

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	95
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	121-VFBGA, CSBGA
Supplier Device Package	121-UCBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40lp1k-cm121tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Global Reset Control

The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application.

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 devices have one or more sys-CLOCK PLLs. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 6. The PLLOUT outputs can all be used to drive the iCE40 global clock network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3.

The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the t_{LOCK} parameter has been satisfied.

For more details on the PLL, see TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.

Figure 2-3. PLL Diagram

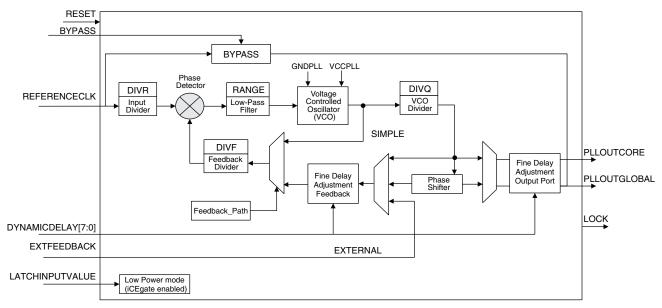
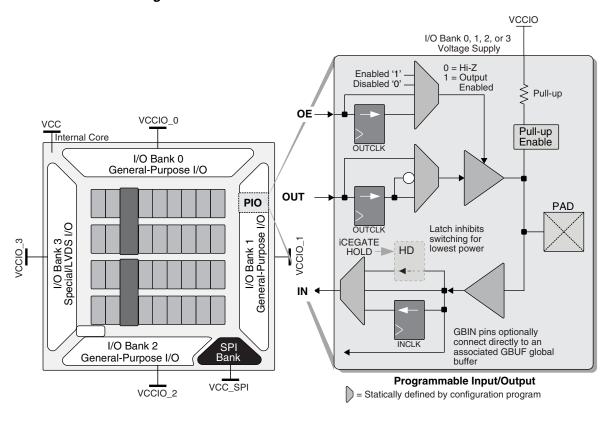


Table 2-3 provides signal descriptions of the PLL block.

sys_IO


Buffer Banks

iCE40 devices have up to four I/O banks with independent V_{CCIO} rails with an additional configuration bank $V_{CC\ SPI}$ for the SPI I/Os.

Programmable I/O (PIO)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. The PIOs are placed on all four sides of the device.

Figure 2-5. I/O Bank and Programmable I/O Cell

The PIO contains three blocks: an input register block, output register block iCEgate[™] and tri-state register block. To save power, the optional iCEgate[™] latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Note that the freeze signal is common to the bank. These blocks can operate in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface signals before they are passed to the device core. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock signal, creating two data streams.

Output Register Block

The output register block can optionally register signals from the core of the device before they are passed to the sysIO buffers. In Generic DDR mode, two registers are used to capture the data on the positive and negative edge of the system clock and then muxed creating one data stream.

Figure 2-6 shows the input/output register block for the PIOs.

fers. Bank 3 additionally supports differential LVDS25 input buffers. Each sysIO bank has its own dedicated power supply.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} have reached the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins will maintain the pre-configuration state until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached levels, at which time the I/Os will take on the software user-configured settings only after a proper download/configuration. Unused IOs are automatically blocked and the pullup termination is disabled.

Supported Standards

The iCE40 sysIO buffer supports both single-ended and differential input standards. The single-ended standard supported is LVCMOS. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none). The High Current output buffer have individually configurable options for drive strength.

Table 2-7 and Table 2-8 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 devices.

Table 2-7. Supported Input Standards

Input Standard		V _{CCIO} (Typical)		
input Standard	3.3 V	2.5 V	1.8 V	
Single-Ended Interfaces	<u> </u>			
LVCMOS33	Yes			
LVCMOS25		Yes		
LVCMOS18			Yes	
Differential Interfaces	<u> </u>			
LVDS25 ¹		Yes		
subLVDS ¹			Yes	

^{1.} Bank 3 only.

Table 2-8. Supported Output Standards

Output Standard	V _{CCIO} (Typical)
Single-Ended Interfaces	
LVCMOS33	3.3
LVCMOS25	2.5
LVCMOS18	1.8
Differential Interfaces	
LVDS25E ¹	2.5
subLVDSE ¹	1.8

^{1.} These interfaces can be emulated with external resistors in all devices.

