E. Lattice Semiconductor Corporation - ICE40HX4K-BG121TR Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	440
Number of Logic Elements/Cells	3520
Total RAM Bits	81920
Number of I/O	93
Number of Gates	
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	121-TFBGA
Supplier Device Package	121-caBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40hx4k-bg121tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

						-		· · · · · · · · · · · · · · · · · · ·
84 QFN (7 mm x 7 mm, 0.5 mm)	QN84		67(7) ¹					
100 VQFP (14 mm x 14 mm, 0.5 mm)	VQ100					72(9) ¹		
121 ucBGA (5 mm x 5 mm, 0.4 mm)	CM121		95(12)	93(13)	93(13)			
121 csBGA (6 mm x 6 mm, 0.5 mm)	CB121		92(12)					
121 caBGA (9 mm x 9 mm, 0.8 mm)	BG121						93(13)	93(13)
132 csBGA (8 mm x 8 mm, 0.5 mm)	CB132					95(11)	95(12)	95(12)
144 TQFP (20 mm x 20 mm, 0.5 mm)	TQ144					96(12)	107(14)	
225 ucBGA (7 mm x 7 mm, 0.4 mm)	CM225			178(23)	178(23)			178(23)
256-ball caBGA (14 mm x 14 mm, 0.8 mm)	CT256							206(26)

1. No PLL available on the 16 WLCSP, 36 ucBGA, 81 csBGA, 84 QFN and 100 VQFP packages.

2. Only one PLL available on the 81 ucBGA package.

3. High Current I/Os only available on the 16 WLCSP package.

Introduction

The iCE40 family of ultra-low power, non-volatile FPGAs has five devices with densities ranging from 384 to 7680 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic, these devices feature Embedded Block RAM (EBR), Non-volatile Configuration Memory (NVCM) and Phase Locked Loops (PLLs). These features allow the devices to be used in low-cost, high-volume consumer and system applications. Select packages offer High-Current drivers that are ideal to drive three white LEDs, or one RGB LED.

The iCE40 devices are fabricated on a 40 nm CMOS low power process. The device architecture has several features such as programmable low-swing differential I/Os and the ability to turn off on-chip PLLs dynamically. These features help manage static and dynamic power consumption, resulting in low static power for all members of the family. The iCE40 devices are available in two versions – ultra low power (LP) and high performance (HX) devices.

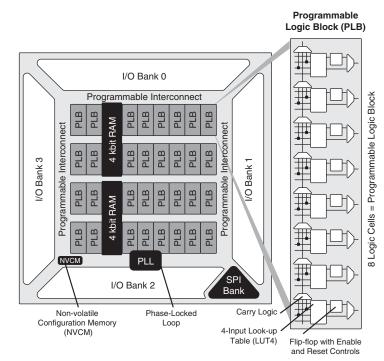
The iCE40 FPGAs are available in a broad range of advanced halogen-free packages ranging from the space saving 1.40x1.48 mm WLCSP to the PCB-friendly 20x20 mm TQFP. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The iCE40 devices offer enhanced I/O features such as pull-up resistors. Pull-up features are controllable on a "per-pin" basis.

The iCE40 devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices can also configure themselves from external SPI Flash or be configured by an external master such as a CPU.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40 family of devices. Popular logic synthesis tools provide synthesis library support for iCE40. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the iCE40 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules, including a number of reference designs, licensed free of charge, optimized for the iCE40 FPGA family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.


iCE40 LP/HX Family Data Sheet Architecture

March 2017

Data Sheet DS1040

Architecture Overview

The iCE40 family architecture contains an array of Programmable Logic Blocks (PLB), sysCLOCK[™] PLLs, Nonvolatile Programmable Configuration Memory (NVCM) and blocks of sysMEM[™] Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1 shows the block diagram of the iCE40LP/HX1K device.

