

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Not For New Designs
Number of LABs/CLBs	960
Number of Logic Elements/Cells	7680
Total RAM Bits	131072
Number of I/O	178
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	225-VFBGA
Supplier Device Package	225-UCBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40hx8k-cm225

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iCE40 LP/HX Family Data Sheet Introduction

March 2017

Features

- Flexible Logic Architecture
 - Five devices with 384 to 7,680 LUT4s and 10 to 206 I/Os
- Ultra Low Power Devices
 - Advanced 40 nm low power process
 - As low as 21 µA standby power
 - Programmable low swing differential I/Os

Embedded and Distributed Memory

- Up to 128 kbits sysMEM[™] Embedded Block RAM
- Pre-Engineered Source Synchronous I/O
- DDR registers in I/O cells
- High Current LED Drivers
 - Three High Current Drivers used for three different LEDs or one RGB LED
- High Performance, Flexible I/O Buffer
 - Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8
 - LVDS25E, subLVDS

- Schmitt trigger inputs, to 200 mV typical hysteresis
- Programmable pull-up mode
- Flexible On-Chip Clocking
 - · Eight low-skew global clock resources
 - Up to two analog PLLs per device
- Flexible Device Configuration
 - SRAM is configured through:
 - Standard SPI Interface
 - Internal Nonvolatile Configuration Memory (NVCM)
- Broad Range of Package Options
 - WLCSP, QFN, VQFP, TQFP, ucBGA, caBGA, and csBGA package options
 - Small footprint package options — As small as 1.40 mm x 1.48 mm
 - Advanced halogen-free packaging

Part Number		LP384	LP640	LP1K	LP4K	LP8K	HX1K	HX4K	HX8K
Logic Cells (LUT + Flip-Flop)		384	640	1,280	3,520	7,680	1,280	3,520	7,680
RAM4K Memory Blocks		0	8	16	20	32	16	20	32
RAM4K RAM bits		0	32K	64K	80K	128K	64K	80K	128K
Phase-Locked Loops (PLLs)		0	0	1 ¹	2 ²	2 ²	1 ¹	2	2
Maximum Programmable I/C	Pins	63	25	95	167	178	95	95	206
Maximum Differential Input F	Pairs	8	3	12	20	23	11	12	26
High Current LED Drivers		0	3	3	0	0	0	0	0
Package	Code		•	Programn	hable I/O:	Max Inputs	(LVDS25)		
16 WLCSP (1.40 mm x 1.48 mm, 0.35 mm)	SWG16		10(0) ¹	10(0) ¹					
32 QFN (5 mm x 5 mm, 0.5 mm)	SG32	21(3)							
36 ucBGA (2.5 mm x 2.5 mm, 0.4 mm)	CM36	25(3)		25(3) ¹					
49 ucBGA (3 mm x 3 mm, 0.4 mm)	CM49	37(6)		35(5) ¹					
81 ucBGA (4 mm x 4 mm, 0.4 mm)	CM81			63(8)	63(9) ²	63(9) ²			
81 csBGA (5 mm x 5 mm, 0.5 mm)	CB81			62(9) ¹					

Table 1-1. iCE40 Family Selection Guide

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Data Sheet DS1040

						-		· · · · · · · · · · · · · · · · · · ·
84 QFN (7 mm x 7 mm, 0.5 mm)	QN84		67(7) ¹					
100 VQFP (14 mm x 14 mm, 0.5 mm)	VQ100					72(9) ¹		
121 ucBGA (5 mm x 5 mm, 0.4 mm)	CM121		95(12)	93(13)	93(13)			
121 csBGA (6 mm x 6 mm, 0.5 mm)	CB121		92(12)					
121 caBGA (9 mm x 9 mm, 0.8 mm)	BG121						93(13)	93(13)
132 csBGA (8 mm x 8 mm, 0.5 mm)	CB132					95(11)	95(12)	95(12)
144 TQFP (20 mm x 20 mm, 0.5 mm)	TQ144					96(12)	107(14)	
225 ucBGA (7 mm x 7 mm, 0.4 mm)	CM225			178(23)	178(23)			178(23)
256-ball caBGA (14 mm x 14 mm, 0.8 mm)	CT256							206(26)

