

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	92
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	121-VFBGA, CSBGA
Supplier Device Package	121-CSBGA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40lp1k-cb121

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iCE40 LP/HX Family Data Sheet Introduction

March 2017 Data Sheet DS1040

Features

■ Flexible Logic Architecture

 Five devices with 384 to 7,680 LUT4s and 10 to 206 I/Os

■ Ultra Low Power Devices

- Advanced 40 nm low power process
- As low as 21 μA standby power
- Programmable low swing differential I/Os

■ Embedded and Distributed Memory

 Up to 128 kbits sysMEM[™] Embedded Block RAM

■ Pre-Engineered Source Synchronous I/O

• DDR registers in I/O cells

■ High Current LED Drivers

Three High Current Drivers used for three different LEDs or one RGB LED

■ High Performance, Flexible I/O Buffer

- Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8
 - LVDS25E, subLVDS

- Schmitt trigger inputs, to 200 mV typical hysteresis
- Programmable pull-up mode

■ Flexible On-Chip Clocking

- Eight low-skew global clock resources
- Up to two analog PLLs per device

■ Flexible Device Configuration

- SRAM is configured through:
 - Standard SPI Interface
 - Internal Nonvolatile Configuration Memory (NVCM)

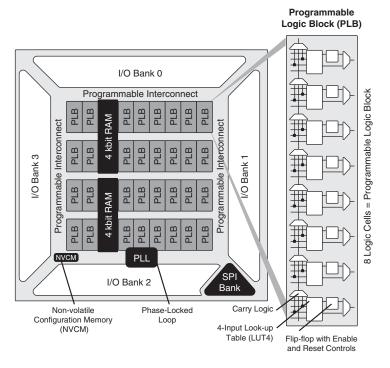
Broad Range of Package Options

- WLCSP, QFN, VQFP, TQFP, ucBGA, caBGA, and csBGA package options
- · Small footprint package options
 - As small as 1.40 mm x 1.48 mm
- · Advanced halogen-free packaging

Table 1-1. iCE40 Family Selection Guide

Part Number		LP384	LP640	LP1K	LP4K	LP8K	HX1K	HX4K	HX8K
Logic Cells (LUT + Flip-Flop))	384	384 640 1,280 3,520			7,680	1,280	3,520	7,680
RAM4K Memory Blocks		0	8	16	20	32	16	20	32
RAM4K RAM bits		0	32K	64K	80K	128K	64K	80K	128K
Phase-Locked Loops (PLLs)		0	0	1 ¹	2 ²	2 ²	1 ¹	2	2
Maximum Programmable I/C) Pins	63	25	95	167	178	95	95	206
Maximum Differential Input F	Pairs	8	3	12	20	23	11	12	26
High Current LED Drivers		0	3	3	0	0	0	0	0
Package	Code			Programn	nable I/O: I	Max Inputs	(LVDS25)	•	
16 WLCSP (1.40 mm x 1.48 mm, 0.35 mm)	SWG16		10(0) ¹	10(0) ¹					
32 QFN (5 mm x 5 mm, 0.5 mm)	SG32	21(3)							
36 ucBGA (2.5 mm x 2.5 mm, 0.4 mm)	CM36	25(3)		25(3) ¹					
49 ucBGA (3 mm x 3 mm, 0.4 mm)	CM49	37(6)		35(5) ¹					
81 ucBGA (4 mm x 4 mm, 0.4 mm)	CM81			63(8)	63(9) ²	63(9) ²			
81 csBGA (5 mm x 5 mm, 0.5 mm)	CB81			62(9) ¹					

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.


iCE40 LP/HX Family Data Sheet Architecture

March 2017 Data Sheet DS1040

Architecture Overview

The iCE40 family architecture contains an array of Programmable Logic Blocks (PLB), sysCLOCK™ PLLs, Non-volatile Programmable Configuration Memory (NVCM) and blocks of sysMEM™ Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1 shows the block diagram of the iCE40LP/HX1K device.