Figure 2-1. iCE40LP/HX1K Device, Top View

The logic blocks, Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either logic blocks or EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the iCE40 family, there are up to four independent sysIO banks. Note on some packages V_{CCIO} banks are tied together. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO.

The iCE40 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a SPI port that supports programming and configuration of the device. The iCE40 includes on-chip, Nonvolatile Configuration Memory (NVCM).

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Routing

There are many resources provided in the iCE40 devices to route signals individually with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient connections in the diagonal, horizontal and vertical directions.

The design tool takes the output of the synthesis tool and places and routes the design.

Clock/Control Distribution Network

Each iCE40 device has eight global inputs, two pins on each side of the device. Note that not all GBINs are available in all packages.

These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are identified as GBIN[7:0] and the global buffers are identified as-GBUF[7:0]. These eight inputs may be used as general purpose I/O if they are not used to drive the clock nets. Global buffer GBUF7 in I/O Bank 3 also provides an optional direct LVDS25 or subLVDS differential clock input.

Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input.

Global Buffer	LUT Inputs	Clock	Reset	Clock Enable
GBUF0		Yes	Yes	
GBUF1		Yes		Yes
GBUF2		Yes	Yes	
GBUF3	Yes, any 4 of 8	Yes		Yes
GBUF4	GBUF Inputs	Yes	Yes	
GBUF5		Yes		Yes
GBUF6	-	Yes	Yes	
GBUF7		Yes		Yes

Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks

The maximum frequency for the global buffers are shown in the iCE40 External Switching Characteristics tables later in this document.

Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Note the sysMEM Embedded Block RAM Memory address 0 cannot be initialized.

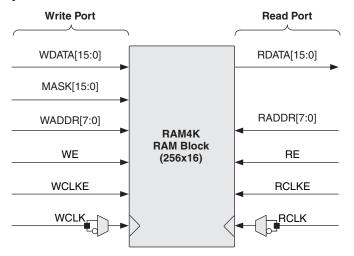
Memory Cascading

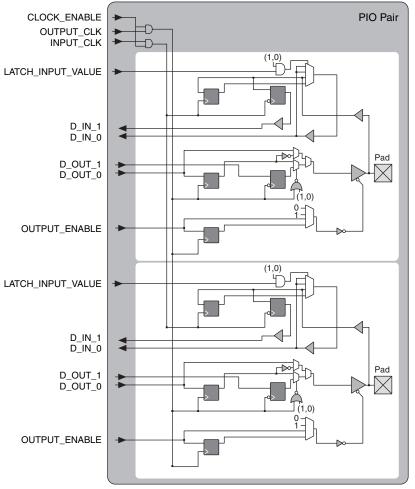
Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks.

RAM4k Block

Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array.

Figure 2-4. sysMEM Memory Primitives




Table 2-5. EBR Signal Descriptions

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input.
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit; 1 = don't write bit
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.
WE	Input	Write Enable input.
WCLKE	Input	Write Clock Enable input.
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.
RDATA[15:0]	Output	Read Data output.
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.
RE	Input	Read Enable input.
RCLKE	Input	Read Clock Enable input.
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.

For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices.

Figure 2-6. iCE I/O Register Block Diagram

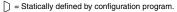


Table 2-6. PIO Signal List

Pin Name	I/O Type	Description
OUTPUT_CLK	Input	Output register clock
CLOCK_ENABLE	Input	Clock enable
INPUT_CLK	Input	Input register clock
OUTPUT_ENABLE	Input	Output enable
D_OUT_0/1	Input	Data from the core
D_IN_0/1	Output	Data to the core
LATCH_INPUT_VALUE	Input	Latches/holds the Input Value

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS and LVDS25.

High Current LED Drivers combine three sysIO buffers together. This allows for programmable drive strength. This also allows for high current drivers that are ideal to drive three white LEDs, or one RGB LED. Each bank is capable of supporting multiple I/O standards including single-ended LVCMOS buffers and differential LVDS25E output buf-

fers. Bank 3 additionally supports differential LVDS25 input buffers. Each sysIO bank has its own dedicated power supply.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SP1} have reached the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins will maintain the pre-configuration state until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached levels, at which time the I/Os will take on the software user-configured settings only after a proper download/configuration. Unused IOs are automatically blocked and the pullup termination is disabled.