1. No PLL available on the 16 WLCSP, 36 ucBGA, 81 csBGA, 84 QFN and 100 VQFP packages.

2. Only one PLL available on the 81 ucBGA package.

3. High Current I/Os only available on the 16 WLCSP package.

Introduction

The iCE40 family of ultra-low power, non-volatile FPGAs has five devices with densities ranging from 384 to 7680 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic, these devices feature Embedded Block RAM (EBR), Non-volatile Configuration Memory (NVCM) and Phase Locked Loops (PLLs). These features allow the devices to be used in low-cost, high-volume consumer and system applications. Select packages offer High-Current drivers that are ideal to drive three white LEDs, or one RGB LED.

The iCE40 devices are fabricated on a 40 nm CMOS low power process. The device architecture has several features such as programmable low-swing differential I/Os and the ability to turn off on-chip PLLs dynamically. These features help manage static and dynamic power consumption, resulting in low static power for all members of the family. The iCE40 devices are available in two versions – ultra low power (LP) and high performance (HX) devices.

The iCE40 FPGAs are available in a broad range of advanced halogen-free packages ranging from the space saving 1.40x1.48 mm WLCSP to the PCB-friendly 20x20 mm TQFP. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The iCE40 devices offer enhanced I/O features such as pull-up resistors. Pull-up features are controllable on a "per-pin" basis.

The iCE40 devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices can also configure themselves from external SPI Flash or be configured by an external master such as a CPU.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40 family of devices. Popular logic synthesis tools provide synthesis library support for iCE40. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the iCE40 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules, including a number of reference designs, licensed free of charge, optimized for the iCE40 FPGA family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.

Routing

There are many resources provided in the iCE40 devices to route signals individually with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient connections in the diagonal, horizontal and vertical directions.

The design tool takes the output of the synthesis tool and places and routes the design.

Clock/Control Distribution Network

Each iCE40 device has eight global inputs, two pins on each side of the device. Note that not all GBINs are available in all packages.

These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are identified as GBIN[7:0] and the global buffers are identified as-GBUF[7:0]. These eight inputs may be used as general purpose I/O if they are not used to drive the clock nets. Global buffer GBUF7 in I/O Bank 3 also provides an optional direct LVDS25 or subLVDS differential clock input.

Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input.

Global Buffer	LUT Inputs	Clock	Reset	Clock Enable
GBUF0		Yes	Yes	
GBUF1		Yes		Yes
GBUF2		Yes	Yes	
GBUF3	Yes, any 4 of 8	Yes		Yes
GBUF4	GBUF Inputs	Yes	Yes	
GBUF5		Yes		Yes
GBUF6	-	Yes	Yes	
GBUF7		Yes		Yes

Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks

The maximum frequency for the global buffers are shown in the iCE40 External Switching Characteristics tables later in this document.

Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Note the sysMEM Embedded Block RAM Memory address 0 cannot be initialized.

Memory Cascading

Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks.

RAM4k Block

Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array.

Figure 2-4. sysMEM Memory Primitives

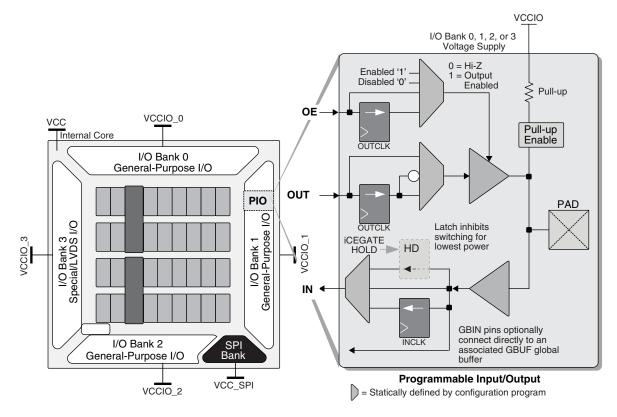


Table 2-5. EBR Signal Descriptions

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input.
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit; 1 = don't write bit
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.
WE	Input	Write Enable input.
WCLKE	Input	Write Clock Enable input.
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.
RDATA[15:0]	Output	Read Data output.
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.
RE	Input	Read Enable input.
RCLKE	Input	Read Clock Enable input.
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.

