	22	STD_INOUT	
P0.6	47	35	29	23	STD_INOUT	
P0.7	48	36	30	24	STD_INOUT	
P0.8/ RTC_ XTAL1	51	39	33	27	STD_INOUT /clock_IN	

Table 5Package Pin Mapping

General Device Information

Table 5	Packa	ge Pin Ma	apping (c	ont'd)		
Function	LQFP 64, VQFN 64	VQFN 48	VQFN 40	TSSOP 38	Pad Type	Notes
VDD	24	18	14	10	Power	Supply VDD, ADC reference voltage/ ORC reference voltage
VDDP	25	19	15	10	Power	When VDD is supplied, VDDP has to be supplied with the same voltage.
VDDP	2	-	-	-	Power	I/O port supply
VDDP	35	27	-	-	Power	I/O port supply
VDDP	50	38	32	26	Power	I/O port supply
VSSP	1	-	-	-	Power	I/O port ground
VSSP	49	37	31	25	Power	I/O port ground
VSSP	Exp. Pad (in VQFN 64 only)	Exp. Pad	Exp. Pad	-	Power	Exposed Die PadThe exposed diepad is connectedinternally to VSSP.For properoperation, it ismandatory toconnect theexposed pad tothe board ground.For thermalaspects, pleaserefer to thePackage andReliability chapter.

2.2.2 Port Pin for Boot Modes

Port functions can be overruled by the boot mode selected. The type of boot mode is selected via BMI. Table 6 shows the port pins used for the various boot modes.

Pin	Boot	Boot Description						
P0.13	CS(O)	SSC BSL mode						
P0.14	SWDIO_0	Debug mode (SWD)						
	SPD_0	Debug mode (SPD)						
	RX/TX	ASC BSL half-duplex mode						
	RX	ASC BSL full-duplex mode						
	RX	CAN BSL mode						
	SCLK(O)	SSC BSL mode						
P0.15	SWDCLK_0	Debug mode (SWD)						
	ТХ	ASC BSL full-duplex mode						
	TX	CAN BSL mode						
	DATA(I/O)	SSC BSL mode						
P1.2	SWDCLK_1	Debug mode (SWD)						
	ТХ	ASC BSL full-duplex mode						
	TX	CAN BSL mode						
P1.3	SWDIO_1	Debug mode (SWD)						
	SPD_1	Debug mode (SPD)						
	RX/TX	ASC BSL half-duplex mode						
	RX	ASC BSL full-duplex mode						
	RX	CAN BSL mode						
P4.6	HWCON0	Boot Pins						
P4.7	HWCON1	(Boot from pins mode must be selected)						

 Table 6
 Port Pin for Boot Modes

Table 9	Port I/O Functions (cont'd)