Supported Standards

The iCE40 sysIO buffer supports both single-ended and differential input standards. The single-ended standard supported is LVCMOS. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none). The High Current output buffer have individually configurable options for drive strength.

Table 2-7 and Table 2-8 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 devices.

Input Standard	V _{CCIO} (Typical)					
input Standard	3.3 V	2.5 V	1.8 V			
Single-Ended Interfaces		•				
LVCMOS33	Yes					
LVCMOS25		Yes				
LVCMOS18			Yes			
Differential Interfaces		•				
LVDS251		Yes				
subLVDS ¹			Yes			

Table 2-7. Supported Input Standards

1. Bank 3 only.

Table 2-8. Supported Output Standards

Output Standard	V _{CCIO} (Typical)		
Single-Ended Interfaces			
LVCMOS33	3.3		
LVCMOS25	2.5		
LVCMOS18	1.8		
Differential Interfaces			
LVDS25E1	2.5		
subLVDSE ¹	1.8		

1. These interfaces can be emulated with external resistors in all devices.

Non-Volatile Configuration Memory

All iCE40 devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device.

For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration Usage Guide.

iCE40 LP/HX Family Data Sheet DC and Switching Characteristics

October 2015

Data Sheet DS1040

Absolute Maximum Ratings^{1, 2, 3, 4}

iCE40 LP/HX

Supply Voltage V _{CC}	/
Output Supply Voltage V _{CCIO} , V _{CC_SPI} 0.5 V to 3.60 V	/
NVCM Supply Voltage V _{PP_2V5}	/
PLL Supply Voltage V _{CCPLL} 0.5 V to 1.30 V	/
I/O Tri-state Voltage Applied	/
Dedicated Input Voltage Applied0.5 V to 3.60 V	/
Storage Temperature (Ambient)65 °C to 150 °C	С
Junction Temperature (T _J)55 °C to 125 °C	С

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

 IOs can support a 200 mV Overshoot above the Recommend Operating Conditions V_{CCIO} (Max) and -200mV Undershoot below V_{IL} (Min). Overshoot and Undershoot is permitted for 25% duty cycle but must not exceed 1.6 ns.

Recommended Operating Conditions¹

Symbol	Param	neter	Min.	Max.	Units
V _{CC} ¹	Core Supply Voltage		1.14	1.26	V
		Slave SPI Configuration	1.71	3.46	V
V	V _{PP_2V5} NVCM Programming and Operating Supply Voltage	Master SPI Configuration	2.30	3.46	V
V _{PP_2V5}	Operating Supply Voltage	Configure from NVCM	2.30	3.46	V
		NVCM Programming	2.30	3.00	V
V _{PP_FAST} ⁴	Optional fast NVCM programming supply	N/A	N/A	V	
V _{CCPLL} ^{5, 6}	PLL Supply Voltage	PLL Supply Voltage		1.26	V
V	I/O Driver Supply Voltage	V _{CCIO0-3}	1.71	3.46	V
V _{CCIO} ^{1, 2, 3}	NO Driver Supply Voltage	V _{CC_SPI}	1.71	3.46	V
t _{JIND}	Junction Temperature Industrial Operation	Temperature Industrial Operation		100	°C
t _{PROG}	Junction Temperature NVCM Programm	ing	10	30	°C

1. Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC_SPI} are both the same voltage, they must also be the same supply.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

5. No PLL available on the iCE40LP384 and iCE40LP640 device.

6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

^{© 2015} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter		Min.	Max.	Units
		All configuration modes. No power supply sequencing.		10	V/ms
		Configuring from Slave SPI. No power supply sequencing,	0.01	10	V/ms
t _{RAMP}	Power supply ramp rates for all power supplies.	Configuring from NVCM. V_{CC} and $V_{PP_{2V5}}$ to be powered 0.25 ms before $V_{CC_{SPI}}$.	0.01	10	V/ms
		Configuring from MSPI. V_{CC} and V_{PP_SPI} to be powered 0.25 ms before V_{PP_2V5} .	0.01	10	V/ms

1. Assumes monotonic ramp rates.

2. iCE40LP384 requires V_{CC} to be greater than 0.7V when V_{CCIO} and V_{CC_SPI} are above GND.