Non-Volatile Configuration Memory

All iCE40 devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device.

For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration Usage Guide.

Power On Reset

iCE40 devices have power-on reset circuitry to monitor V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} (controls configuration) voltage levels. It then triggers download from the on-chip NVCM or external Flash memory after reaching the power-up levels specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tri-state. I/Os are released to user functionality once the device has finished configuration.

Programming and Configuration

This section describes the programming and configuration of the iCE40 family.

Device Programming

The NVCM memory can be programmed through the SPI port.

Device Configuration

There are various ways to configure the Configuration RAM (CRAM) including:

- 1. Internal NVCM Download
- 2. From a SPI Flash (Master SPI mode)
- 3. System microprocessor to drive a Serial Slave SPI port (SSPI mode)

The image to configure the CRAM can be selected by the user on power up (Cold Boot) or once powered up (Warm Boot).

For more details on programming and configuration, see TN1248, iCE40 Programming and Configuration Usage Guide.

Power Saving Options

iCE40 devices are available in two options for maximum flexibility: LP and HX devices. The LP devices have ultra low static and dynamic power consumption. HX devices are designed to provide high performance. Both the LP and the HX devices operate at 1.2 V $V_{\rm CC}$.

iCE40 devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. While these features are available in both device types, these features are mainly intended for use with iCE40 LP devices to manage power consumption.

Table 2-9. iCE40 Power Saving Features Description

Device Subsystem	Feature Description
	When LATCHINPUTVALUE is enabled, forces the PLL into low-power mode; PLL output held static at last input clock value.
	To save power, the optional iCEgate latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control.

iCE40 LP/HX Family Data Sheet DC and Switching Characteristics

October 2015 Data Sheet DS1040

Absolute Maximum Ratings^{1, 2, 3, 4}

	iCE40 LP/HX
Supply Voltage V _{CC}	. −0.5 V to 1.42 V
Output Supply Voltage V _{CCIO} , V _{CC_SPI}	. −0.5 V to 3.60 V
NVCM Supply Voltage V _{PP_2V5}	. −0.5 V to 3.60 V
PLL Supply Voltage V _{CCPLL}	. −0.5 V to 1.30 V
I/O Tri-state Voltage Applied	. −0.5 V to 3.60 V
Dedicated Input Voltage Applied	. −0.5 V to 3.60 V
Storage Temperature (Ambient)	. –65 °C to 150 °C
Junction Temperature (T _J)	. –55 °C to 125 °C

^{1.} Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

- 2. Compliance with the Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- IOs can support a 200 mV Overshoot above the Recommend Operating Conditions V_{CCIO} (Max) and -200mV Undershoot below V_{IL} (Min).
 Overshoot and Undershoot is permitted for 25% duty cycle but must not exceed 1.6 ns.

Recommended Operating Conditions¹

Symbol	Paramete	er	Min.	Max.	Units
V _{CC} ¹	Core Supply Voltage		1.14	1.26	V
	Slave SPI Configuration	1.71	3.46	V	
V	V _{PP_2V5} NVCM Programming and Operating Supply Voltage	Master SPI Configuration	2.30	3.46	V
V _{PP_2V5}	Operating Supply Voltage	Configure from NVCM	2.30	3.46	V
4 Outing 16 at NIVOM and an arrange 1	NVCM Programming	2.30	3.00	V	
V _{PP_FAST} ⁴	Optional fast NVCM programming supply. Leave unconnected.		N/A	N/A	V
V _{CCPLL} ^{5, 6}	PLL Supply Voltage		1.14	1.26	V
1, 2, 3	I/O Driver Supply Voltage	V _{CCIO0-3}	1.71	3.46	V
V _{CCIO} ^{1, 2, 3}	70 Driver Supply voltage	V _{CC_SPI}	1.71	3.46	V
t _{JIND}	Junction Temperature Industrial Operation		-40	100	°C
t _{PROG}	Junction Temperature NVCM Programming		10	30	°C

Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC_SPI} are both the same voltage, they must also be the same supply.

^{2.} See recommended voltages by I/O standard in subsequent table.

^{3.} V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

^{5.} No PLL available on the iCE40LP384 and iCE40LP640 device.