Table	9		Port	l/O Fur	nctions	s (con	ťd)															
Function	n					Outputs					Inputs											
	A	LT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	ALT8	ALT9	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P2.2											ACMP2.I NN	VADC0. G0CH7		ORC0.AI N	USIC1_ CH0.DX 5E		USIC0_ CH0.DX 3A	USIC0_ CH0.D X4A	USIC0_ CH1.DX 5A			ERU0. B1
P2.3													VADC0. G1CH5	ORC1.AI N	USIC1_ CH0.DX 3E	USIC1_ CH0.DX 4E	USIC1_ CH1.DX 5C	USIC0_ CH0.D X5B	USIC0_ CH1.DX 3C	USIC0_ CH1.DX 4C		ERU0. B1
P2.4													VADC0. G1CH6	ORC2.AI N	USIC1_ CH1.DX 3C	USIC1_ CH1.DX 4C	USIC0_ CH0.DX 3B	USIC0_ CH0.D X4B	USIC1_ CH0.DX 5F	USIC0_ CH1.DX 5B		ERU0 A1
P2.5													VADC0. G1CH7		USIC1_ CH1.DX 5D		USIC0_ CH0.DX 5D		USIC0_ CH1.DX 3E	USIC0_ CH1.DX 4E		ERU0. A1
P2.6											ACMP1.I NN	VADC0. G0CH0		ORC4.AI N	USIC1_ CH1.DX 3E	USIC1_ CH1.DX 4E	USIC0_ CH0.DX 3E	USIC0_ CH0.D X4E	USIC0_ CH1.DX 5D			ERU0 A1
P2.7											ACMP1.I NP		VADC0. G1CH1		USIC1_ CH1.DX 5E		USIC0_ CH0.DX 5C		USIC0_ CH1.DX 3D	USIC0_ CH1.DX 4D		ERU0. A1
P2.8											ACMP0.I NN	VADC0. G0CH1	VADC0. G1CH0	ORC6.AI N			USIC0_ CH0.DX 3D	USIC0_ CH0.D X4D	USIC0_ CH1.DX 5C			ERU0 B1
P2.9											ACMP0.I NP		VADC0. G1CH4	ORC7.AI N			USIC0_ CH0.DX 5A		USIC0_ CH1.DX 3B	USIC0_ CH1.DX 4B		ERU0. B0
P2.10			CCU40. OUT2	ERU0.G OUT1	LEDTS1 .COL4	CCU80. OUT30	ACMP0. OUT	USIC0_ CH1.DO UT0		CAN.N1 _TXD		VADC0. G0CH3	VADC0. G1CH2				USIC0_ CH0.DX 3C	USIC0_ CH0.D X4C	USIC0_ CH1.DX 0F		CAN.N1 _RXDE	ERU0 B0
P2.11			CCU40. OUT3	ERU0.G OUT0	LEDTS1 .COL3	CCU80. OUT31	USIC0_ CH1.SC LKOUT	USIC0_ CH1.DO UT0		CAN.N1 _TXD	ACMP.R EF	VADC0. G0CH4	VADC0. G1CH3						USIC0_ CH1.DX 0E	USIC0_ CH1.DX 1E	CAN.N1 _RXDF	ERU0 B1
P2.12		SCCU0. DUT3	VADC0. EMUX00	USIC1_ CH0.SC LKOUT	USIC1_ CH1.SC LKOUT		ACMP2. OUT	USIC1_ CH1.DO UT0	LEDTS2 .COL6		ACMP3.I NN						USIC1_ CH0.DX 3A	USIC1_ CH0.D X4A	USIC1_ CH1.DX 0C	USIC1_ CH1.DX 1B		ERU1 A2
P2.13			CCU40. OUT3	USIC1_ CH0.MC LKOUT	CCU81. OUT31		VADC0. EMUX01	USIC1_ CH1.DO UT0	CCU81. OUT33	CCU41. OUT3	ACMP3.I NP						USIC1_ CH0.DX 5A		USIC1_ CH1.DX 0D			ERU1 A3
P3.0		SCCU0. DUTO	USIC1_ CH1.DO UT0	USIC1_ CH1.SC LKOUT	LEDTS2 .COLA	CCU80. OUT21	ACMP1. OUT	USIC1_ CH0.SE LO1	CCU81. OUT21	CCU41. OUT0	BCCU0. TRAPIN C		CCU41.I N1AA	CCU41.I N2AA	CCU41.I N3AA	CCU81.I N0AA	CCU81.I N1AA	CCU81. IN2AA	USIC1_ CH1.DX 0E	USIC1_ CH1.DX 1D	CCU81.I N3AA	ERU1 A1
P3.1			USIC1_ CH1.DO UT0		LEDTS2 .COL0	CCU80. OUT20	ACMP3. OUT	USIC1_ CH0.SE LO0	CCU81. OUT20	CCU41. OUT1								USIC1_ CH0.D X2F	USIC1_ CH1.DX 0F			ERU1 A1

