

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Not For New Designs
Core Processor	H8S/2600
Core Size	16-Bit
Speed	33MHz
Connectivity	EBI/EMI, I ² C, IrDA, SCI, SmartCard, SPI, SSU, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	98
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b; D/A 2x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r4f24278dvfqu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Description of Numbers and Symbols

Aspects of the notations for register names, bit names, numbers, and symbolic names in this manual are explained below.

(1)	Overall notation In descriptions involving the names of bits and bit fields within this manual, the modules and registers to which the bits belong may be clarified by giving the names in the forms "module name"."register name"."bit name" or "register name"."bit name".							
(2)	legister notation "he style "register name"_"instance number" is used in cases where there is more than one stance of the same function or similar functions. Example] CMCSR_0: Indicates the CMCSR register for the compare-match timer of channel 0.							
(3)	lumber notation inary numbers are given as B'nnnn (B' may be omitted if the number is obviously binary), exadecimal numbers are given as H'nnnn or 0xnnnn, and decimal numbers are given as nnnn. Examples] Binary: B'11 or 11 Hexadecimal: H'EFA0 or 0xEFA0 Decimal: 1234							
(4)	Notation for active-low An overbar on the name indicates that a signal or pin is active-low. [Example] WDTOVF							
	(4) (2)							
	14.2.2 Compare Match Control/Status Register_0, _1 (CMCSR_0, CMCSR_1) CMCSR indicates compare match generation, enables or disables interrupts, and selects the counter out clock. Generation of a WDTOVF signal or interrupt initializes the TCNT value to 0.							
	14.3 Орегини							
	14.3.1 Interval Count Operation							
	When an internal clock is selected with the CKS1 and CKS0 bits in CMCSR and the STR bit in CMSTR is set to 1, CMCNT starts incrementing using the selected clock. When the values in CMCNT and the compare match constant register (CMCOR) match, CMCNT is cleared to H'0000 and the CMF flag in CMCSR is set to 1. When the CKS1 and CKS0 bits are set to <u>B'01 at this time</u> , a f/4 clock is selected.							
	Rev. 0.50, 10/04, page 416 of 914							
L	(3)							
1	Note: The bit names and sentences in the above figure are examples and have nothing to do with the contents of this manual.							

3. Description of Registers

Each register description includes a bit chart, illustrating the arrangement of bits, and a table of bits, describing the meanings of the bit settings. The standard format and notation for bit charts and tables are described below.

Bit	Bit Name	Initial Value	R/W	Description
3	IRQ1SCB	0	R/W	IRQ1 Sense Control B
2	IRQ1SCA	0	R/W	IRQ1 Sense Control A
				00: Interrupt request generated at IRQ1 input low level
				01: Interrupt request generated at falling edge of IRQ1 input
				10: Interrupt request generated at rising edge of IRQ1 input
				11: Interrupt request generated at both falling and rising edges of IRQ1 input
1	IRQ0SCB	0	R/W	IRQ0 Sense Control B
0	IRQ0SCA	0	R/W	IRQ0 Sense Control A
				00: Interrupt request generated at IRQ0 input low level
				01: Interrupt request generated at falling edge of IRQ0 input
				10: Interrupt request generated at rising edge of IRQ0 input
				11: Interrupt request generated at both falling and rising edges of IRQ0 input

7.8.14 Mode Register Setting of Synchronous DRAM

To use synchronous DRAM, mode must be set after power-on. To set mode, set the RMTS2 to RMTS0 bits in DRAMCR to H'5 and enable the synchronous DRAM mode register setting. After that, access the continuous synchronous DRAM space in bytes. When the value to be set in the synchronous DRAM mode register is X, value X is set in the synchronous DRAM mode register by writing to the continuous synchronous DRAM space of address H'400000 + X for 8-bit bus configuration synchronous DRAM and by writing to the continuous DRAM space of address H'400000 + 2X for 16-bit bus configuration synchronous DRAM.

The value of the address signal is fetched at the issuance time of the MRS command as the setting value of the mode register in the synchronous DRAM. Mode of burst read/burst write in the synchronous DRAM is not supported by this LSI. For setting the mode register of the synchronous DRAM, set the burst read/single write with the burst length of 1. Figure 7.71 shows the setting timing of the mode in the synchronous DRAM.