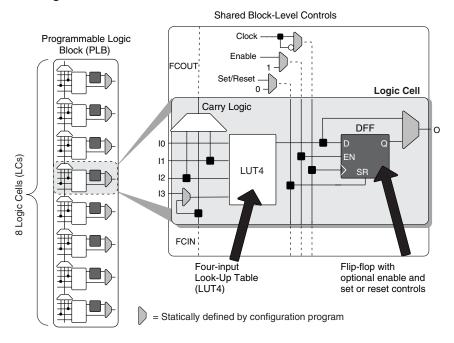
Figure 2-1. iCE40LP/HX1K Device, Top View

The logic blocks, Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either logic blocks or EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the iCE40 family, there are up to four independent sysIO banks. Note on some packages V_{CCIO} banks are tied together. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO.

The iCE40 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a SPI port that supports programming and configuration of the device. The iCE40 includes on-chip, Nonvolatile Configuration Memory (NVCM).


© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PLB Blocks

The core of the iCE40 device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register.

Figure 2-2. PLB Block Diagram

Logic Cells

Each Logic Cell includes three primary logic elements shown in Figure 2-2.

- A four-input Look-Up Table (LUT4) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT4 element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUT4s to create wider logic functions.
- A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration.
- Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtractors, comparators, binary counters and some wide, cascaded logic functions.

Table 2-1. Logic Cell Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	10, 11, 12, 13	Inputs to LUT4
Input	Control signal	Enable	Clock enable shared by all LCs in the PLB
Input	Control signal	Set/Reset ¹	Asynchronous or synchronous local set/reset shared by all LCs in the PLB.
Input	Control signal	Clock	Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB
Input	Inter-PLB signal	FCIN	Fast carry in
Output	Data signals	0	LUT4 or registered output
Output	Inter-PFU signal	FCOUT	Fast carry out

^{1.} If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration.

Global Reset Control

The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application.

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 devices have one or more sys-CLOCK PLLs. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 6. The PLLOUT outputs can all be used to drive the iCE40 global clock network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3.

The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the t_{LOCK} parameter has been satisfied.

For more details on the PLL, see TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.

Figure 2-3. PLL Diagram

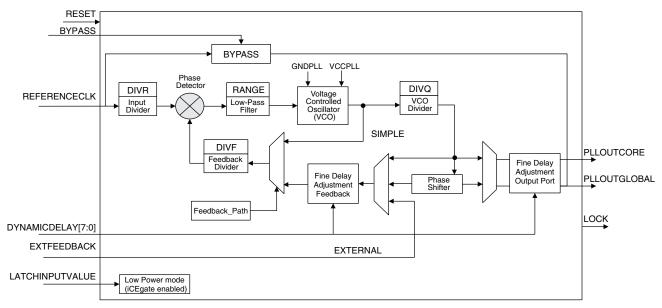


Table 2-3 provides signal descriptions of the PLL block.

Table 2-3. PLL Signal Descriptions

Signal Name	Direction	Description
REFERENCECLK	Input	Input reference clock
BYPASS	Input	When FEEDBACK_PATH is set to SIMPLE, the BYPASS control selects which clock signal connects to the PLLOUT output.
BTFAGG	при	0 = PLL generated signal 1 = REFERENCECLK
EXTFEEDBACK	Input	External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set to EXTERNAL.
DYNAMICDELAY[3:0]	Input	Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE is set to DYNAMIC.
LATCHINPUTVALUE	Input	When enabled, forces the PLL into low-power mode; PLL output is held static at the last input clock value. Set ENABLE ICEGATE_PORTA and PORTB to '1' to enable.
PLLOUTGLOBAL	Output	Output from the Phase-Locked Loop (PLL). Drives a global clock network on the FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5.
PLLOUTCORE	Output	Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.
LOCK	Output	When High, indicates that the PLL output is phase aligned or locked to the input reference clock.
RESET	Input	Active low reset.

sysMEM Embedded Block RAM Memory

Larger iCE40 device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each 4 kbit in size. This memory can be used for a wide variety of purposes including data buffering, and FIFO.

sysMEM Memory Block

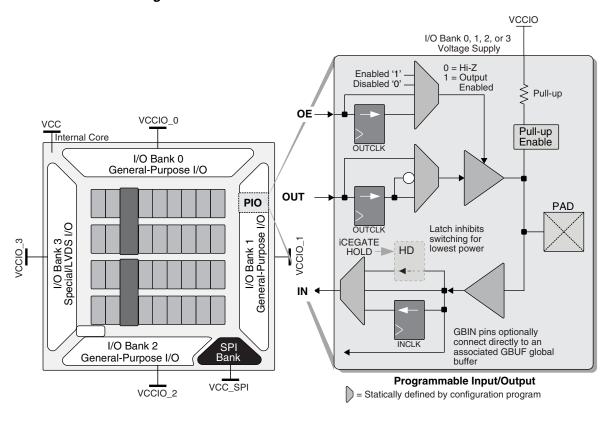
The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources. Each block can be used in a variety of depths and widths as shown in Table 2-4.