Infineon

XMC1400 AA-Step XMC1000 Family

V1.3, 2016-10 Subject to Agreement on the Use of Product Information

Function	Outputs	Outputs	Inputs	Inputs	Pull Control	Pull Control	Pull Control	Pull Control		
	HWO0	HWO1	HWIO	HWI1	HW0_PD	HW0_PU	HW1_PD	HW1_PU		
P0.0	LEDTS0. EXTENDED7		LEDTS0.TSIN7	LEDTS0.TSIN7	Reserved for LEDTS Scheme A:	Reserved for LEDTS Scheme A:	pull-up enabled and	eserved for LEDTS Scheme B: ull-up enabled and pull-down disabled, and		
P0.1	LEDTS0. EXTENDED6		LEDTS0.TSIN6	LEDTS0.TSIN6	pull-down disabled always	pull-down enabled always	vice versa			
P0.2	LEDTS0. EXTENDED5		LEDTS0.TSIN5	LEDTS0.TSIN5						
P0.3	LEDTS0. EXTENDED4		LEDTS0.TSIN4	LEDTS0.TSIN4						
P0.4	LEDTS0. EXTENDED3		LEDTS0.TSIN3	LEDTS0.TSIN3						
P0.5	LEDTS0. EXTENDED2		LEDTS0.TSIN2	LEDTS0.TSIN2						
P0.6	LEDTS0. EXTENDED1		LEDTS0.TSIN1	LEDTS0.TSIN1						
P0.7	LEDTS0. EXTENDED0		LEDTS0.TSIN0	LEDTS0.TSIN0						
P0.8	LEDTS1. EXTENDED0		LEDTS1.TSIN0	LEDTS1.TSIN0						
P0.9	LEDTS1. EXTENDED1		LEDTS1.TSIN1	LEDTS1.TSIN1						
P0.10	LEDTS1. EXTENDED2		LEDTS1.TSIN2	LEDTS1.TSIN2						
P0.11	LEDTS1. EXTENDED3		LEDTS1.TSIN3	LEDTS1.TSIN3						
P0.12	LEDTS1. EXTENDED4		LEDTS1.TSIN4	LEDTS1.TSIN4						
P0.13	LEDTS1. EXTENDED5		LEDTS1.TSIN5	LEDTS1.TSIN5	1					
P0.14	LEDTS1. EXTENDED6		LEDTS1.TSIN6	LEDTS1.TSIN6	1					
P0.15	LEDTS1. EXTENDED7			LEDTS1.TSIN7	1					
P1.0		USIC0_CH0.DOUT0		USIC0_CH0.HWIN0	BCCU0.OUT2	BCCU0.OUT2				
P1.1		USIC0_CH0.DOUT1		USIC0_CH0.HWIN1	BCCU0.OUT3	BCCU0.OUT3				
P1.2		USIC0 CH0.DOUT2		USIC0 CH0.HWIN2	BCCU0.OUT4	BCCU0.OUT4				

XMC1400 AA-Step XMC1000 Family

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 12 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Sym	bol		Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA	
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	-	-	25	mA	

Table 12 Overload Parameters

Figure 11 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

3.2.2 Analog to Digital Converters (ADC)

Table 17 shows the Analog to Digital Converter (ADC) characteristics.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply voltage range (internal reference)	V _{DD_int} SR	2.0	-	3.0	V	SHSCFG.AREF = 11_B ; CALCTR.CALGNSTC = $0C_H$ for f_{SH} = 32 MHz, 12_H for f_{SH} = 48 MHz	
		3.0	-	5.5	V	SHSCFG.AREF = 10_B	
Supply voltage range (external reference)	$V_{\rm DD_ext}$ SR	3.0	-	5.5	V	SHSCFG.AREF = 00 _B	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Auxiliary analog reference ground ²⁾	V_{REFGND} SR	V _{SSP} - 0.05	-	1.0	V	G0CH0	
		V _{SSP} - 0.05	-	0.2	V	G1CH0	
Internal reference voltage (full scale value)	V _{REFINT} CC		5		V		
Switched capacitance of an	C _{AINS} CC	-	1.2	2	pF	GNCTRxz.GAINy = 00 _B (unity gain)	
analog input		-	1.2	2	pF	GNCTRxz.GAINy = 01 _B (gain g1)	
		-	4.5	6	pF	GNCTRxz.GAINy = 10 _B (gain g2)	
		-	4.5	6	pF	GNCTRxz.GAINy = 11 _B (gain g3)	
Total capacitance of an analog input	C_{AINT} CC	-	-	10	pF		
Total capacitance of the reference input	C_{AREFT} CC	-	-	10	pF		