^{6.} V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

Static Supply Current – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
		iCE40HX1K	296	μΑ
I _{CC}	Core Power Supply	iCE40HX4K	1140	μΑ
		iCE40HX8K	1140	μΑ
I _{CCPLL} ⁵	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	1.0	μΑ
Iccio, Icc_spi	Bank Power Supply ⁴ V _{CCIO} = 2.5 V	All devices	3.5	μΑ

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

- 2. Frequency = 0 MHz.
- 3. $T_J = 25$ °C, power supplies at nominal voltage.
- 4. Does not include pull-up.
- 5. $V_{\mbox{\footnotesize CCPLL}}$ is tied to $V_{\mbox{\footnotesize CC}}$ internally in packages without PLLs pins.

Programming NVCM Supply Current – LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40LP384	60	μΑ
		iCE40LP640	120	μΑ
I _{CC}	Core Power Supply	iCE40LP1K	120	μΑ
		iCE40LP4K	350	μΑ
		iCE40LP8K	350	μΑ
I _{CCPLL} ^{6, 7}	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	2.5	mA
I _{CCIO⁸, I_{CC_SPI}}	Bank Power Supply⁵	All devices	3.5	mA

- 1. Assumes all inputs are held at $V_{\mbox{\scriptsize CCIO}}$ or GND and all outputs are tri-stated.
- 2. Typical user pattern.
- 3. SPI programming is at 8 MHz.
- 4. $T_{.1} = 25$ °C, power supplies at nominal voltage.
- 5. Per bank. $V_{CCIO} = 2.5 \text{ V}$. Does not include pull-up.
- 6. No PLL available on the iCE40-LP384 and iCE40-LP640 device.
- 7. $V_{\mbox{\footnotesize CCPLL}}$ is tied to $V_{\mbox{\footnotesize CC}}$ internally in packages without PLLs pins.
- 8. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Programming NVCM Supply Current – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40HX1K	278	μΑ
I _{CC}	Core Power Supply	iCE40HX4K	1174	μΑ
		iCE40HX8K	1174	μΑ
I _{CCPLL} ⁶	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	2.5	mA
I _{CCIO} ⁷ , I _{CC SPI}	Bank Power Supply⁵	All devices	3.5	mA

- 1. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.
- 2. Typical user pattern.
- 3. SPI programming is at 8 MHz.
- 4. $T_{J} = 25$ °C, power supplies at nominal voltage.
- 5. Per bank. V_{CCIO} = 2.5 V. Does not include pull-up.
- 6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.
- 7. V_{PP FAST}, used only for fast production programming, must be left floating or unconnected in applications.

Peak Startup Supply Current – LP Devices

Symbol	Parameter	Device	Max	Units
		iCE40LP384	7.7	mA
		iCELP640	6.4	mA
I _{CCPEAK}	Core Power Supply	iCE40LP384 7.7 iCELP640 6.4 iCE40LP1K 6.4 iCE40LP4K 15 iCE40LP8K 15 iCE40LP1K 1.5 iCE40LP1K 8.0 iCE40LP4K 8.0 iCE40LP8K 8.0 iCE40LP1K 7.7 iCE40LP1K 7.7 iCE40LP1K 7.7 iCE40LP1K 8.1 iCE40LP8K 8.0 iCE40LP8K 8.0 iCE40LP8K 8.0	6.4	mA
		iCE40LP4K	15.7	mA
		iCE40LP8K	7.7 6.4 6.4	mA
		iCE40LP1K	1.5	mA
1, 2, 4	PLL Power Supply	iCELP640	1.5	mA
CCPLLPEAK ^{1, 2, 4}	FLL Fower Supply	iCE40LP4K	8.0	mA
		iCE40LP8K	8.0	mA
		iCE40LP384	3.0	mA
		iCELP640	7.7	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40LP1K	7.7	mA
		iCE40LP4K	4.2	mA
		iCE40LP8K	7.7 6.4 6.4 15.7 15.7 1.5 1.5 8.0 8.0 3.0 7.7 7.7 4.2 4.2 5.7 8.1 8.1 8.4 3.3 3.3 8.2	mA
		iCE40LP384	5.7	mA
I _{PP_FASTPEAK} ³	NVCM Programming Supply	iCELP640	8.1	mA
		iCE40LP1K	8.1	mA
		iCE40LP384	8.4	mA
		iCELP640	3.3	mA
ICCIOPEAK ⁵ , ICC_SPIPEAK	Bank Power Supply	iCE40LP1K	3.3	mA
		iCE40LP4K	8.2	mA
IPP_FASTPEAK ³		iCE40LP8K	8.2	mA

- 1. No PLL available on the iCE40LP384 and iCE40LP640 device.
- 2. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.
- 3. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.
- 4. While no PLL is available in the iCE40-LP640 the $I_{CCPLLPEAK}$ is additive to I_{CCPEAK} .
- 5. iCE40LP384 requires V_{CC} to be greater than 0.7 V when V_{CCIO} and V_{CC_SPI} are above GND.