Power-On-Reset Voltage Levels¹

Symbol	Device	Parameter		Min.	Max.	Units
V _{PORUP}	iCE40LP384	(hand can beend aireuit manitaring	VCC	0.67	0.99	V
			VCCIO_2	0.70	1.59	V
		VPP_2V5)	VCC_SPI	0.70	1.59	V
			VPP_2V5	0.70	1.59	V
	iCE40LP640,		VCC	0.55	0.75	V
	iCE40LP/HX1K, iCE40LP/HX4K,	(band gap based circuit monitoring VCC, VCCIO_2, VCC_SPI and	VCCIO_2	0.86	1.29	V
	iCE40LP/HX8K	VPP_2V5)	VCC_SPI	0.86	1.29	V
			VPP_2V5	0.86	1.33	V
V _{PORDN}	iCE40LP384	in a link (la annal anna la a an al a line ith anna a'	VCC	—	0.64	V
			VCCIO_2	—	1.59	V
			VCC_SPI	—	1.59	V
			VPP_2V5	—	1.59	V
	iCE40LP640,	Power-On-Reset ramp-down trip	VCC	—	0.75	V
	iCE40LP/HX1K, iCE40LP/HX4K,	point (band gap based circuit moni- toring VCC, VCCIO_2, VCC_SPI	VCCIO_2	—	1.29	V
	iCE40LP/HX8K	and VPP_2V5)	VCC_SPI	—	1.29	V
			VPP_2V5	—	1.33	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

ESD Performance

Please refer to the iCE40 Product Family Qualification Summary for complete qualification data, including ESD performance.

Peak Startup Supply Current – HX Devices

Symbol	Parameter	Device	Max	Units
		iCE40HX1K	6.9	mA
I _{CCPEAK}	Core Power Supply	iCE40HX4K	22.3	mA
		iCE40HX8K	22.3	mA
		iCE40HX1K	1.8	mA
ICCPLLPEAK ¹	PLL Power Supply	iCE40HX4K	6.4	mA
		iCE40HX8K	6.4	mA
		iCE40HX1K	2.8	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40HX4K	4.1	mA
		iCE40HX8K	4.1	mA
		iCE40HX1K	6.8	mA
ICCIOPEAK, ICC_SPIPEAK	Bank Power Supply	iCE40HX4K	6.8	mA
_		iCE40HX8K	6.8	mA

1. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)						
Standard	Min.	Тур.	Max.				
LVCMOS 3.3	3.14	3.3	3.46				
LVCMOS 2.5	2.37	2.5	2.62				
LVCMOS 1.8	1.71	1.8	1.89				
LVDS25E ^{1, 2}	2.37	2.5	2.62				
subLVDSE ^{1, 2}	1.71	1.8	1.89				

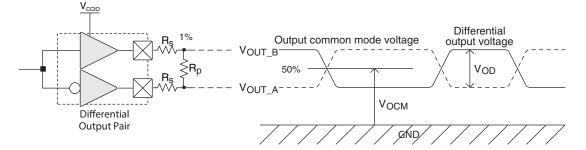
1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. Does not apply to Configuration Bank V_{CC_SPI}.