Figure 7.71 Synchronous DRAM Mode Setting Timing

Figure 8.4 Example of Sequential Mode Setting Procedure (Common Register Disabled Mode)

Bit	Bit Name	Initial Value	R/W	Description
6	IRF	0	R/(W)*	Interrupt Request Flag
				Flag indicating that an interrupt request has occurred and transfer has ended.
				0: No interrupt request
				[Clearing conditions]
				Writing 1 to the EDA bit
				• Writing 0 to IRF after reading IRF = 1
				1: Interrupt request occurrence
				[Setting conditions]
				Transfer end interrupt request generated by transfer counter
				Source address repeat area overflow interrupt request
				 Destination address repeat area overflow interrupt request
5	TCEIE	0	R/W	Transfer Counter End Interrupt Enable
				Enables or disables transfer end interrupt requests by the transfer counter. When transfer ends according to the transfer counter while this bit is set to 1, the IRF bit is set to 1, indicating that an interrupt request has occurred.
				0: Transfer end interrupt requests by transfer counter are disabled
				1: Transfer end interrupt requests by transfer counter are enabled
4	SDIR	0	R/W	Single Address Direction
				Specifies the data transfer direction in single address mode. In dual address mode, the specification by this bit is ignored.
				0: Transfer direction: EDSAR \rightarrow external device with $\overline{\text{DACK}}$
				1: Transfer direction: External device with $\overline{\text{DACK}} \rightarrow$ EDDAR

TPU channel 4 settings	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000	, B'01xx	B'001x	B'0010	B'0011	
IOA3 to IOA0	B'0000, B'0100, B'1xxx	B'0001 to B'0011, B'0101 to B'0111	B'xx00	Other than B'xx00	Other than B'xx00	
CCLR1, CCLR0	_	—	—	—	Other than B'01	B'01
Output function		Output compare output	_	PWM* ² mode 1 output	PWM mode 2 output	—

[Legend]

x: Don't care

- Notes: 1. TIOCA4-A input when MD3 to MD0 = B'0000 or B'01xx and IOA3 to IOA0 = B'10xx.
 - 2. TIOCB4 output disabled.
 - 3. When using as PO4-A output, set PPGS in PFCR3 to 0 before other register setting.
 - 4. When using as TIOCA4-A input/output, set TPUS in PFCR3 to 0 before other register setting.
 - 5. When using as TMO0-A output, set TMRS in PFCR3 to 0 before other register setting.
 - 6. When using as RxD4-A input, set RXD4S in PFCR4 to 0 before other register setting.

• Modes 3, 5, and 7 (EXPE = 0)

TPU channels 4 and 9 settings	(1) in table below		(2) in table below							
OS3 to OS0	_		All O N							
AMS	_									
CKE1	_		0 1							
C/Ā	_		0 1 —							
CKE0	_		0		1	—		—		
P85DDR	_	0	1	1	_	—	_	—		
NDER5	_	_	0	1		—	_	—		
Pin function	TIOCB4-B/ TIOCA9-B	P85 input	P85 output	PO5-B output*⁵	SCK3 output	SCK3 output	SCK3 input	TMO1-B output* ⁷		
	output* ⁶	TIOCB4-B/TIOCA9-B input*2*3*6								
				IRQ5-B int	errupt input	*1				

TPU channel 4 settings	(2)	(1)	(2)	(2)	(1)	(2)	
MD3 to MD0	B'0000,	B'01xx	B'0010		B'0011		
IOB3 to IOB0	B'0000, B'0100, B'1xxx	B'0001 to B'0011, B'0101 to B'0111	_	B'xx00 Other than B'xx00			
CCLR1, CCLR0	_	—	—	_	Other than B'10	B'10	
Output function		Output compare output	_	_	PWM mode 2 output		

13.4.5 Sample Setup Procedure for Non-Overlapping Pulse Output

Figure 13.8 shows a sample procedure for setting up non-overlapping pulse output.

- [1] Set TIOR to make TGRA and TGRB an output compare registers (with output disabled).
- [2] Set the pulse output trigger period in TGRB and the non-overlap period in TGRA.
- [3] Select the counter clock source with bits TPSC2 to TPSC0 in TCR. Select the counter clear source with bits CCLR2 to CCLR0.
- [4] Enable the TGIA interrupt in TIER. The DTC or DMAC can also be set up to transfer data to NDR.
- [5] Set the initial output values in PODR.
- [6] Set the DDR and NDER bits for the pins to be used for pulse output to 1.
- [7] Select the TPU compare match event to be used as the pulse output trigger in PCR.
- [8] In PMR, select the groups that will operate in non-overlap mode.
- [9] Set the next pulse output values in NDR.
- [10] Set the CST bit in TSTR to 1 to start the TCNT counter.
- [11] At each TGIA interrupt, set the next output values in NDR.