Table 17 ADC Characteristics (Operating Conditions apply)¹⁾

3.2.3 Out of Range Comparator (ORC) Characteristics

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above V_{DDP} on selected input pins (ORCx.AIN) and generates a service request trigger (ORCx.OUT).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol			Values	S	Unit	Note / Test Condition	
			Min.	Тур.	Max.			
DC Switching Level	V_{ODC}	СС	-	-	180	mV	$V_{\text{AIN}} \ge V_{\text{DDP}} + V_{\text{ODC}}$	
Hysteresis	$V_{\rm OHYS}$	CC	15	-	54	mV		
Always detected	t _{OPDD}	CC	103	-	-	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 150 mV	
Overvoltage Pulse			88	-	-	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Never detected	t _{OPDN}	CC	-	-	21	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 150 mV	
Overvoltage Pulse			-	-	11	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Detection Delay	t _{ODD}	CC	39	-	132	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 150 mV	
			31	-	121	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Release Delay	t _{ORD}	СС	44	-	240	ns	$V_{\text{AIN}} \leq V_{\text{DDP}}; V_{\text{DDP}} = 5 \text{ V}$	
			57	-	340	ns	$V_{\text{AIN}} \le V_{\text{DDP}}; V_{\text{DDP}} = 3.3$ V	
Enable Delay	t _{OED}	CC	-	-	300	ns	ORCCTRL.ENORCx = 1	

Table 18Out of Range Comparator (ORC) Characteristics (Operating
Conditions apply; V_{DDP} = 3.0 V - 5.5 V; C₁ = 0.25pF)

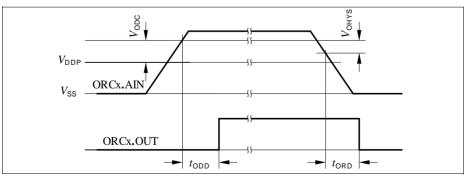


Figure 13 ORCx.OUT Trigger Generation

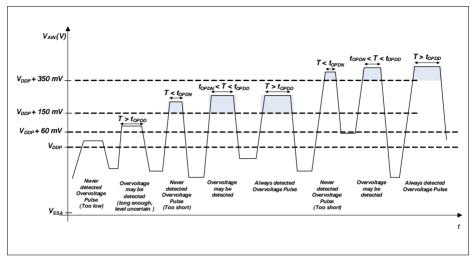


Figure 14 ORC Detection Ranges

Figure 17 shows typical graphs for active mode supply current for $V_{DDP} = 5 \text{ V}$, $V_{DDP} = 3.3 \text{ V}$, $V_{DDP} = 1.8 \text{ V}$ across different clock frequencies.

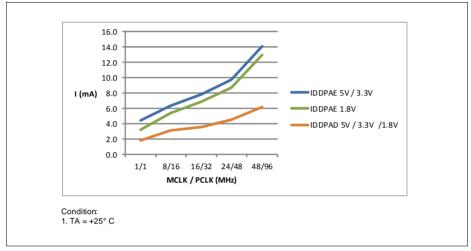


Figure 17 Active mode, a) peripherals clocks enabled, b) peripherals clocks disabled: Supply current I_{DDPA} over supply voltage V_{DDP} for different clock frequencies

3.2.8 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	s	Unit	Note /
		Min.	Тур.	Max.	-	Test Condition
Erase time per page / sector	t _{ERASE} CC	6.8	7.1	7.6	ms	
Program time per block	t _{PSER} CC	102	152	204	μS	
Wake-Up time	t _{WU} CC	_	32.2	-	μs	
Read time per word	t _a CC	_	50	-	ns	
Data Retention Time	t _{RET} CC	10	-	-	years	Max. 100 erase / program cycles
Flash Wait States 1)	N _{WSFLASH} CC	0	0	0		$f_{\rm MCLK} = 8 \rm MHz$
		0	1	1		$f_{\rm MCLK} = 16 \rm MHz$
		1	2	2		$f_{\rm MCLK} = 32 \rm MHz$
		2	2	3		$f_{\rm MCLK} = 48 \ {\rm MHz}$
Erase Cycles	N _{ECYC} CC	_	-	5*10 ⁴	cycles	Sum of page and sector erase cycles
Total Erase Cycles	N _{TECYC} CC	_	-	2*10 ⁶	cycles	

Table 25 Flash Memory Parameters

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program.

3.3.2 **Power-Up and Supply Threshold Characteristics**

 Table 26 provides the characteristics of the supply threshold in XMC1400.

The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while V_{DDP} is outside its operating range.