For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices.

syslO


Buffer Banks

iCE40 devices have up to four I/O banks with independent V_{CCIO} rails with an additional configuration bank V_{CC} SPI for the SPI I/Os.

Programmable I/O (PIO)

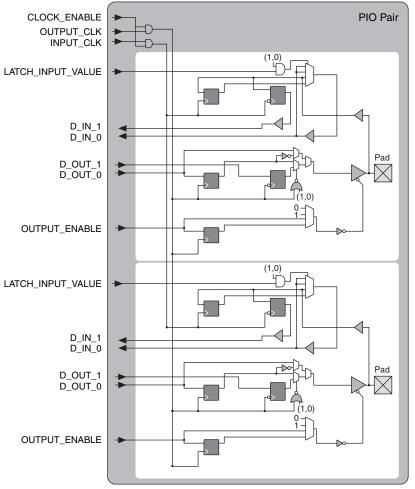
The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. The PIOs are placed on all four sides of the device.

Figure 2-5. I/O Bank and Programmable I/O Cell

The PIO contains three blocks: an input register block, output register block iCEgate[™] and tri-state register block. To save power, the optional iCEgate[™] latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Note that the freeze signal is common to the bank. These blocks can operate in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface signals before they are passed to the device core. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock signal, creating two data streams.


Output Register Block

The output register block can optionally register signals from the core of the device before they are passed to the sysIO buffers. In Generic DDR mode, two registers are used to capture the data on the positive and negative edge of the system clock and then muxed creating one data stream.

Figure 2-6 shows the input/output register block for the PIOs.

Figure 2-6. iCE I/O Register Block Diagram

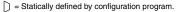


Table 2-6. PIO Signal List

Pin Name	I/O Type	Description
OUTPUT_CLK	Input	Output register clock
CLOCK_ENABLE	Input	Clock enable
INPUT_CLK	Input	Input register clock
OUTPUT_ENABLE	Input	Output enable
D_OUT_0/1	Input	Data from the core
D_IN_0/1	Output	Data to the core
LATCH_INPUT_VALUE	Input	Latches/holds the Input Value

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS and LVDS25.

High Current LED Drivers combine three sysIO buffers together. This allows for programmable drive strength. This also allows for high current drivers that are ideal to drive three white LEDs, or one RGB LED. Each bank is capable of supporting multiple I/O standards including single-ended LVCMOS buffers and differential LVDS25E output buf-

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL,} I _{IH} ^{1, 3, 4, 5, 6, 7}	Input or I/O Leakage	$0V < V_{IN} < V_{CCIO} + 0.2 V$	—	—	+/—10	μA
C ₁ ^{6, 7}	I/O Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 to V_{CCIO} + 0.2 V$	_	6	_	pf
C ₂ ^{6, 7}	Global Input Buffer Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 to V_{CCIO} + 0.2 V$	_	6	_	pf
V _{HYST}	Input Hysteresis	V _{CCIO} = 1.8 V, 2.5 V, 3.3 V	—	200		mV
I _{PU} ^{6, 7}	Internal PIO Pull-up	$V_{CCIO} = 1.8 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-3		-31	μΑ
	Current	$V_{CCIO} = 2.5 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-8	—	-72	μA
		$V_{CCIO} = 3.3 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-11	—	-128	μA

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled.

2. T_J 25°C, f = 1.0 MHz.

3. Please refer to VIL and VIH in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. Only applies to IOs in the SPI bank following configuration.

5. Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO}}.$

6. High current IOs has three sysIO buffers connected together.

7. The iCE40LP640 and iCE40LP1K SWG16 package has CDONE and a sysIO buffer are connected together.

Static Supply Current – LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
I _{CC}		iCE40LP384	21	μA
		iCE40LP640	100	μA
	Core Power Supply	iCE40LP1K	100	μA
		iCE40LP4K	250	μA
		iCE40LP8K	250	μA
I _{CCPLL} ^{5, 6}	PLL Power Supply	All devices	0.5	μA
I _{PP_2V5}	NVCM Power Supply	All devices	1.0	μA
ICCIO, ICC_SPI	Bank Power Supply⁴ V _{CCIO} = 2.5 V	All devices	3.5	μΑ

1. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

2. Frequency = 0 MHz.

3. $T_J = 25$ °C, power supplies at nominal voltage.