SubLVDS Emulation

The iCE40 family supports the differential subLVDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all banks of the devices. The subLVDS input standard is supported by the LVDS25 differential input buffer. The scheme shown in Figure 3-2 is one possible solution for subLVDSE output standard implementation. Use LVDS25E mode with suggested resistors for subLVDSE operation. Resistor values in Figure 3-2 are industry standard values for 1% resistors.

Figure 3-2. subLVDSE

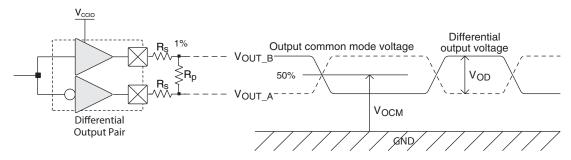


Table 3-2. subLVDSE DC Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	270	Ohms
R _P	Driver parallel resistor	120	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V_{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	0.9	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	2.8	mA

Typical Building Block Function Performance – LP Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		•
16-bit decoder	11.0	ns
4:1 MUX	12.0	ns
16:1 MUX	13.0	ns

Register-to-Register Performance

Function	Timing	Units
Basic Functions	<u> </u>	•
16:1 MUX	190	MHz
16-bit adder	160	MHz
16-bit counter	175	MHz
64-bit counter	65	MHz
Embedded Memory Functions	·	•
256x16 Pseudo-Dual Port RAM	240	MHz

The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Typical Building Block Function Performance – HX Devices^{1, 2} Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	10.0	ns
4:1 MUX	9.0	ns
16:1 MUX	9.5	ns

Register-to-Register Performance

Function	Timing	Units				
Basic Functions	•	·				
16:1 MUX	305	MHz				
16-bit adder	220	MHz				
16-bit counter	255	MHz				
64-bit counter	105	MHz				
Embedded Memory Functions						
256x16 Pseudo-Dual Port RAM	403	MHz				

^{1.} The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

^{2.} Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

^{2.} Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

iCE40 External Switching Characteristics – LP Devices 1,2

Parameter	Description	Device	Min.	Max.	Units
Clocks	·		•		•
Global Clocks					
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All iCE40LP devices	_	275	MHz
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All iCE40LP devices	0.92	_	ns
		iCE40LP384	_	370	ps
		iCE40LP640	_	230	ps
t _{SKEW_GBUF}	Global Buffer Clock Skew Within a Device	iCE40LP1K	_	230	ps
		iCE40LP4K	_	340	ps
		iCE40LP8K	_	340	ps
Pin-LUT-Pin Propa	ngation Delay		•		•
t _{PD}	Best case propagation delay through one LUT-4	All iCE40LP devices	_	9.36	ns
General I/O Pin Pa	rameters (Using Global Buffer Clock withou	it PLL) ³	"		
		iCE40LP384		300	ps
		iCE40LP640	_	200	ps
t _{SKEW_IO}	Data bus skew across a bank of IOs	iCE40LP1K	_	200	ps
		iCE40LP4K	_	280	ps
		iCE40LP8K	_	280	ps
		iCE40LP384	_	6.33	ns
		iCE40LP640	_	5.91	ns
t _{CO}	Clock to Output - PIO Output Register	iCE40LP1K	_	5.91	ns
		iCE40LP4K	_	6.58	ns
		iCE40LP8K	_	6.58	ns
		iCE40LP384	-0.08	_	ns
		iCE40LP640	-0.33	_	ns
t _{SU}	Clock to Data Setup - PIO Input Register	iCE40LP1K	-0.33		ns
		iCE40LP4K	-0.63	_	ns
		iCE40LP8K	-0.63	_	ns
		iCE40LP384	1.99	_	ns
		iCE40LP640	2.81	_	ns
t _H	Clock to Data Hold - PIO Input Register	iCE40LP1K	2.81	_	ns
		iCE40LP4K	3.48		ns
		iCE40LP8K	3.48		ns
General I/O Pin Pa	rameters (Using Global Buffer Clock with P	•			
		iCE40LP1K		2.20	ns
t _{COPLL}	Clock to Output - PIO Output Register	iCE40LP4K		2.30	ns
		iCE40LP8K		2.30	ns
		iCE40LP1K	5.23	_	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	iCE40LP4K	6.13	_	ns
		iCE40LP8K	6.13	_	ns