The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
$V_{\rm DDP}$ ramp-up time	<i>t</i> _{RAMPUP} SR	$\begin{array}{c} V_{\rm DDP} / \\ S_{\rm VDDPrise} \end{array}$	-	10 ⁷	μS	
$V_{\rm DDP}$ slew rate	$S_{\rm VDDPOP} {\rm SR}$	0	-	0.1	V/µs	Slope during normal operation
	$S_{\rm VDDP10}~{ m SR}$	0	-	10	V/µs	Slope during fast transient within +/- 10% of V _{DDP}
	$S_{\rm VDDPrise}~{ m SR}$	0	-	10	V/µs	Slope during power-on or restart after brownout event
	S _{VDDPfall} ¹⁾ SR	0	-	0.25	V/µs	Slope during supply falling out of the +/-10% limits ²⁾
$V_{\rm DDP}$ prewarning voltage	V _{DDPPW} CC	2.1	2.25	2.4	V	ANAVDEL.VDEL_ SELECT = 00 _B
		2.85	3	3.15	V	ANAVDEL.VDEL_ SELECT = 01 _B
		4.2	4.4	4.6	V	ANAVDEL.VDEL_ SELECT = 10 _B

Table 26 Power-Up and Supply Threshold Parameters (Operating Conditions apply)

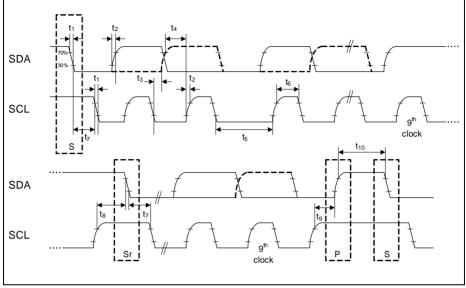
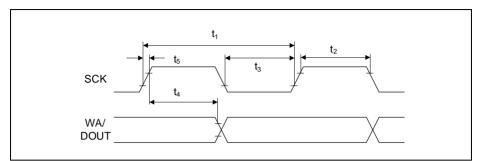


Table 32	USIC SSC Slave Mode Timin	na

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Conditio n
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	^t 11 SR	17	-	_	ns	
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	^t 12 SR	21	-	-	ns	
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	^t 13 SR	15	-	-	ns	
Data output DOUT[3:0] valid time	t ₁₄ CC	-	-	71	ns	

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Figure 26 USIC IIC Timing


3.3.6.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Table 35	USIC IIS Master	Transmitter Timing
----------	-----------------	---------------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	4/f _{MCLK}	-	-	ns	
Clock HIGH	t ₂ CC	0.35 x	-	-	ns	
		t _{1min}				
Clock Low	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
				t _{1min}		

Figure 27	USIC IIS Master	Transmitter Timing	1
-----------	-----------------	--------------------	---

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₆ SR	4/f _{MCLK}	-	-	ns	
Clock HIGH	t ₇ SR	0.35 x t _{6min}	-	-	ns	
Clock Low	t ₈ SR	0.35 x t _{6min}	-	-	ns	
Set-up time	t ₉ SR	0.3 x t _{6min}	-	-	ns	
Hold time	t ₁₀ SR	15	-	-	ns	

Table 36 USIC IIS Slave Receiver 1	Timing
------------------------------------	--------

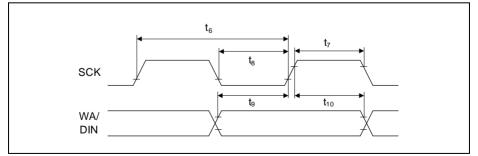


Figure 28 USIC IIS Slave Receiver Timing

Package and Reliability

4.2 Package Outlines

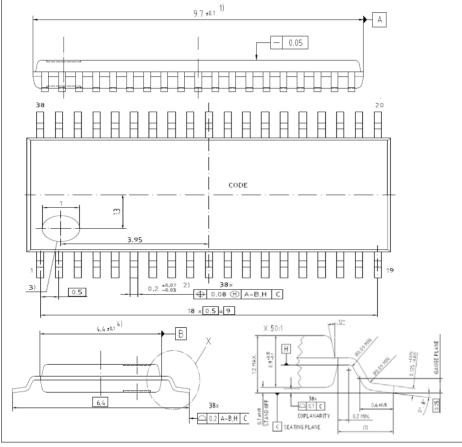


Figure 29 PG-TSSOP-38-9