Table 2-4. sysMEM Block Configurations¹

Block RAM Configuration	Block RAM Configuration and Size	WADDR Port Size (Bits)	WDATA Port Size (Bits)	RADDR Port Size (Bits)	RDATA Port Size (Bits)	MASK Port Size (Bits)
SB_RAM256x16 SB_RAM256x16NR SB_RAM256x16NW SB_RAM256x16NRNW	256x16 (4K)	8 [7:0]	16 [15:0]	8 [7:0]	16 [15:0]	16 [15:0]
SB_RAM512x8 SB_RAM512x8NR SB_RAM512x8NW SB_RAM512x8NRNW	512x8 (4K)	9 [8:0]	8 [7:0]	9 [8:0]	8 [7:0]	No Mask Port
SB_RAM1024x4 SB_RAM1024x4NR SB_RAM1024x4NW SB_RAM1024x4NRNW	1024x4 (4K)	10 [9:0]	4 [3:0]	10 [9:0]	4 [3:0]	No Mask Port
SB_RAM2048x2 SB_RAM2048x2NR SB_RAM2048x2NW SB_RAM2048x2NRNW	2048x2 (4K)	11 [10:0]	2 [1:0]	11 [10:0]	2 [1:0]	No Mask Port

^{1.} For iCE40 EBR primitives with a negative-edged Read or Write clock, the base primitive name is appended with a 'N' and a 'R' or 'W' depending on the clock that is affected.

sys_IO


Buffer Banks

iCE40 devices have up to four I/O banks with independent V_{CCIO} rails with an additional configuration bank $V_{CC\ SPI}$ for the SPI I/Os.

Programmable I/O (PIO)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. The PIOs are placed on all four sides of the device.

Figure 2-5. I/O Bank and Programmable I/O Cell

The PIO contains three blocks: an input register block, output register block iCEgate[™] and tri-state register block. To save power, the optional iCEgate[™] latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Note that the freeze signal is common to the bank. These blocks can operate in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface signals before they are passed to the device core. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock signal, creating two data streams.

Output Register Block

The output register block can optionally register signals from the core of the device before they are passed to the sysIO buffers. In Generic DDR mode, two registers are used to capture the data on the positive and negative edge of the system clock and then muxed creating one data stream.

Figure 2-6 shows the input/output register block for the PIOs.

fers. Bank 3 additionally supports differential LVDS25 input buffers. Each sysIO bank has its own dedicated power supply.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} have reached the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins will maintain the pre-configuration state until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached levels, at which time the I/Os will take on the software user-configured settings only after a proper download/configuration. Unused IOs are automatically blocked and the pullup termination is disabled.

Supported Standards

The iCE40 sysIO buffer supports both single-ended and differential input standards. The single-ended standard supported is LVCMOS. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none). The High Current output buffer have individually configurable options for drive strength.

Table 2-7 and Table 2-8 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 devices.

Table 2-7. Supported Input Standards

Input Standard		V _{CCIO} (Typical)					
input Standard	3.3 V	3.3 V 2.5 V					
Single-Ended Interfaces	<u> </u>						
LVCMOS33	Yes						
LVCMOS25		Yes					
LVCMOS18			Yes				
Differential Interfaces	<u> </u>						
LVDS25 ¹		Yes					
subLVDS ¹			Yes				

^{1.} Bank 3 only.

Table 2-8. Supported Output Standards

Output Standard	V _{CCIO} (Typical)
Single-Ended Interfaces	
LVCMOS33	3.3
LVCMOS25	2.5
LVCMOS18	1.8
Differential Interfaces	
LVDS25E ¹	2.5
subLVDSE ¹	1.8

^{1.} These interfaces can be emulated with external resistors in all devices.