Figure 13.8 Setup Procedure for Non-Overlapping Pulse Output (Example)

Figure 15.1 Block Diagram of WDT

15.2 Input/Output Pin

Table 15.1 shows the WDT pin configuration.

Table 15.1 Pin Configuration

Name	Symbol	I/O	Function
Watchdog timer overflow	WDTOVF	Output	Outputs counter overflow signal in watchdog timer mode

Bit	Bit Name	Initial Value	R/W	Description			
2	ACS2	0	R/W*	Asynchronous clock source selection (valid when			
1	ACS1	0	R/W*	CKE1 = 1 in asynchronous mode)			
0	ACS0	0	R/W*	Selects the clock source for the average transfer rate.			
				The basic clock can be automatically set by selecting the average transfer rate in spite of the value of ABCS.			
				000: External clock input			
				 001: Selects 115.152 kbps which is the average transfer rate dedicated for φ= 10.667 MHz. (Operates on a basic clock with a frequency of 16 times the transfer rate.) 			
				 010: Selects 460.606 kbps which is the average transfer rate dedicated for φ= 10.667 MHz. (Operates on a basic clock with a frequency of 8 times the transfer rate.) 			
				 011: Selects 720 kbps which is the average transfer rate dedicated for φ = 32 MHz. (Operates on a basic clock with a frequency of 16 times the transfer rate.) 			
				100: Reserved			
				101: Selects 115.196 kbps which is the average transfer rate dedicated for $\phi = 16$ MHz (Operates on a basic clock with a frequency of 16 times the transfer rate.)			
				110: Selects 460.784 kbps which is the average transfer rate dedicated for $\phi = 16$ MHz (Operates on a basic clock with a frequency of 16 times the transfer rate.)			
				111: Selects 720 kbps which is the average transfer rate dedicated for $\phi = 16$ MHz (Operates on a basic clock with a frequency of 8 times the transfer rate.)			
				Note that the average transfer rate does not correspond to the frequency other than 10.667, 16, or 32 MHz.			

Note: * Can be written to only when TE = RE = 0.

16.7 Operation in Smart Card Interface Mode

The SCI supports an IC card (Smart Card) interface conforming to ISO/IEC 7816-3 (Identification Card) as a serial communication interface extension function. Switching between the normal serial communication interface and the Smart Card interface is carried out by means of a register setting.

16.7.1 Connection Example and Overview of Smart Card Interface

Figure 16.21 shows an example of connection with the Smart Card. In communication with an IC card, since both transmission and reception are carried out on a single data transmission line, the TxD pin and RxD pin should be connected with the LSI pin. The data transmission line should be pulled up to the V_{cc} power supply with a resistor. If an IC card is not connected, and the TE and RE bits are both set to 1, closed transmission/reception is possible, enabling self-diagnosis to be carried out. When the clock generated on the SCI is used by an IC card, the SCK pin output is input to the CLK pin of the IC card. This LSI port output is used as the reset signal.

Figure 16.21 Schematic Diagram of Smart Card Interface Pin Connections

23.12 User Boot Mode

This LSI has user boot mode in which the LSI is activated with mode pin settings different from those in user program mode and boot mode. A user-arbitrary boot mode different from the boot mode using the on-chip SCI can be enabled.

Only the user ROM and data flash can be programmed/erased in user boot mode.

Programming/erasing of user boot ROM is enabled only in boot mode or programmer mode.

(1) Initiation in User Boot Mode

When a hardware reset is issued with the mode pins set to mode 5, this LSI enters user boot mode and the built-in check routine runs. The user ROM, data flash, and user boot ROM states will be checked.

While the check routine is running, NMI and all other interrupts cannot be accepted.

Next, processing starts from the execution start address of the reset vector in user boot ROM. At this point, the FMMS bit in FLMMATS is set to 1 because user boot ROM has been selected as the execution memory MAT.

(2) User ROM Programming in User Boot Mode

For programming the user ROM in user boot mode, additional processing made by setting the FMMS bit in FLMMATS is required: switching from the user boot ROM to the user ROM, and switching back to the user boot ROM after programming completes.

Figure 23.10 shows the procedure for programming the user ROM in user boot mode.

(10) Erasure

Erasure is performed with the erasure selection and block erasure command.

Firstly, erasure is selected by the erasure selection command and the boot program then erases the specified block. The command should be repeatedly executed if two or more blocks are to be erased. Sending a block-erasure command from the host with the block number H'FF will stop the erasure operating. On completion of erasing, the boot program will wait for selection of programming or erasing.