iCE40 External Switching Characteristics – LP Devices (Continued)^{1, 2}

Parameter	Description	Device	Min.	Max.	Units
		iCE40LP1K	-0.90	_	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	iCE40LP4K	-0.80	_	ns
		iCE40LP8K	-0.80	_	ns

^{1.} Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions can be extracted from the iCECube2 software.

^{2.} General I/O timing numbers based on LVCMOS 2.5, 0pf load.

^{3.} Supported on devices with a PLL.

iCE40 External Switching Characteristics – HX Devices 1,2

Parameter	Description	Device	Min.	Max.	Units
Clocks	-		l	l .	
Primary Clocks					
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All iCE40HX devices	_	275	MHz
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All iCE40HX devices	0.88	_	ns
		iCE40HX1K	_	727	ps
t _{SKEW_GBUF}	Global Buffer Clock Skew Within a Device	iCE40HX4K	_	300	ps
		iCE40HX8K	_	300	ps
Pin-LUT-Pin Prop	pagation Delay		•		•
t _{PD}	Best case propagation delay through one LUT-4	All iCE40 HX devices	_	7.30	ns
General I/O Pin I	Parameters (Using Global Buffer Clock witho	ut PLL)	1	•	•
		iCE40HX1K	_	696	ps
t _{SKEW_IO}	Data bus skew across a bank of IOs	iCE40HX4K	_	290	ps
_		iCE40HX8K	_	290	ps
		iCE40HX1K	_	5.00	ns
t _{CO}	Clock to Output - PIO Output Register	iCE40HX4K	_	5.41	ns
		iCE40HX8K	_	5.41	ns
		iCE40HX1K	-0.23	_	ns
t _{SU}	Clock to Data Setup - PIO Input Register	iCE40HX4K	-0.43	_	ns
		iCE40HX8K	-0.43	_	ns
		iCE40HX1K	1.92	_	ns
t _H	Clock to Data Hold - PIO Input Register	iCE40HX4K	2.38	_	ns
		iCE40HX8K	2.38	_	ns
General I/O Pin I	Parameters (Using Global Buffer Clock with F	PLL) ³	•		•
		iCE40HX1K	_	2.96	ns
t _{COPLL}	Clock to Output - PIO Output Register	iCE40HX4K	_	2.51	ns
		iCE40HX8K	_	2.51	ns
		iCE40HX1K	3.10	_	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	iCE40HX4K	4.16	_	ns
		iCE40HX8K	4.16	_	ns
		iCE40HX1K	-0.60	_	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	iCE40HX4K	-0.53	_	ns
		iCE40HX8K	-0.53	_	ns

^{1.} Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the iCECube2 software.

^{2.} General I/O timing numbers based on LVCMOS 2.5, 0pf load.

^{3.} Supported on devices with a PLL.