Non-Volatile Configuration Memory

All iCE40 devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device.

For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration Usage Guide.

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter		Min.	Max.	Units
		All configuration modes. No power supply sequencing.	0.40	10	V/ms
		Configuring from Slave SPI. No power supply sequencing,	0.01	10	V/ms
^t RAMP	Power supply ramp rates for all power supplies.	Configuring from NVCM. V_{CC} and V_{PP_2V5} to be powered 0.25 ms before V_{CC_SPI} .	0.01	10	V/ms
		Configuring from MSPI. V_{CC} and V_{PP_SPI} to be powered 0.25 ms before V_{PP_2V5} .	0.01	10	V/ms

^{1.} Assumes monotonic ramp rates.

Power-On-Reset Voltage Levels¹

Symbol	Device	Parameter		Min.	Max.	Units
V _{PORUP} iCE ²	iCE40LP384	Power-On-Reset ramp-up trip point	VCC	0.67	0.99	V
		(band gap based circuit monitoring VCC, VCCIO 2, VCC SPI and	VCCIO_2	0.70	1.59	V
iCE40LP640, iCE40LP/HX1K, iCE40LP/HX4K, iCE40LP/HX8K	VPP_2V5)	VCC_SPI	0.70	1.59	V	
	·	VPP_2V5	0.70	1.59	V	
	Power-On-Reset ramp-up trip point (band gap based circuit monitoring VCC, VCCIO_2, VCC_SPI and VPP_2V5)	VCC	0.55	0.75	V	
		VCCIO_2	0.86	1.29	V	
		VCC_SPI	0.86	1.29	V	
		VPP_2V5	0.86	1.33	V	
V _{PORDN}	iCE40LP384	Power-On-Reset ramp-down trip point (band gap based circuit monitoring VCC, VCCIO_2, VCC_SPI and VPP_2V5)	VCC	_	0.64	V
			VCCIO_2	_	1.59	V
			VCC_SPI	_	1.59	V
			VPP_2V5	_	1.59	V
	iCE40LP640,	Power-On-Reset ramp-down trip	VCC	_	0.75	V
iCE40LP/HX4K	iCE40LP/HX1K,		VCCIO_2	_	1.29	V
	iCE40LP/HX8K		VCC_SPI	_	1.29	V
			VPP_2V5	_	1.33	V

^{1.} These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

ESD Performance

Please refer to the iCE40 Product Family Qualification Summary for complete qualification data, including ESD performance.

^{2.} iCE40LP384 requires V_{CC} to be greater than 0.7V when V_{CCIO} and V_{CC_SPI} are above GND.

Static Supply Current – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
		iCE40HX1K	296	μΑ
I _{CC}	Core Power Supply	iCE40HX4K	1140	μΑ
		iCE40HX8K	1140	μΑ
I _{CCPLL} ⁵	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	1.0	μΑ
Iccio, Icc_spi	Bank Power Supply ⁴ V _{CCIO} = 2.5 V	All devices	3.5	μΑ

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

- 2. Frequency = 0 MHz.
- 3. $T_J = 25$ °C, power supplies at nominal voltage.
- 4. Does not include pull-up.
- 5. $V_{\mbox{\footnotesize CCPLL}}$ is tied to $V_{\mbox{\footnotesize CC}}$ internally in packages without PLLs pins.

Programming NVCM Supply Current – LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40LP384	60	μΑ
		iCE40LP640	120	μΑ
I _{CC}	Core Power Supply	iCE40LP1K	120	μΑ
		iCE40LP4K	350	μΑ
		iCE40LP8K	350	μΑ
I _{CCPLL} ^{6, 7}	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	2.5	mA
I _{CCIO⁸, I_{CC_SPI}}	Bank Power Supply⁵	All devices	3.5	mA

- 1. Assumes all inputs are held at $V_{\mbox{\scriptsize CCIO}}$ or GND and all outputs are tri-stated.
- 2. Typical user pattern.
- 3. SPI programming is at 8 MHz.
- 4. $T_{.1} = 25$ °C, power supplies at nominal voltage.
- 5. Per bank. $V_{CCIO} = 2.5 \text{ V}$. Does not include pull-up.
- 6. No PLL available on the iCE40-LP384 and iCE40-LP640 device.
- 7. $V_{\mbox{\footnotesize CCPLL}}$ is tied to $V_{\mbox{\footnotesize CC}}$ internally in packages without PLLs pins.
- 8. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Peak Startup Supply Current – HX Devices