4. Does not include pull-up.

5. No PLL available on the iCE40LP384 and iCE40LP640 device.

6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

Peak Startup Supply Current – HX Devices

Symbol	Parameter	Device	Max	Units
		iCE40HX1K	6.9	mA
ICCPEAK	Core Power Supply	iCE40HX4K	22.3	mA
		iCE40HX1K iCE40HX4K iCE40HX8K iCE40HX1K iCE40HX4K iCE40HX4K	22.3	mA
I _{CCPLLPEAK} ¹		iCE40HX1K	1.8	mA
	PLL Power Supply	iCE40HX4K	6.4	mA
		iCE40HX8K	6.4	mA
		iCE40HX1K	2.8	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40HX4K	4.1	mA
	NVCM Power Supply iCE4	iCE40HX8K	4.1	mA
		iCE40HX1K	6.8	mA
ICCIOPEAK, ICC_SPIPEAK	Bank Power Supply	iCE40HX4K	6.8	mA
		iCE40HX4K 22.3 iCE40HX8K 22.3 iCE40HX8K 22.3 iCE40HX1K 1.8 iCE40HX4K 6.4 iCE40HX4K 6.4 iCE40HX1K 2.8 iCE40HX4K 4.1 iCE40HX4K 4.1 iCE40HX4K 4.1 iCE40HX1K 6.8 iCE40HX1K 6.8	6.8	mA

1. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)					
Standard	Min.	Тур.	Max.			
LVCMOS 3.3	3.14	3.3	3.46			
LVCMOS 2.5	2.37	2.5	2.62			
LVCMOS 1.8	1.71	1.8	1.89			
LVDS25E ^{1, 2}	2.37	2.5	2.62			
subLVDSE ^{1, 2}	1.71	1.8	1.89			

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. Does not apply to Configuration Bank V_{CC_SPI}.

sysIO Single-Ended DC Electrical Characteristics

Input/	V _{IL}		V _{IH} ¹				1		
Output Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)	
LVCMOS 3.3	-0.3	0.8 2.0		V _{CCIO} + 0.2 V	0.4	$V_{CCIO} - 0.4$	8, 16 ² , 24 ²	-8, -16 ² , -24 ²	
EVOINOU 0.0	0.0	0.0	2.0	VCCI0 + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1	
LVCMOS 2.5	-0.3	07 17	0.7	1.7			$V_{CCIO} - 0.4$	6, 12 ² , 18 ²	-6, -12 ² , -18 ²
2.0	0.0	0.7	1.7	1.7 V _{CCIO} + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1	
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}		0.4	$V_{CCIO} - 0.4$	4, 8 ² , 12 ²	-4, -8 ² , -12 ²	
	-0.5	0.33 A CCIO	0.03 A CCIO	V _{CCIO} + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1	

1. Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO.}}$

2. Only for High Drive LED outputs.

Typical Building Block Function Performance – LP Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	11.0	ns
4:1 MUX	12.0	ns
16:1 MUX	13.0	ns

Register-to-Register Performance

Function	Timing	Units				
Basic Functions	· · ·					
16:1 MUX	190	MHz				
16-bit adder	160	MHz				
16-bit counter	175	MHz				
64-bit counter	65	MHz				
Embedded Memory Functions						
256x16 Pseudo-Dual Port RAM	240	MHz				

1. The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

Typical Building Block Function Performance – HX Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	10.0	ns
4:1 MUX	9.0	ns
16:1 MUX	9.5	ns

Register-to-Register Performance

Function	Timing	Units						
Basic Functions								
16:1 MUX	305	MHz						
16-bit adder	220	MHz						
16-bit counter	255	MHz						
64-bit counter	105	MHz						
Embedded Memory Functions								
256x16 Pseudo-Dual Port RAM	403	MHz						

1. The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

iCE40 External Switching Characteristics – LP Devices (Continued)^{1, 2}

Over Recommended Operating Conditions

Parameter	Description	Device	Min.	Max.	Units
	Clock to Data Hold - PIO Input Register	iCE40LP1K	-0.90	_	ns
t _{HPLL}		iCE40LP4K	-0.80	_	ns
		iCE40LP8K	-0.80		ns

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions can be extracted from the iCECube2 software.