sysCLOCK PLL Timing

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (REFERENCECLK, EXTFEEDBACK)		10	133	MHz
f _{OUT}	Output Clock Frequency (PLLOUT)		16	275	MHz
f_{VCO}	PLL VCO Frequency		533	1066	MHz
f _{PFD}	Phase Detector Input Frequency		10	133	MHz
AC Characterist	tics		•		
	Output Clock Duty Cycle	f _{OUT} < 175 MHz	40	50	%
t _{DT}	Output Clock Duty Cycle	175 MHz < f _{OUT} < 275 MHz	35	65	"%
t _{PH}	Output Phase Accuracy		_	+/-12	deg
	Output Clock Period Jitter	f _{OUT} <= 100 MHz	_	450	ps p-p
	Output Clock Period Sitter	f _{OUT} > 100 MHz	_	0.05	UIPP
1 , 5	Output Clock Cycle-to-cycle Jitter	f _{OUT} <= 100 MHz	_	750	ps p-p
t _{OPJIT} 1, 5	Output Clock Cycle-to-cycle Sitter	f _{OUT} > 100 MHz	_	0.10	UIPP
	Output Clock Phase litter	f _{PFD} <= 25 MHz	_	275	ps p-p
	Output Clock Phase Jitter	f _{PFD} > 25 MHz	_	0.05	UIPP
t _W	Output Clock Pulse Width	At 90% or 10%	1.3	_	ns
t _{LOCK} ^{2, 3}	PLL Lock-in Time		_	50	us
t _{UNLOCK}	PLL Unlock Time		_	50	ns
+ 4	Input Clock Period Jitter	f _{PFD} ≥ 20 MHz	_	1000	ps p-p
t _{IPJIT} ⁴	Input Clock Feriod Sitter	f _{PFD} < 20 MHz	_	0.02	UIPP
t _{FDTAP}	Fine Delay adjustment, per Tap		147	195	ps
t _{STABLE} ³	LATCHINPUTVALUE LOW to PLL Stable		_	500	ns
t _{STABLE_PW} ³	LATCHINPUTVALUE Pulse Width		_	100	ns
t _{RST}	RESET Pulse Width		10	_	ns
t _{RSTREC}	RESET Recovery Time		10	_	us
t _{DYNAMIC_WD}	DYNAMICDELAY Pulse Width		100	_	VCO Cycles
+	Propagation delay with the PLL in bypass	iCE40LP	1.18	4.68	ns
t _{PDBYPASS}	mode	iCE40HX	1.73	4.07	ns

^{1.} Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

^{2.} Output clock is valid after $t_{\mbox{\scriptsize LOCK}}$ for PLL reset and dynamic delay adjustment.

^{3.} At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

^{4.} Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table.

^{5.} The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

sysCONFIG Port Timing Specifications¹ (Continued)

Symbol	Parameter		Min.	Тур.	Max.	Units
		iCE40LP384 - Low Frequency (Default)	600	_	_	us
		iCE40LP384 - Medium Frequency	600	_	_	us
		iCE40LP384 - High Frequency	600	_	_	us
		iCE40LP640, iCE40LP/HX1K - Low Frequency (Default)	800	_	_	us
		iCE40LP640, iCE40LP/HX1K - Medium Frequency	800	_	_	us
		iCE40LP640, iCE40LP/HX1K - High Frequency	800	_	_	us
	CRESET_B high to first MCLK	iCE40LP/HX1K -Low Frequency (Default)	800	_	_	us
MCLK	edge	iCE40LP/HX1K - Medium Frequency	800	_	_	us
		iCE40LP/HX1K - High Frequency	800	_	_	us
		iCE40LP/HX4K - Low Frequency (Default)	1200	_	_	us
		iCE40LP/HX4K - Medium Frequency	1200	_	_	us
		iCE40LP/HX4K - high frequency	1200	_	_	us
		iCE40LP/HX8K - Low Frequency (Default)	1200	_	_	us
		iCE40LP/HX8K - Medium Frequency	1200	_	_	us
		iCE40LP/HX8K - High Frequency	1200	_	_	us

Does not apply for NVCM.
 Supported only with 1.2 V V_{CC} and at 25 °C.
 Extended range f_{MAX} Write operations support up to 53 MHz only with 1.2 V V_{CC} and at 25 °C.