sysIO Single-Ended DC Electrical Characteristics

Input/	V _{IL}		V _{IH} ¹				1	
Output Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)
LVCMOS 3.3	-0.3	0.8	2.0	V _{CCIO} + 0.2 V	0.4	$V_{CCIO} - 0.4$	8, 16 ² , 24 ²	-8, -16 ² , -24 ²
EVOINOU 0.0	0.0	0.0	2.0	V CCIO + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1
LVCMOS 2.5	-0.3	0.7	1.7	V _{CCIO} + 0.2 V	0.4	$V_{CCIO} - 0.4$	6, 12 ² , 18 ²	-6, -12 ² , -18 ²
2.0	0.0	0.7		1.7	V CCIO + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1
LVCMOS 1.8	-0.3 0.35V _{CCIO}	0.35V _{CCIO}	0.65V _{CCIO}		0.4	$V_{CCIO} - 0.4$	4, 8 ² , 12 ²	-4, -8 ² , -12 ²
	-0.5	0.33 A CCIO	0.03 A CCIO	V _{CCIO} + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1

1. Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO.}}$


2. Only for High Drive LED outputs.

LVDS25E Emulation

iCE40 devices can support LVDSE outputs via emulation on all banks. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS25E standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS25E Using External Resistors

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	150	Ohms
R _P	Driver parallel resistor	140	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.30	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

Over Recommended Operating Conditions

SubLVDS Emulation

The iCE40 family supports the differential subLVDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all banks of the devices. The sub-LVDS input standard is supported by the LVDS25 differential input buffer. The scheme shown in Figure 3-2 is one possible solution for subLVDSE output standard implementation. Use LVDS25E mode with suggested resistors for subLVDSE operation. Resistor values in Figure 3-2 are industry standard values for 1% resistors.

Figure 3-2. subLVDSE

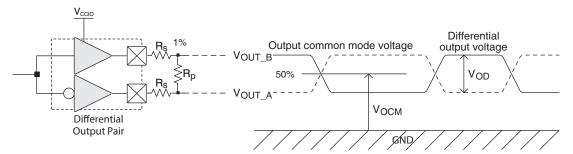


Table 3-2. subLVDSE DC Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	270	Ohms
R _P	Driver parallel resistor	120	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	0.9	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	2.8	mA

Over Recommended Operating Conditions

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

Maximum sysIO Buffer Performance²

I/O Standard	Max. Speed	Units							
Inputs									
LVDS251	400	MHz							
subLVDS18 ¹	400	MHz							
LVCMOS33	250	MHz							
LVCMOS25	250	MHz							
LVCMOS18	250	MHz							
	Outputs								
LVDS25E	250	MHz							
subLVDS18E	155	MHz							
LVCMOS33	250	MHz							
LVCMOS25	250	MHz							
LVCMOS18	155	MHz							

1. Supported in Bank 3 only.

2. Measured with a toggling pattern

iCE40 Family Timing Adders

Over Recommended Commercial Operating Conditions - LP Devices^{1, 2, 3, 4, 5}

Buffer Type	Buffer Type Description		Units
Input Adjusters	I		
LVDS25	LVDS, $V_{CCIO} = 2.5 V$	-0.18	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	0.82	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.18	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.19	ns
Output Adjusters	· · ·		
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.32	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	-0.12	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.32	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

SPI Master or NVCM Configuration Time^{1, 2}

Symbol	Parameter	Conditions	Тур.	Units
		iCE40LP384 - Low Frequency (Default)	25	ms
		iCE40LP384 - Medium Frequency	15	ms
		iCE40LP384 - High Frequency	11	ms
		iCE40LP640 - Low Frequency (Default)	53	ms
		iCE40LP640 - Medium Frequency	25	ms
		iCE40LP640 - High Frequency	13	ms
	iCE40LP/HX1K - Low Frequency	iCE40LP/HX1K - Low Frequency (Default)	53	ms
t _{CONFIG}	POR/CRESET_B to Device I/O Active	iCE40LP/HX1K - Medium Frequency	25	ms
		iCE40LP/HX1K - High Frequency	13	ms
		iCE40LP/HX4K - Low Frequency (Default)	230	ms
		iCE40LP/HX4K - Medium Frequency	110	ms
		iCE40LP/HX4K - High Frequency	70	ms
	iCE40LP/HX8K - Low Frequency (Default)	230	ms	
		iCE40LP/HX8K - Medium Frequency	110	ms
		iCE40LP/HX8K - High Frequency	70	ms

