E·XFL Lattice Semiconductor Corporation - ICE40LP1K-CM36TR Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	25
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	36-VFBGA
Supplier Device Package	36-UCBGA (2.5x2.5)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40lp1k-cm36tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iCE40 LP/HX Family Data Sheet Introduction

March 2017

Features

- Flexible Logic Architecture
 - Five devices with 384 to 7,680 LUT4s and 10 to 206 I/Os
- Ultra Low Power Devices
 - Advanced 40 nm low power process
 - As low as 21 µA standby power
 - Programmable low swing differential I/Os

Embedded and Distributed Memory

- Up to 128 kbits sysMEM[™] Embedded Block RAM
- Pre-Engineered Source Synchronous I/O
- DDR registers in I/O cells
- High Current LED Drivers
 - Three High Current Drivers used for three different LEDs or one RGB LED
- High Performance, Flexible I/O Buffer
 - Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8
 - LVDS25E, subLVDS

 Schmitt trigger inputs, to 200 mV typical hysteresis

Data Sheet DS1040

- Programmable pull-up mode
- Flexible On-Chip Clocking
 - · Eight low-skew global clock resources
 - Up to two analog PLLs per device
- Flexible Device Configuration
 - SRAM is configured through:
 - Standard SPI Interface
 - Internal Nonvolatile Configuration Memory (NVCM)
- Broad Range of Package Options
 - WLCSP, QFN, VQFP, TQFP, ucBGA, caBGA, and csBGA package options
 - Small footprint package options — As small as 1.40 mm x 1.48 mm
 - Advanced halogen-free packaging

Part Number	LP384	LP640	LP1K	LP4K	LP8K	HX1K	HX4K	HX8K	
Logic Cells (LUT + Flip-Flop))	384	640	1,280	3,520	7,680	1,280	3,520	7,680
RAM4K Memory Blocks		0	8	16	20	32	16	20	32
RAM4K RAM bits		0	32K	64K	80K	128K	64K	80K	128K
Phase-Locked Loops (PLLs)		0	0	1 ¹	2 ²	2 ²	1 ¹	2	2
Maximum Programmable I/C	Pins	63	25	95	167	178	95	95	206
Maximum Differential Input F	Pairs	8	3	12	20	23	11	12	26
High Current LED Drivers	0	3	3	0	0	0	0	0	
Package	Code			Programn	nable I/O: I	Max Inputs	(LVDS25)		
16 WLCSP (1.40 mm x 1.48 mm, 0.35 mm)	SWG16		10(0) ¹	10(0) ¹					
32 QFN (5 mm x 5 mm, 0.5 mm)	SG32	21(3)							
36 ucBGA (2.5 mm x 2.5 mm, 0.4 mm)	CM36	25(3)		25(3) ¹					
49 ucBGA (3 mm x 3 mm, 0.4 mm)	CM49	37(6)		35(5) ¹					
81 ucBGA (4 mm x 4 mm, 0.4 mm)	CM81			63(8)	63(9) ²	63(9) ²			
81 csBGA (5 mm x 5 mm, 0.5 mm)	CB81			62(9) ¹					

Table 1-1. iCE40 Family Selection Guide

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

iCE40 LP/HX Family Data Sheet Architecture

March 2017

Data Sheet DS1040

Architecture Overview

The iCE40 family architecture contains an array of Programmable Logic Blocks (PLB), sysCLOCK[™] PLLs, Nonvolatile Programmable Configuration Memory (NVCM) and blocks of sysMEM[™] Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1 shows the block diagram of the iCE40LP/HX1K device.

Figure 2-1. iCE40LP/HX1K Device, Top View

The logic blocks, Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either logic blocks or EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the iCE40 family, there are up to four independent sysIO banks. Note on some packages V_{CCIO} banks are tied together. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO.

The iCE40 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a SPI port that supports programming and configuration of the device. The iCE40 includes on-chip, Nonvolatile Configuration Memory (NVCM).

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PLB Blocks

The core of the iCE40 device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register.

Figure 2-2. PLB Block Diagram

Logic Cells

Each Logic Cell includes three primary logic elements shown in Figure 2-2.

- A four-input Look-Up Table (LUT4) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT4 element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUT4s to create wider logic functions.
- A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration.
- Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtractors, comparators, binary counters and some wide, cascaded logic functions.