2. General I/O timing numbers based on LVCMOS 2.5, 0pf load.

3. Supported on devices with a PLL.

SPI Master or NVCM Configuration Time^{1, 2}

Symbol	Parameter	Conditions	Тур.	Units
		iCE40LP384 - Low Frequency (Default)	25	ms
		iCE40LP384 - Medium Frequency	15	ms
		iCE40LP384 - High Frequency	11	ms
		iCE40LP640 - Low Frequency (Default)	53	ms
		iCE40LP640 - Medium Frequency	25	ms
		iCE40LP640 - High Frequency	13	ms
		iCE40LP/HX1K - Low Frequency (Default)		ms
t _{CONFIG}	POR/CRESET_B to Device I/O Active	iCE40LP/HX1K - Medium Frequency	25	ms
		iCE40LP/HX1K - High Frequency	13	ms
		iCE40LP/HX4K - Low Frequency (Default)	230	ms
		iCE40LP/HX4K - Medium Frequency	110	ms
		iCE40LP/HX4K - High Frequency	70	ms
		iCE40LP/HX8K - Low Frequency (Default)	230	ms
	iCE40LP/HX8K - Medium Frequency	110	ms	
		iCE40LP/HX8K - High Frequency	70	ms

1. Assumes sysMEM Block is initialized to an all zero pattern if they are used.

2. The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

Switching Test Conditions

Figure 3-3 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-3.

Figure 3-3. Output Test Load, LVCMOS Standards

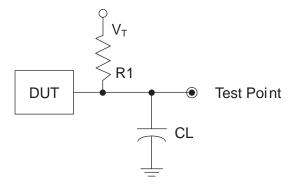


Table 3-3. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Reference	V _T
LVCMOS settings (L -> H, H -> L)			LVCMOS 3.3 = 1.5 V	—
	×	0 pF	LVCMOS 2.5 = $V_{CCIO}/2$	—
			LVCMOS 1.8 = $V_{CCIO}/2$	—
LVCMOS 3.3 (Z -> H)			1.5	V _{OL}
LVCMOS 3.3 (Z -> L)	188	0 pF	1.5	V _{OH}
Other LVCMOS (Z -> H)			V _{CCIO} /2	V _{OL}
Other LVCMOS (Z -> L)	100		V _{CCIO} /2	V _{OH}
LVCMOS (H -> Z)			V _{OH} - 0.15	V _{OL}
LVCMOS (L -> Z)			V _{OL} - 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