Symbol	Parameter	Device	Max	Units
		iCE40HX1K	6.9	mA
I _{CCPEAK}	Core Power Supply	iCE40HX4K	22.3	mA
		iCE40HX8K	22.3	mA
		iCE40HX1K	1.8	mA
I _{CCPLLPEAK} ¹	PLL Power Supply	iCE40HX4K	6.4	mA
		iCE40HX8K	6.4	mA
		iCE40HX1K	2.8	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40HX4K	4.1	mA
		iCE40HX8K	4.1	mA
ICCIOPEAK, ICC_SPIPEAK	Bank Power Supply	iCE40HX1K	6.8	mA
		iCE40HX4K	6.8	mA
		iCE40HX8K	6.8	mA

^{1.} $\rm V_{CCPLL}$ is tied to $\rm V_{CC}$ internally in packages without PLLs pins.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)					
Standard	Min.	Тур.	Max.			
LVCMOS 3.3	3.14	3.3	3.46			
LVCMOS 2.5	2.37	2.5	2.62			
LVCMOS 1.8	1.71	1.8	1.89			
LVDS25E ^{1, 2}	2.37	2.5	2.62			
subLVDSE ^{1, 2}	1.71	1.8	1.89			

^{1.} Inputs on-chip. Outputs are implemented with the addition of external resistors.

sysIO Single-Ended DC Electrical Characteristics

Input/	V	V _{IL}		V _{IH} ¹		\/ B#1		
Output Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)
LVCMOS 3.3	-0.3	0.8	2.0	V _{CCIO} + 0.2 V	0.4	V _{CCIO} - 0.4	8, 16 ² , 24 ²	$-8, -16^2, -24^2$
LV OIVIOU 3.5	5.	0.0	2.0	ACCIO + 0.5 A	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 2.5	-0.3	0.7	1.7	V _{CCIO} + 0.2 V	0.4	V _{CCIO} - 0.4	6, 12 ² , 18 ²	$-6, -12^2, -18^2$
LV CIVIOS 2.5	-0.5	0.7	1.7	VCCIO + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.8	-0.3	0.051/	0.65V _{CCIO}	V .02V	0.4	V _{CCIO} - 0.4	4, 8 ² , 12 ²	$-4, -8^2, -12^2$
LVCIVIOS 1.8	-0.5	0.35V _{CCIO}	0.03 V CCIO	V _{CCIO} + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1

^{1.} Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO.}}$

^{2.} Does not apply to Configuration Bank V_{CC SPI}.

^{2.} Only for High Drive LED outputs.

sysIO Differential Electrical Characteristics

The LVDS25E/subLVDSE differential output buffers are available on all banks but the LVDS/subLVDS input buffers are only available on Bank 3 of iCE40 devices.

LVDS25

Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V_{INP} , V_{INM}	Input Voltage	$V_{\text{CCIO}}^{1} = 2.5$	0		2.5	V
V_{THD}	Differential Input Threshold		250	350	450	mV
V_{CM}	Input Common Mode Voltage	$V_{CCIO}^{1} = 2.5$	(V _{CCIO} /2) - 0.3	V _{CCIO} /2	$(V_{CCIO}/2) + 0.3$	V
I _{IN}	Input Current	Power on		1	±10	μΑ

^{1.} Typical.

subLVDS

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage	$V_{\text{CCIO}}^{1} = 1.8$	0	_	1.8	V
V_{THD}	Differential Input Threshold		100	150	200	mV
V _{CM}	Input Common Mode Voltage	$V_{\text{CCIO}}^{1} = 1.8$	(V _{CCIO} /2) - 0.25	V _{CCIO} /2	$(V_{CCIO}/2) + 0.25$	V
I _{IN}	Input Current	Power on	_	_	±10	μΑ

^{1.} Typical.