iCE40 LP/HX Family Data Sheet Pinout Information

March 2017 Data Sheet DS1040

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose	·	
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device.
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device. [A/B] indicates the differential I/O. 'A' = negative input. 'B' = positive input.
HCIO[Bank]_[Number]	I/O	High Current IO. [Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number.
NC	_	No connect
GND	_	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together.
VCC	_	VCC – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
VCCIO_x	_	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. All VCCIOs located in the same bank are tied to the same supply.
PLL and Global Functions	(Used as ι	ser-programmable I/O pins when not used for PLL or clock pins)
VCCPLLx	_	PLL VCC – Power. Dedicated pins. The PLL requires a separate power and ground that is quiet and stable to reduce the output clock jitter of the PLL.
GNDPLLx	_	PLL GND – Ground. Dedicated pins. The sysCLOCK PLL has the DC ground connection made on the FPGA, so the external PLL ground connection (GNDPLL) must NOT be connected to the board's ground.
GBINx	_	Global pads. Two per side.
Programming and Configu	ration	
CBSEL[0:1]	I/O	Dual function pins. I/Os when not used as CBSEL. Optional ColdBoot configuration SELect input, if ColdBoot mode is enabled.
CRESET_B	I	Configuration Reset, active Low. Dedicated input. No internal pull-up resistor. Either actively drive externally or connect a 10 KOhm pull-up resistor to VCCIO_2.
CDONE	I/O	Configuration Done. Includes a permanent weak pull-up resistor to VCCIO_2. If driving external devices with CDONE output, an external pull-up resistor to VCCIO_2 may be required. Refer to the TN1248, iCE40 Programming and Configuration for more details. Following device configuration the iCE40LP640 and iCE40LP1K in the SWG16 package CDONE pin can be used as a user output.
VCC_SPI	_	SPI interface voltage supply input. Must have a valid voltage even if configuring from NVCM.
SPI_SCK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA configuration modes.
SPI_SS_B	I/O	SPI Slave Select. Active Low. Includes an internal weak pull-up resistor to VCC_SPI during configuration. During configuration, the logic level sampled on this pin determines the configuration mode used by the iCE40 device. An input when sampled at the start of configuration. An input when in SPI Peripheral configuration mode (SPI_SS_B = Low). An output when in Master SPI Flash configuration mode.
SPI_SI	I/O	Slave SPI serial data input and master SPI serial data output
SPI_SO	I/O	Slave SPI serial data output and master SPI serial data input

Signal Descriptions (Continued)

Signal Name	I/O	Descriptions
VPP_FAST	_	Optional fast NVCM programming supply. V_{PP_FAST} , used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.
VPP_2V5	_	VPP_2V5 NVCM programming and operating supply

Pin Information Summary

	i(CE40LP38	34	iCE40LP640	iCE40LP1K							
	SG32	CM36 ²	CM49 ²	SWG16	SWG16	CM36 ^{1, 2}	CM49 ^{1, 2}	CM81	CB81	QN84	CM121	CB121
General Purpose I/O per Ban	k	I	I		1				I	ı	I	
Bank 0	6	4	10	3	3	4	10	17	17	17	24	24
Bank 1	5	7	7	0	0	7	7	15	16	17	25	21
Bank 2	0	4	4	1	1	4	4	11	8	11	18	19
Bank 3	6	6	12	2	2	6	10	16	17	18	24	24
Configuration	4	4	4	4	4	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	21	25	37	10	10	25	35	63	62	67	95	92
High Current Outputs per Ba	nk	1	1		ı		l .		1		I	
Bank 0	0	0	0	3	3	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0
Total Current Outputs	0	0	0	3	3	0	0	0	0	0	0	0
Differential Inputs per Bank		•	•		•				•	•	•	
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	3	3	6	1	1	3	5	8	9	7	12	12
Total Differential Inputs	3	3	6	1	1	3	5	8	9	7	12	12
Dedicated Inputs per Bank		ı	ı				l .		ı		ı	
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	2	2	2	1	1	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0	0	0	0	0	0
Total Dedicated Inputs	2	2	2	1	1	2	2	2	2	2	2	2
Vccio Pins		ı	ı				l .		ı		ı	
Bank 0	1	1	1	1	1	1	1	1	1	1	2	1
Bank 1	1	1	1	0	0	0	0	1	1	1	2	1
Bank 2	1	1	1	1	1	1	1	1	1	1	2	1
Bank 3	1	0	0	0	0	0	0	1	1	1	2	2
VCC	1	1	2	1	1	1	2	3	3	4	4	4
VCC_SPI	1	1	1	0	0	1	1	1	1	1	1	1
VPP_2V5	1	1	1	0	0	1	1	1	1	1	1	1
VPP_FAST ³	0	0	0	0	0	1	1	1	0	1	1	1
VCCPLL	0	0	0	0	0	0	1	1	0	0	1	1
GND	2	3	3	2	2	3	4	5	8	4	8	11
NC	0	0	0	0	0	0	0	0	0	0	0	3
Total Count of Bonded Pins	32	36	49	16	16	36	49	81	81	84	121	121