The sequences of the issuing of erasure selection commands and the erasure of data are shown in figure 23.18.

Figure 23.18 Erasure Sequence

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
TCNT_0	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	TMR_1
TCNT_1	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TCCR0	_	_		_	TMRIS	_	ICKS1	ICKS0	TMR_0
TCCR1	_	_			TMRIS	_	ICKS1	ICKS0	TMR_1
TCSR	OVF	WT/IT	TME		_	CKS2	CKS1	CKS0	WDT
TCNT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
RSTCSR	WOVF	RSTE			_	_		_	_
TSTR	_	_	CST5	CST4	CST3	CST2	CST1	CST0	TPU
TSYR	_	_	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1	SYNC0	_
CRCCR	DORCLR	_	_	_	_	LMS	G1	G0	_
CRCDIR	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	_
CRCDORH	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	_
CRCDORL	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	_
PFCR3	_	PPGS	TPUS	TMRS	DMA_SEL1	DMA_SEL0	_	_	PORT
PFCR4	WAITS	BREQS	BACKS	BREQOS	_	TXD4S	RXD4S	SCK4S	_
PFCR5	SSO0S1	SSO0S0	SSI0S1	SSI0S0	SSCK0S1	SSCK0S0	SCS0S1	SCS0S0	_
TCR_0	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU_0
TMDR_0	_	_	BFB	BFA	MD3	MD2	MD1	MD0	
TIORH_0	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	
TIORL_0	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	_
TIER_0	TTGE	_		TCIEV	TGIED	TGIEC	TGIEB	TGIEA	_
TSR_0	_	_	_	TCFV	TGFD	TGFC	TGFB	TGFA	_
TCNT_0	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRA_0	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRB_0	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRC_0	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
TGRD_0	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	_
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_

Table 27.8Bus Timing (2)

Conditions: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $AV_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{cc} , $V_{ss} = AV_{ss} = 0$ V, $\phi = 8$ MHz to 25 MHz

Item	Symbol	Min.	Max.	Unit	Conditions
WR delay time 1	t _{wRD1}	_	15	ns	Figures 27.10
WR delay time 2	t _{wRD2}	_	15	ns	⁻ to 27.25, 27.31 and 27.32
WR pulse width 1	t _{wsw1}	$1.0 imes t_{_{cyc}} - 13$	_	ns	
WR pulse width 2	t _{wsw2}	$1.5 imes t_{_{cyc}} - 13$	_	ns	_
Write data delay time	t _{wdd}	—	23	ns	_
Write data setup time 1	t _{wDS1}	$0.5 imes t_{\scriptscriptstyle cyc} - 15$	_	ns	_
Write data setup time 2	t _{wds2}	$1.0 imes t_{_{cyc}} - 15$	_	ns	_
Write data setup time 3	t _{wds3}	$1.5 imes t_{_{cyc}} - 15$	_	ns	_
Write data hold time 1	t _{wDH1}	$0.5 imes t_{\scriptscriptstyle cyc}$ -13	_	ns	_
Write data hold time 2	t _{wDH2}	$1.0 imes t_{_{cyc}} - 13$	_	ns	_
Write data hold time 3	t _{wDH3}	$1.5 imes t_{_{cyc}} - 13$	_	ns	_
Write command setup time 1	t _{wcs1}	$0.5 imes t_{\scriptscriptstyle cyc}$ –10	_	ns	_
Write command setup time 2	t _{wcs2}	$1.0 imes t_{_{cyc}} - 10$	_	ns	_
Write command hold time 1	t _{wcH1}	$0.5 imes t_{_{cyc}}$ -10	_	ns	_
Write command hold time 2	t _{wcH2}	$1.0 imes t_{_{cyc}} - 10$	_	ns	_
Read command setup time 1	t _{RCS1}	$1.5 imes t_{_{cyc}} - 10$	_	ns	_
Read command setup time 2	t _{RCS2}	$2.0 imes t_{_{cyc}} - 10$	_	ns	_
Read command hold time	t _{RCH}	$0.5 imes t_{\scriptscriptstyle cyc}$ -10	_	ns	_
CAS delay time 1	t _{CASD1}	_	15	ns	_
CAS delay time 2	t _{CASD2}	_	15	ns	_
CAS setup time 1	t _{csr1}	$0.5 imes t_{\scriptscriptstyle cyc}$ –10	_	ns	_
CAS setup time 2	t _{CSR2}	$1.5 imes t_{_{cyc}} - 10$	_	ns	_
CAS pulse width 1	t _{casw1}	$1.0 imes t_{_{cyc}}$ –20	_	ns	_
CAS pulse width 2	t _{casw2}	$1.5 imes t_{_{cyc}}$ –20	_	ns	_
CAS precharge time 1	t _{CPW1}	$1.0 imes t_{_{cyc}}$ –20	_	ns	_
CAS precharge time 2	t _{CPW2}	$1.5 imes t_{_{cyc}}$ –20	_	ns	_