iCE40 LP/HX Family Data Sheet Pinout Information

March 2017

Data Sheet DS1040

Signal Descriptions

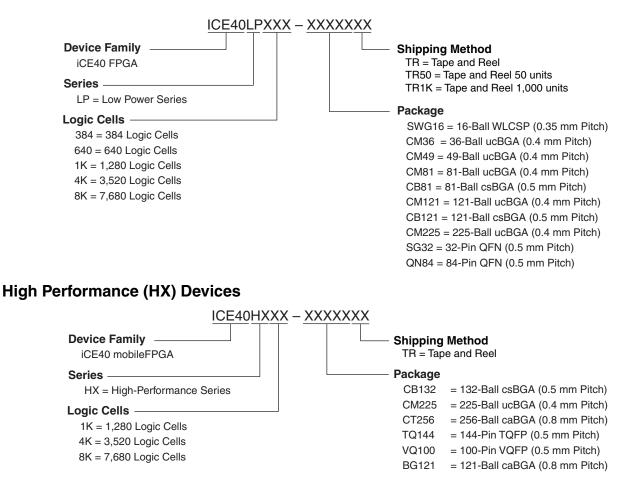
Signal Name	I/O	Descriptions
General Purpose		
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device.
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device. [A/B] indicates the differential I/O. 'A' = negative input. 'B' = positive input.
HCIO[Bank]_[Number]	I/O	High Current IO. [Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number.
NC	—	No connect
GND	—	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together.
VCC	—	VCC – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
VCCIO_x	—	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. All VCCIOs located in the same bank are tied to the same supply.
PLL and Global Functions (Used as u	ser-programmable I/O pins when not used for PLL or clock pins)
VCCPLLx	_	PLL VCC – Power. Dedicated pins. The PLL requires a separate power and ground that is quiet and stable to reduce the output clock jitter of the PLL.
GNDPLLx	_	PLL GND – Ground. Dedicated pins. The sysCLOCK PLL has the DC ground con- nection made on the FPGA, so the external PLL ground connection (GNDPLL) must NOT be connected to the board's ground.
GBINx	—	Global pads. Two per side.
Programming and Configur	ation	
CBSEL[0:1]	I/O	Dual function pins. I/Os when not used as CBSEL. Optional ColdBoot configuration SELect input, if ColdBoot mode is enabled.
CRESET_B	I	Configuration Reset, active Low. Dedicated input. No internal pull-up resistor. Either actively drive externally or connect a 10 KOhm pull-up resistor to VCCIO_2.
CDONE	I/O	Configuration Done. Includes a permanent weak pull-up resistor to VCCIO_2. If driv- ing external devices with CDONE output, an external pull-up resistor to VCCIO_2 may be required. Refer to the TN1248, iCE40 Programming and Configuration for more details. Following device configuration the iCE40LP640 and iCE40LP1K in the SWG16 package CDONE pin can be used as a user output.
VCC_SPI	—	SPI interface voltage supply input. Must have a valid voltage even if configuring from NVCM.
SPI_SCK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA configuration modes.
SPI_SS_B	I/O	SPI Slave Select. Active Low. Includes an internal weak pull-up resistor to VCC_SPI during configuration. During configuration, the logic level sampled on this pin determines the configuration mode used by the iCE40 device. An input when sampled at the start of configuration. An input when in SPI Peripheral configuration mode (SPI_SS_B = Low). An output when in Master SPI Flash configuration mode.
SPI_SI	I/O	Slave SPI serial data input and master SPI serial data output
SPI_SO	I/O	Slave SPI serial data output and master SPI serial data input

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary

	i	CE40LP38	84	iCE40LP640				iCE4	0LP1K			
	SG32	CM36 ²	CM49 ²	SWG16	SWG16	CM36 ^{1, 2}	CM49 ^{1, 2}	CM81	CB81	QN84	CM121	CB121
General Purpose I/O per Ban	k											
Bank 0	6	4	10	3	3	4	10	17	17	17	24	24
Bank 1	5	7	7	0	0	7	7	15	16	17	25	21
Bank 2	0	4	4	1	1	4	4	11	8	11	18	19
Bank 3	6	6	12	2	2	6	10	16	17	18	24	24
Configuration	4	4	4	4	4	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	21	25	37	10	10	25	35	63	62	67	95	92
High Current Outputs per Ba	ink											
Bank 0	0	0	0	3	3	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0
Total Current Outputs	0	0	0	3	3	0	0	0	0	0	0	0
Differential Inputs per Bank				L						•		
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	3	3	6	1	1	3	5	8	9	7	12	12
Total Differential Inputs	3	3	6	1	1	3	5	8	9	7	12	12
Dedicated Inputs per Bank												
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	2	2	2	1	1	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0	0	0	0	0	0
Total Dedicated Inputs	2	2	2	1	1	2	2	2	2	2	2	2
Vccio Pins		1				1			1			
Bank 0	1	1	1	1	1	1	1	1	1	1	2	1
Bank 1	1	1	1	0	0	0	0	1	1	1	2	1
Bank 2	1	1	1	1	1	1	1	1	1	1	2	1
Bank 3	1	0	0	0	0	0	0	1	1	1	2	2
VCC	1	1	2	1	1	1	2	3	3	4	4	4
VCC_SPI	1	1	1	0	0	1	1	1	1	1	1	1
VPP_2V5	1	1	1	0	0	1	1	1	1	1	1	1
VPP_FAST ³	0	0	0	0	0	1	1	1	0	1	1	1
VCCPLL	0	0	0	0	0	0	1	1	0	0	1	1
GND	2	3	3	2	2	3	4	5	8	4	8	11
NC	0	0	0	0	0	0	0	0	0	0	0	3
Total Count of Bonded Pins	32	36	49	16	16	36	49	81	81	84	121	121