LVDS25E Emulation

iCE40 devices can support LVDSE outputs via emulation on all banks. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS25E standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS25E Using External Resistors

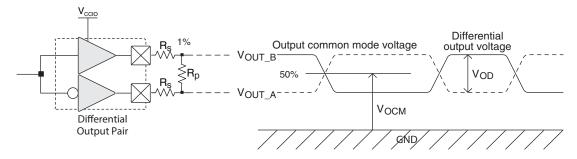


Table 3-1. LVDS25E DC Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	150	Ohms
R _P	Driver parallel resistor	140	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.30	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

iCE40 External Switching Characteristics – LP Devices 1,2

Parameter	Description	Device	Min.	Max.	Units
Clocks	·		•		•
Global Clocks					
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All iCE40LP devices	_	275	MHz
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All iCE40LP devices	0.92	_	ns
	Global Buffer Clock Skew Within a Device	iCE40LP384	_	370	ps
		iCE40LP640	_	230	ps
t _{SKEW_GBUF}		iCE40LP1K	_	230	ps
		iCE40LP4K	_	340	ps
		iCE40LP8K	_	340	ps
Pin-LUT-Pin Propa	ngation Delay		•		•
t _{PD}	Best case propagation delay through one LUT-4	All iCE40LP devices	_	9.36	ns
General I/O Pin Pa	rameters (Using Global Buffer Clock withou	it PLL) ³	"		
		iCE40LP384		300	ps
		iCE40LP640	_	200	ps
t _{SKEW_IO}	Data bus skew across a bank of IOs	iCE40LP1K	_	200	ps
		iCE40LP4K	_	280	ps
		iCE40LP8K	_	280	ps
		iCE40LP384	_	6.33	ns
		iCE40LP640	_	5.91	ns
t _{CO}	Clock to Output - PIO Output Register	iCE40LP1K	_	5.91	ns
		iCE40LP4K	_	6.58	ns
		iCE40LP8K	_	6.58	ns
		iCE40LP384	-0.08	_	ns
		iCE40LP640	-0.33	_	ns
t _{SU}	Clock to Data Setup - PIO Input Register	iCE40LP1K	-0.33		ns
		iCE40LP4K	-0.63	_	ns
		iCE40LP8K	-0.63	_	ns
		iCE40LP384	1.99	_	ns
		iCE40LP640	2.81	_	ns
t _H	Clock to Data Hold - PIO Input Register	iCE40LP1K	2.81	_	ns
		iCE40LP4K	3.48		ns
		iCE40LP8K	3.48		ns
General I/O Pin Pa	rameters (Using Global Buffer Clock with P	•			
		iCE40LP1K		2.20	ns
t _{COPLL}	Clock to Output - PIO Output Register	iCE40LP4K		2.30	ns
		iCE40LP8K		2.30	ns
		iCE40LP1K	5.23	_	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	iCE40LP4K	6.13	_	ns
		iCE40LP8K	6.13	_	ns

iCE40 External Switching Characteristics – LP Devices (Continued)^{1, 2}

Parameter	Description	Device	Min.	Max.	Units
	Clock to Data Hold - PIO Input Register	iCE40LP1K	-0.90	_	ns
t _{HPLL}		iCE40LP4K	-0.80	_	ns
		iCE40LP8K	-0.80	_	ns

^{1.} Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions can be extracted from the iCECube2 software.

^{2.} General I/O timing numbers based on LVCMOS 2.5, 0pf load.

^{3.} Supported on devices with a PLL.