Appendi	х
---------	---

Port Name Pin Name	MCU Operating Mode	Reset	Hardware Standby Mode	Software Standby Mode	Bus Release State	Program Execution State Sleep Mode
Port E	1, 8-bit bus	Т	Т	keep	keep	I/O port
	2, 4 16-bit bus	Т	Т	Т	Т	D7 to D0, AD7 to AD0
	3, 8-bit bus	т	Т	keep	keep	I/O port
	5, 16-bit bus 7	Т	Т	[Data bus, address/data multiplexed bus]	[Data bus, address/data multiplexed bus]	[Data bus, address/data multiplexed bus]
				т	Т	D7 to D0,
				[Other than the above]	[Other than the above]	AD7 to AD0 [Other than the
				keep	keep	above]
						I/O port
PF7/ø	1, 2, 4	Clock output	т	[Clock output]	[Clock output]	[Clock output]
	3, 5, 7	т		н	Clock output	Clock output
				[Other than the above]	[Other than the above]	[Other than the above]
				keep	keep	Input port
PF6/AS	1, 2, 4	Н	Т	$[\overline{AS} \text{ output},]$ OPE = 0]	[AS output]	[AS output]
	3, 5, 7	Т	-		т	AS
				T [AS output,	[Other than the above]	[Other than the above]
				OPE = 1]	keep	I/O port
				н		
				[Other than the above]		
				keep		

B. Package Dimensions

Figure B.1 Package Dimensions (PLQP0144KA-A)

Main Revisions and Additions in this Edition

Item Page		Revision (See Manual for Details)			
Table 1.1 Overview of Specifications	9	Module/ Type Function Description Operating • Operating frequency frequency/ 2.7-V version: 8 to 25 MHz power supply 3-V version: 8 to 33 MHz • Power supply voltage 5-V version: V cc = 2.7 to 3.6 V, AV_cc = 2.7 to 3.6 V 3-V version: $V_{cc} = 3.0 to 3.6 V, AV_{cc} = 3.0 to 3.6 V 5-V version: V_{cc} = 4.5 to 5.5 V • Supply current 2.7-V version: 35 mA typ (V_{cc} = 3.3 V, AV_{cc} = 3.3 V, \phi = 33 MHz) • S-V version: 45 mA typ (V_{cc} = 5.0 V, AV_{cc} = 5.0 V, \phi = 33 MHz) $			

Item	Page	e Revision (See Manual for Details)			
Table 16.2	926	Amende	ed and ad	ded	
Relationships between N Setting in			Bit Rate		
BRR and Bit Rate B		N =6	$\frac{\phi \times 10^{6}}{64 \times 2^{2n-1} \times E}$		
		N =	$\frac{\phi \times 10^{6}}{32 \times 2^{2n-1} \times E}$		
		N =	$\frac{\phi \times 10^{6}}{8 \times 2^{2n-1} \times B}$	—1	
		N =	$\frac{\phi \times 10^{6}}{S \times 2^{2n+1} \times B}$		
17.7 Usage Notes	1032, 1033	Added			
		5. Resti	riction on	Setting Transfer Rate in Use of Multi-Master	
		6. Restriction on Use of Bit Manipulation Instructions to Set MST and TRS in Use of Multi-Master			
		7. Note	on Maste	r Receive Mode	
		8. Notes on Changing from Master Transmit Mode to Master Receive Mode			
18.3.4 A/D Control	1048, 1049	Added			
Register (ADCR_0)		Bit B	Bit Name	Description	
		7 T	RGS1	010: Enables A/D conversion start by external trigger	
		6 T	RGS0	from TPU (units 0 and 1)*	
		0 E	XTRGS		
		Note: * I	f this bit is n ADCR_1 conversion	set the same as the TRGS_1, TRGS0, and EXTRGS bits , the A/D converter units 0 and 1 start A/D conversion by start trigger from TPU (units 0 and 1).	

Revision (See Manual for Details)