V_{CCIO2} and V_{CCIO1} are connected together.
V_{CCIO2} and V_{CCIO3} are connected together.
V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.


iCE40 LP/HX Family Data Sheet Ordering Information

March 2017

Data Sheet DS1040

iCE40 Part Number Description

Ultra Low Power (LP) Devices

All parts shipped in trays unless noted.

Ordering Information

iCE40 devices have top-side markings as shown below:

Note: Markings are abbreviated for small packages.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40LP384-CM36	384	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP384-CM36TR	384	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP384-CM36TR1K	384	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP384-CM49	384	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP384-CM49TR	384	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP384-CM49TR1K	384	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP384-SG32	384	1.2 V	Halogen-Free QFN	32	IND
ICE40LP384-SG32TR	384	1.2 V	Halogen-Free QFN	32	IND
ICE40LP384-SG32TR1K	384	1.2 V	Halogen-Free QFN	32	IND
ICE40LP640-SWG16TR	640	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP640-SWG16TR50	640	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP640-SWG16TR1K	640	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-SWG16TR	1280	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-SWG16TR50	1280	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-SWG16TR1K	1280	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-CM36	1280	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP1K-CM36TR	1280	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP1K-CM36TR1K	1280	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP1K-CM49	1280	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP1K-CM49TR	1280	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP1K-CM49TR1K	1280	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP1K-CM81	1280	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP1K-CM81TR	1280	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP1K-CM81TR1K	1280	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP1K-CB81	1280	1.2 V	Halogen-Free csBGA	81	IND
ICE40LP1K-CB81TR	1280	1.2 V	Halogen-Free csBGA	81	IND
ICE40LP1K-CB81TR1K	1280	1.2 V	Halogen-Free csBGA	81	IND
ICE40LP1K-CM121	1280	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP1K-CM121TR	1280	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP1K-CM121TR1K	1280	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP1K-CB121	1280	1.2 V	Halogen-Free csBGA	121	IND
ICE40LP1K-QN84	1280	1.2 V	Halogen-Free QFN	84	IND
ICE40LP4K-CM81	3520	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP4K-CM81TR	3520	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP4K-CM81TR1K	3520	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP4K-CM121	3520	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP4K-CM121TR	3520	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP4K-CM121TR1K	3520	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP4K-CM225	3520	1.2 V	Halogen-Free ucBGA	225	IND
ICE40LP8K-CM81	7680	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP8K-CM81TR	7680	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP8K-CM81TR1K	7680	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP8K-CM121	7680	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP8K-CM121TR	7680	1.2 V	Halogen-Free ucBGA	121	IND

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40LP8K-CM121TR1K	7680	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND

High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40HX1K-CB132	1280	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX1K-VQ100	1280	1.2 V	Halogen-Free VQFP	100	IND
ICE40HX1K-TQ144	1280	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX4K-BG121	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-BG121TR	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-CB132	3520	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX4K-TQ144	3520	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX8K-BG121	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-BG121TR	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-CB132	7680	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND
ICE40HX8K-CT256	7680	1.2 V	Halogen-Free caBGA	256	IND

iCE40 LP/HX Family Data Sheet Supplemental Information

March 2017

Data Sheet DS1040

For Further Information

A variety of technical notes for the iCE40 family are available on the Lattice web site.