1. Assumes sysMEM Block is initialized to an all zero pattern if they are used.

2. The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

Pin Information Summary

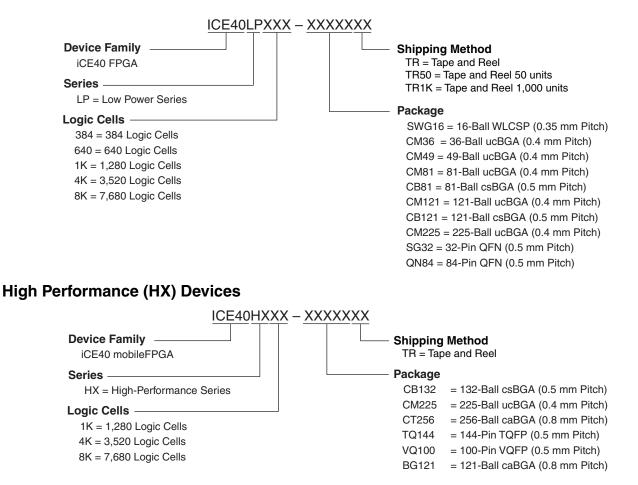
	i	CE40LP38	84	iCE40LP640				iCE4	0LP1K			
	SG32	CM36 ²	CM49 ²	SWG16	SWG16	CM36 ^{1, 2}	CM49 ^{1, 2}	CM81	CB81	QN84	CM121	CB121
General Purpose I/O per Ban	k											
Bank 0	6	4	10	3	3	4	10	17	17	17	24	24
Bank 1	5	7	7	0	0	7	7	15	16	17	25	21
Bank 2	0	4	4	1	1	4	4	11	8	11	18	19
Bank 3	6	6	12	2	2	6	10	16	17	18	24	24
Configuration	4	4	4	4	4	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	21	25	37	10	10	25	35	63	62	67	95	92
High Current Outputs per Ba	ink											
Bank 0	0	0	0	3	3	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0
Total Current Outputs	0	0	0	3	3	0	0	0	0	0	0	0
Differential Inputs per Bank				L						•		
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	3	3	6	1	1	3	5	8	9	7	12	12
Total Differential Inputs	3	3	6	1	1	3	5	8	9	7	12	12
Dedicated Inputs per Bank												
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	2	2	2	1	1	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0	0	0	0	0	0
Total Dedicated Inputs	2	2	2	1	1	2	2	2	2	2	2	2
Vccio Pins		1				1			I			
Bank 0	1	1	1	1	1	1	1	1	1	1	2	1
Bank 1	1	1	1	0	0	0	0	1	1	1	2	1
Bank 2	1	1	1	1	1	1	1	1	1	1	2	1
Bank 3	1	0	0	0	0	0	0	1	1	1	2	2
VCC	1	1	2	1	1	1	2	3	3	4	4	4
VCC_SPI	1	1	1	0	0	1	1	1	1	1	1	1
VPP_2V5	1	1	1	0	0	1	1	1	1	1	1	1
VPP_FAST ³	0	0	0	0	0	1	1	1	0	1	1	1
VCCPLL	0	0	0	0	0	0	1	1	0	0	1	1
GND	2	3	3	2	2	3	4	5	8	4	8	11
NC	0	0	0	0	0	0	0	0	0	0	0	3
Total Count of Bonded Pins	32	36	49	16	16	36	49	81	81	84	121	121