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (REFERENCECLK, EXTFEEDBACK)		10	133	MHz
f _{OUT}	Output Clock Frequency (PLLOUT)		16	275	MHz
f_{VCO}	PLL VCO Frequency		533	1066	MHz
f _{PFD}	Phase Detector Input Frequency		10	133	MHz
AC Characterist	tics		•		
	Output Clock Duty Cycle	f _{OUT} < 175 MHz	40	50	%
t _{DT}	Output Clock Duty Cycle	175 MHz < f _{OUT} < 275 MHz	35	65	"%
t _{PH}	Output Phase Accuracy		_	+/-12	deg
	Output Clock Period Jitter	f _{OUT} <= 100 MHz	_	450	ps p-p
	Output Clock Period Sitter	f _{OUT} > 100 MHz	_	0.05	UIPP
1 , 5	Output Clock Cycle to evale litter	f _{OUT} <= 100 MHz	_	750	ps p-p
t _{OPJIT} 1,5	Output Clock Cycle-to-cycle Jitter	f _{OUT} > 100 MHz	_	0.10	UIPP
	Output Clock Phase Jitter	f _{PFD} <= 25 MHz	_	275	ps p-p
	Output Clock Phase Jiller	f _{PFD} > 25 MHz	_	0.05	UIPP
t _W	Output Clock Pulse Width	At 90% or 10%	1.3	_	ns
t _{LOCK} ^{2, 3}	PLL Lock-in Time		_	50	us
t _{UNLOCK}	PLL Unlock Time		_	50	ns
+ 4	Input Clock Period Jitter	f _{PFD} ≥ 20 MHz	_	1000	ps p-p
t _{IPJIT} ⁴	Input Clock Feriod Sitter	f _{PFD} < 20 MHz	_	0.02	UIPP
t _{FDTAP}	Fine Delay adjustment, per Tap		147	195	ps
t _{STABLE} ³	LATCHINPUTVALUE LOW to PLL Stable		_	500	ns
t _{STABLE_PW} ³	LATCHINPUTVALUE Pulse Width		_	100	ns
t _{RST}	RESET Pulse Width		10	_	ns
t _{RSTREC}	RESET Recovery Time		10	_	us
t _{DYNAMIC_WD}	DYNAMICDELAY Pulse Width		100	_	VCO Cycles
+	Propagation delay with the PLL in bypass	iCE40LP	1.18	4.68	ns
t _{PDBYPASS}	mode	iCE40HX	1.73	4.07	ns

^{1.} Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

^{2.} Output clock is valid after $t_{\mbox{\scriptsize LOCK}}$ for PLL reset and dynamic delay adjustment.

^{3.} At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

^{4.} Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table.

^{5.} The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

SPI Master or NVCM Configuration Time^{1, 2}

Symbol	Parameter	Conditions	Тур.	Units
		iCE40LP384 - Low Frequency (Default)	25	ms
		iCE40LP384 - Medium Frequency	15	ms
		iCE40LP384 - High Frequency	11	ms
		iCE40LP640 - Low Frequency (Default)	53	ms
		iCE40LP640 - Medium Frequency	25	ms
		iCE40LP640 - High Frequency	13	ms
		iCE40LP/HX1K - Low Frequency (Default)		ms
t _{CONFIG}	POR/CRESET_B to Device I/O Active	iCE40LP/HX1K - Medium Frequency	25	ms
		iCE40LP/HX1K - High Frequency	13	ms
		iCE40LP/HX4K - Low Frequency (Default)	230	ms
		iCE40LP/HX4K - Medium Frequency	110	ms
		iCE40LP/HX4K - High Frequency	70	ms
	iCE40LP/HX8K - Low Frequency (December 2)	iCE40LP/HX8K - Low Frequency (Default)	230	ms
		iCE40LP/HX8K - Medium Frequency	110	ms
		iCE40LP/HX8K - High Frequency	70	ms

^{1.} Assumes sysMEM Block is initialized to an all zero pattern if they are used.

^{2.} The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

Switching Test Conditions

Figure 3-3 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-3.

Figure 3-3. Output Test Load, LVCMOS Standards

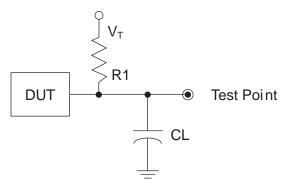


Table 3-3. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Reference	V _T
			LVCMOS 3.3 = 1.5 V	_
LVCMOS settings (L -> H, H -> L)	∞	0 pF	LVCMOS 2.5 = V _{CCIO} /2	_
			LVCMOS 1.8 = V _{CCIO} /2	_
LVCMOS 3.3 (Z -> H)			1.5	V _{OL}
LVCMOS 3.3 (Z -> L)			1.5	V _{OH}
Other LVCMOS (Z -> H)	188	0 [V _{CCIO} /2	V _{OL}
Other LVCMOS (Z -> L)	100	0 pF	V _{CCIO} /2	V _{OH}
LVCMOS (H -> Z)			V _{OH} - 0.15	V _{OL}
LVCMOS (L -> Z)			V _{OL} - 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Pin Information Summary (Continued)