- TN1248, iCE40 Programming and Configuration
- TN1250, Memory Usage Guide for iCE40 Devices
- TN1251, iCE40 sysCLOCK PLL Design and Usage Guide
- TN1252, iCE40 Hardware Checklist
- TN1253, Using Differential I/O (LVDS, Sub-LVDS) in iCE40 Devices
- TN1074, PCB Layout Recommendations for BGA Packages
- iCE40 Pinout Files
- Thermal Management document
- Lattice design tools
- IBIS
- Package Diagrams Data Sheet
- Schematic Symbols

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

iCE40 LP/HX Family Data Sheet Revision History

March 2017

Data Sheet DS1040

Date	Version	Section	Change Summary
March 2017	3.3	Introduction	Updated Features section. Added 121-ball caBGA package for ICE40 HX4K/8K to Table 1-1, iCE40 Family Selection Guide.
		Architecture	Updated PLB Blocks section. Changed "subtracters" to "subtractors" in the Carry Logic description.
			Updated Clock/Control Distribution Network section. Switched the "Clock Enable" and the "Reset" headings in Table 2-2, Global Buffer (GBUF) Connections to Programmable Logic Blocks.
		Pinout Information	Updated Pin Information Summary section. Added BG121information under iCE40HX4K and iCE40HX8K.
		Ordering Information	Updated iCE40 Part Number Description section. Added Shipping Method and BG121 package under High Performance (HX) Devices.
			Updated Ordering Information section. Added part numbers for BG121 under High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging.
		Supplemental Information	Corrected reference to "Package Diagrams Data Sheet".
October 2015	3.2	Introduction	Updated Features section. Added footnote to 16 WLCSP Programma- ble I/O: Max Inputs (LVDS25) in Table 1-1, iCE40 Family Selection Guide.
		DC and Switching Characteristics	Updated sysCLOCK PLL Timing section. Changed t _{DT} conditions.
			Updated Programming NVCM Supply Current – LP Devices section. Changed $I_{PP_{2V5}}$ and I_{CCIO} , $I_{CC_{SPI}}$ units.
March 2015	3.1	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics section. Changed LVCMOS 3.3 and LVCMOS 2. 5 V _{OH} Min. (V) from 0.5 to 0.4.
July 2014	3.0	DC and Switching Characteristics	Revised and/or added Typ. V _{CC} data in the following sections. — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices In each section table, the footnote indicating Advanced device status was removed.
		Pinout Information	Updated Pin Information Summary section. Added footnote 1 to CM49 under iCE40LP1K.
April 2014	02.9	Ordering Information	Changed "i" to "I" in part number description and ordering part numbers.
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
February 2014	02.8	Introduction	Updated Features section. — Corrected standby power units. — Included High Current LED Drivers
			Updated Table 1-1, iCE40 Family Selection Guide. — Removed LP384 Programmable I/O for 81 ucBGA package.
		Architecture	Updated Supported Standards section. Added information on High Current LED drivers.
		DC and Switching Characteristics	Corrected typos.
			Added footnote to the Peak Startup Supply Current – LP Devices table.
		Ordering Information	Updated part number description in the Ultra Low Power (LP) Devices section.
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
October 2013	02.7	Introduction	Updated Features list and iCE40 Family Selection Guide table.
		Architecture	Revised iCE40-1K device to iCE40LP/HX1K device.
		DC and Switching Characteristics	Added iCE40LP640 device information.
		Pinout Information	Added iCE40LP640 and iCE40LP1K information.
		Ordering Information	Added iCE40LP640 and iCE40LP1K information.
September 2013	02.6	DC and Switching Characteristics	Updated Absolute Maximum Ratings section.
			Updated sysCLOCK PLL Timing – Preliminary table.
		Pinout Information	Updated Pin Information Summary table.
August 2013	02.5	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching Characteristics	Updated the following tables: — Absolute Maximum Ratings — Power-On-Reset Voltage Levels — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices — Peak Startup Supply Current – LP Devices — sysIO Recommended Operating Conditions — Typical Building Block Function Performance – HX Devices — iCE40 External Switching Characteristics – HX Devices — sysCLOCK PLL Timing – Preliminary — SPI Master or NVCM Configuration Time
		Pinout Information	Updated the Pin Information Summary table.
July 2013	02.4	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching Characteristics	Updated the sysCONFIG Port Timing Specifications table.
			Updated footnote in DC Electrical Characteristics table.
			GDDR tables removed. Support to be provided in a technical note.
		Pinout Information	Updated the Pin Information Summary table.
		Ordering Information	Updated the top-side markings figure.
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
May 2013	02.3	DC and Switching Characteristics	Added new data from Characterization.