V_{CCIO2} and V_{CCIO1} are connected together.
 V_{CCIO2} and V_{CCIO3} are connected together.
 V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Pin Information Summary (Continued)

		iCE40LP4K			iCE40LP8K			iCE40HX1K		
	CM81	CM121	CM225	CM81	CM121	CM225	VQ100	CB132	TQ144	
General Purpose I/O per	r Bank									
Bank 0	17	23	46	17	23	46	19	24	23	
Bank 1	15	21	42	15	21	42	19	25	25	
Bank 2	9	19	40	9	19	40	12	20	20	
Bank 3	18	26	46	18	26	46	18	22	24	
Configuration	4	4	4	4	4	4	4	4	4	
Total General Purpose Single Ended I/O	63	93	178	63	93	178	72	95	96	
High Current Outputs p	er Bank	•	•			•			•	
Bank 0	0	0	0	0	0	0	0	0	0	
Bank 1	0	0	0	0	0	0	0	0	0	
Bank 2	0	0	0	0	0	0	0	0	0	
Bank 3	0	0	0	0	0	0	0	0	0	
Total Differential Inputs	0	0	0	0	0	0	0	0	0	
Differential Inputs per B	ank									
Bank 0	0	0	0	0	0	0	0	0	0	
Bank 1	0	0	0	0	0	0	0	0	0	
Bank 2	0	0	0	0	0	0	0	0	0	
Bank 3	9	13	23	9	13	23	9	11	12	
Total Differential Inputs	9	13	23	9	13	23	9	11	12	
Dedicated Inputs per Ba	ank									
Bank 0	0	0	0	0	0	0	0	0	0	
Bank 1	0	0	1	0	0	1	0	1	1	
Bank 2	2	2	2	2	2	2	2	2	2	
Bank 3	0	0	0	0	0	0	0	0	0	
Configuration	0	0	0	0	0	0	0	0	0	
Total Dedicated Inputs	2	2	3	2	2	3	2	3	3	
Vccio Pins							•	•		
Bank 0	1	1	3	1	1	3	2	2	2	
Bank 1	1	1	3	1	1	3	2	2	2	
Bank 2	1	1	3	1	1	3	2	2	2	
Bank 3	1	2	4	1	2	4	3	3	2	
VCC	3	4	8	3	4	8	4	5	4	
VCC_SPI	1	1	1	1	1	1	1	1	1	
VPP_2V5	1	1	1	1	1	1	1	1	1	
VPP_FAST ¹	1	1	1	1	1	1	1	1	1	
VCCPLL	1	2	2	1	2	2	0	1	1	
GND	5	12	18	5	12	18	10	14	10	
NC	0	0	0	0	0	0	0	2	19	
Total Count of Bonded Pins	81	121	225	81	121	225	100	132	144	

1. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.


iCE40 LP/HX Family Data Sheet Ordering Information

March 2017

Data Sheet DS1040

iCE40 Part Number Description

Ultra Low Power (LP) Devices

All parts shipped in trays unless noted.

Ordering Information

iCE40 devices have top-side markings as shown below:

Note: Markings are abbreviated for small packages.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40LP8K-CM121TR1K	7680	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND

High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40HX1K-CB132	1280	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX1K-VQ100	1280	1.2 V	Halogen-Free VQFP	100	IND
ICE40HX1K-TQ144	1280	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX4K-BG121	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-BG121TR	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-CB132	3520	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX4K-TQ144	3520	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX8K-BG121	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-BG121TR	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-CB132	7680	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND
ICE40HX8K-CT256	7680	1.2 V	Halogen-Free caBGA	256	IND

iCE40 LP/HX Family Data Sheet Supplemental Information

March 2017

Data Sheet DS1040

For Further Information

A variety of technical notes for the iCE40 family are available on the Lattice web site.