V_{CCIO0} and V_{CCIO1} are connected together.
 V_{CCIO2} and V_{CCIO3} are connected together.
 V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Pin Information Summary (Continued)

	iCE40HX4K			iCE40HX8K			
	BG121	CB132	TQ144	BG121	CB132	CM225	CT256
General Purpose I/O per Bank						1	I
Bank 0	23	24	27	23	24	46	52
Bank 1	21	25	29	21	25	42	52
Bank 2	19	18	19	19	18	40	46
Bank 3	26	24	28	26	24	46	52
Configuration	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	93	95	107	93	95	178	206
High Current Outputs per Bank	1	•				•	
Bank 0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0
Total Differential Inputs	0	0	0	0	0	0	0
Differential Inputs per Bank	II.	1				1	l
Bank 0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0
Bank 3	13	12	14	13	12	23	26
Total Differential Inputs	13	12	14	13	12	23	26
Dedicated Inputs per Bank	4	•				•	
Bank 0	0	0	0	0	0	0	0
Bank 1	0	1	1	0	1	1	1
Bank 2	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0
Total Dedicated Inputs	2	3	3	2	3	3	3
Vccio Pins	•	•				•	•
Bank 0	1	2	2	1	2	3	4
Bank 1	1	2	2	1	2	3	4
Bank 2	1	2	2	1	2	3	4
Bank 3	2	3	2	2	3	4	4
VCC	4	5	4	4	5	8	6
VCC_SPI	1	1	1	1	1	1	1
VPP_2V5	1	1	1	1	1	1	1
VPP_FAST ¹	1	1	1	1	1	1	1
VCCPLL	2	2	2	2	2	2	2
GND	12	15	11	12	15	18	20
NC	0	0	6	0	0	0	0
Total Count of Bonded Pins	121	132	144	121	132	225	256

^{1.} V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.

iCE40 LP/HX Family Data Sheet Supplemental Information

March 2017 Data Sheet DS1040

For Further Information

A variety of technical notes for the iCE40 family are available on the Lattice web site.

- TN1248, iCE40 Programming and Configuration
- TN1250, Memory Usage Guide for iCE40 Devices
- TN1251, iCE40 sysCLOCK PLL Design and Usage Guide
- TN1252, iCE40 Hardware Checklist
- TN1253, Using Differential I/O (LVDS, Sub-LVDS) in iCE40 Devices
- TN1074, PCB Layout Recommendations for BGA Packages
- iCE40 Pinout Files
- Thermal Management document
- Lattice design tools
- IBIS
- Package Diagrams Data Sheet
- Schematic Symbols

Date	Version	Section	Change Summary
February 2014	02.8	Introduction	Updated Features section. — Corrected standby power units. — Included High Current LED Drivers
			Updated Table 1-1, iCE40 Family Selection Guide. — Removed LP384 Programmable I/O for 81 ucBGA package.
		Architecture	Updated Supported Standards section. Added information on High Current LED drivers.
		DC and Switching Characteristics	Corrected typos.
			Added footnote to the Peak Startup Supply Current – LP Devices table.
		Ordering Information	Updated part number description in the Ultra Low Power (LP) Devices section.
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
October 2013	02.7	Introduction	Updated Features list and iCE40 Family Selection Guide table.
		Architecture	Revised iCE40-1K device to iCE40LP/HX1K device.
		DC and Switching Characteristics	Added iCE40LP640 device information.
		Pinout Information	Added iCE40LP640 and iCE40LP1K information.
		Ordering Information	Added iCE40LP640 and iCE40LP1K information.
September 2013	02.6	DC and Switching Characteristics	Updated Absolute Maximum Ratings section.
			Updated sysCLOCK PLL Timing – Preliminary table.
		Pinout Information	Updated Pin Information Summary table.
August 2013	02.5	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching Characteristics	Updated the following tables: — Absolute Maximum Ratings — Power-On-Reset Voltage Levels — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices — Peak Startup Supply Current – LP Devices — syslO Recommended Operating Conditions — Typical Building Block Function Performance – HX Devices — iCE40 External Switching Characteristics – HX Devices — sysCLOCK PLL Timing – Preliminary — SPI Master or NVCM Configuration Time
		Pinout Information	Updated the Pin Information Summary table.
July 2013	02.4	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching Characteristics	Updated the sysCONFIG Port Timing Specifications table.
			Updated footnote in DC Electrical Characteristics table.
			GDDR tables removed. Support to be provided in a technical note.
		Pinout Information	Updated the Pin Information Summary table.
		Ordering Information	Updated the top-side markings figure.
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
May 2013	02.3	DC and Switching Characteristics	Added new data from Characterization.