	iCE40HX4K			iCE40HX8K			
	BG121	CB132	TQ144	BG121	CB132	CM225	CT256
General Purpose I/O per Bank						1	l
Bank 0	23	24	27	23	24	46	52
Bank 1	21	25	29	21	25	42	52
Bank 2	19	18	19	19	18	40	46
Bank 3	26	24	28	26	24	46	52
Configuration	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	93	95	107	93	95	178	206
High Current Outputs per Bank	4	•				•	
Bank 0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0
Total Differential Inputs	0	0	0	0	0	0	0
Differential Inputs per Bank	II.	1				1	l
Bank 0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0
Bank 3	13	12	14	13	12	23	26
Total Differential Inputs	13	12	14	13	12	23	26
Dedicated Inputs per Bank	4	•				•	
Bank 0	0	0	0	0	0	0	0
Bank 1	0	1	1	0	1	1	1
Bank 2	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0
Total Dedicated Inputs	2	3	3	2	3	3	3
Vccio Pins	•	•				•	•
Bank 0	1	2	2	1	2	3	4
Bank 1	1	2	2	1	2	3	4
Bank 2	1	2	2	1	2	3	4
Bank 3	2	3	2	2	3	4	4
VCC	4	5	4	4	5	8	6
VCC_SPI	1	1	1	1	1	1	1
VPP_2V5	1	1	1	1	1	1	1
VPP_FAST ¹	1	1	1	1	1	1	1
VCCPLL	2	2	2	2	2	2	2
GND	12	15	11	12	15	18	20
NC	0	0	6	0	0	0	0
Total Count of Bonded Pins	121	132	144	121	132	225	256

^{1.} V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40LP8K-CM121TR1K	7680	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND

High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40HX1K-CB132	1280	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX1K-VQ100	1280	1.2 V	Halogen-Free VQFP	100	IND
ICE40HX1K-TQ144	1280	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX4K-BG121	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-BG121TR	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-CB132	3520	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX4K-TQ144	3520	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX8K-BG121	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-BG121TR	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-CB132	7680	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND
ICE40HX8K-CT256	7680	1.2 V	Halogen-Free caBGA	256	IND

iCE40 LP/HX Family Data Sheet Revision History

March 2017 Data Sheet DS1040

Date	Version	Section	Change Summary	
March 2017 3.3	3.3	Introduction	Updated Features section. Added 121-ball caBGA package for ICE40 HX4K/8K to Table 1-1, iCE40 Family Selection Guide.	
		Architecture	Updated PLB Blocks section. Changed "subtracters" to "subtractors" in the Carry Logic description.	
			Updated Clock/Control Distribution Network section. Switched the "Clock Enable" and the "Reset" headings in Table 2-2, Global Buffer (GBUF) Connections to Programmable Logic Blocks.	
		Pinout Information	Updated Pin Information Summary section. Added BG121information under iCE40HX4K and iCE40HX8K.	
		Ordering Information	Updated iCE40 Part Number Description section. Added Shipping Method and BG121 package under High Performance (HX) Devices.	
			Updated Ordering Information section. Added part numbers for BG121 under High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging.	
	Supplemental Information	Corrected reference to "Package Diagrams Data Sheet".		
October 2015 3.	3.2	Introduction	Updated Features section. Added footnote to 16 WLCSP Programmable I/O: Max Inputs (LVDS25) in Table 1-1, iCE40 Family Selection Guide.	
		DC and Switching Characteristics	Updated sysCLOCK PLL Timing section. Changed t _{DT} conditions.	
			Updated Programming NVCM Supply Current – LP Devices section. Changed I _{PP_2V5} and I _{CCIO} , I _{CC_SPI} units.	
March 2015	3.1	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics section. Changed LVCMOS 3.3 and LVCMOS 2. 5 V _{OH} Min. (V) from 0.5 to 0.4.	
July 2014	3.0	DC and Switching Characteristics	Revised and/or added Typ. V _{CC} data in the following sections. — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices In each section table, the footnote indicating Advanced device status was removed.	
		Pinout Information	Updated Pin Information Summary section. Added footnote 1 to CM49 under iCE40LP1K.	
April 2014	02.9	Ordering Information	Changed "i" to "I" in part number description and ordering part numbers.	
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.	