- TN1248, iCE40 Programming and Configuration
- TN1250, Memory Usage Guide for iCE40 Devices
- TN1251, iCE40 sysCLOCK PLL Design and Usage Guide
- TN1252, iCE40 Hardware Checklist
- TN1253, Using Differential I/O (LVDS, Sub-LVDS) in iCE40 Devices
- TN1074, PCB Layout Recommendations for BGA Packages
- iCE40 Pinout Files
- Thermal Management document
- Lattice design tools
- IBIS
- Package Diagrams Data Sheet
- Schematic Symbols

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
February 2014	02.8	Introduction	Updated Features section. — Corrected standby power units. — Included High Current LED Drivers
			Updated Table 1-1, iCE40 Family Selection Guide. — Removed LP384 Programmable I/O for 81 ucBGA package.
		Architecture	Updated Supported Standards section. Added information on High Current LED drivers.
		DC and Switching Characteristics	Corrected typos.
			Added footnote to the Peak Startup Supply Current – LP Devices table.
		Ordering Information	Updated part number description in the Ultra Low Power (LP) Devices section.
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
October 2013	02.7	Introduction	Updated Features list and iCE40 Family Selection Guide table.
		Architecture	Revised iCE40-1K device to iCE40LP/HX1K device.
		DC and Switching Characteristics	Added iCE40LP640 device information.
		Pinout Information	Added iCE40LP640 and iCE40LP1K information.
		Ordering Information	Added iCE40LP640 and iCE40LP1K information.
September 2013	02.6	DC and Switching Characteristics	Updated Absolute Maximum Ratings section.
			Updated sysCLOCK PLL Timing – Preliminary table.
		Pinout Information	Updated Pin Information Summary table.
August 2013	02.5	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching Characteristics	Updated the following tables: — Absolute Maximum Ratings — Power-On-Reset Voltage Levels — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices — Peak Startup Supply Current – LP Devices — sysIO Recommended Operating Conditions — Typical Building Block Function Performance – HX Devices — iCE40 External Switching Characteristics – HX Devices — sysCLOCK PLL Timing – Preliminary — SPI Master or NVCM Configuration Time
		Pinout Information	Updated the Pin Information Summary table.
July 2013	02.4	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching Characteristics	Updated the sysCONFIG Port Timing Specifications table.
			Updated footnote in DC Electrical Characteristics table.
			GDDR tables removed. Support to be provided in a technical note.
		Pinout Information	Updated the Pin Information Summary table.
		Ordering Information	Updated the top-side markings figure.
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
May 2013	02.3	DC and Switching Characteristics	Added new data from Characterization.

Date	Version	Section	Change Summary
April 2013	02.2	Introduction	Added the LP8K 81 ucBGA.
		Architecture	Corrected typos.
		DC and Switching Characteristics	Corrected typos. Added 7:1 LVDS waveforms.
		Pinout Information	Corrected typos in signal descriptions. Added the LP8K 81 ucBGA.
		Ordering Information	Added the LP8K 81 ucBGA.
March 2013	02.1	DC and Switching Characteristics	Recommended operating conditions added requirement for Master SPI.
			Updated Recommended Operating Conditions for V _{PP_2V5} .
			Updated Power-On-Reset Voltage Levels and sequence requirements.
			Updated Static Supply Current conditions.
			Changed unit for t _{SKEW_IO} from ns to ps.
			Updated range of CCLK f _{MAX} .
		Ordering Information	Updated ordering information to include tape and reel part numbers.
September 2012	02.0	_	Merged SiliconBlue iCE40 LP and HX data sheets and updated to Lat- tice format.
	01.31	—	Updated Table 1.
	01.3	—	Production release.
			Updated notes on Table 3: Recommended Operating Conditions.
			Updated values in Table 4, Table 5, Table 12, Table 13 and Table 17.
	01.21	_	Updated Figure 3 and Figure 4 to specify iCE40.
Aug 2012	01.2	—	Updated company name.
July 2011	01.1	—	Moved package specifications to iCE40 pinout Excel files.
			Updated Table 1 maximum I/Os.
	01.01	—	Added 640, 1K and 4K to Table 13 configuration times. Updated Table 1 maximum I/Os.
	01.0	_	Initial release.