Function	Туре	Signal Names	Description
Input	Data signal	10, 11, 12, 13	Inputs to LUT4
Input	Control signal	Enable	Clock enable shared by all LCs in the PLB
Input	Control signal	Set/Reset ¹	Asynchronous or synchronous local set/reset shared by all LCs in the PLB.
Input	Control signal	Clock	Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB
Input	Inter-PLB signal	FCIN	Fast carry in
Output	Data signals	0	LUT4 or registered output
Output	Inter-PFU signal	FCOUT	Fast carry out

Table 2-1. Logic Cell Signal Descriptions

1. If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration.

Routing

There are many resources provided in the iCE40 devices to route signals individually with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient connections in the diagonal, horizontal and vertical directions.

The design tool takes the output of the synthesis tool and places and routes the design.

Clock/Control Distribution Network

Each iCE40 device has eight global inputs, two pins on each side of the device. Note that not all GBINs are available in all packages.

These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are identified as GBIN[7:0] and the global buffers are identified as-GBUF[7:0]. These eight inputs may be used as general purpose I/O if they are not used to drive the clock nets. Global buffer GBUF7 in I/O Bank 3 also provides an optional direct LVDS25 or subLVDS differential clock input.

Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input.

Global Buffer	LUT Inputs	Clock	Reset	Clock Enable
GBUF0		Yes	Yes	
GBUF1		Yes		Yes
GBUF2		Yes	Yes	
GBUF3	Yes, any 4 of 8 GBUF Inputs	Yes		Yes
GBUF4		Yes	Yes	
GBUF5		Yes		Yes
GBUF6		Yes	Yes	
GBUF7] [Yes		Yes

Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks

The maximum frequency for the global buffers are shown in the iCE40 External Switching Characteristics tables later in this document.

Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state.

Global Reset Control

The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application.

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 devices have one or more sys-CLOCK PLLs. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 6. The PLLOUT outputs can all be used to drive the iCE40 global clock network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3.

The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the t_{LOCK} parameter has been satisfied.

For more details on the PLL, see TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.

Figure 2-3. PLL Diagram

Table 2-3 provides signal descriptions of the PLL block.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Note the sysMEM Embedded Block RAM Memory address 0 cannot be initialized.

Memory Cascading

Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks.

RAM4k Block

Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array.

Figure 2-4. sysMEM Memory Primitives

Table 2-5. EBR Signal Descriptions

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input.
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit; $1 =$ don't write bit
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.
WE	Input	Write Enable input.
WCLKE	Input	Write Clock Enable input.
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.
RDATA[15:0]	Output	Read Data output.
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.
RE	Input	Read Enable input.
RCLKE	Input	Read Clock Enable input.
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.

For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices.

Figure 2-6. iCE I/O Register Block Diagram

Table 2-6. PIO Signal List

Pin Name	I/О Туре	Description
OUTPUT_CLK	Input	Output register clock
CLOCK_ENABLE	Input	Clock enable
INPUT_CLK	Input	Input register clock
OUTPUT_ENABLE	Input	Output enable
D_OUT_0/1	Input	Data from the core
D_IN_0/1	Output	Data to the core
LATCH_INPUT_VALUE	Input	Latches/holds the Input Value

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS and LVDS25.

High Current LED Drivers combine three sysIO buffers together. This allows for programmable drive strength. This also allows for high current drivers that are ideal to drive three white LEDs, or one RGB LED. Each bank is capable of supporting multiple I/O standards including single-ended LVCMOS buffers and differential LVDS25E output buf-

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter		Min.	Max.	Units
		All configuration modes. No power supply sequencing.	0.40	10	V/ms
		Configuring from Slave SPI. No power supply sequencing,		10	V/ms
t _{RAMP}	Power supply ramp rates for all power supplies.	Configuring from NVCM. V_{CC} and $V_{PP_{2V5}}$ to be powered 0.25 ms before $V_{CC_{SPI}}$.	0.01	10	V/ms
		Configuring from MSPI. V_{CC} and V_{PP_SPI} to be powered 0.25 ms before V_{PP_2V5} .	0.01	10	V/ms

1. Assumes monotonic ramp rates.

2. iCE40LP384 requires V_{CC} to be greater than 0.7V when V_{CCIO} and V_{CC_SPI} are above GND.

Power-On-Reset Voltage Levels¹

Symbol	Device	Parameter		Min.	Max.	Units
V _{PORUP}	iCE40LP384	Power-On-Reset ramp-up trip point	VCC	0.67	0.99	V
		(band gap based circuit monitoring	VCCIO_2	0.70	1.59	V
		VPP_2V5)	VCC_SPI	0.70	1.59	V
			VPP_2V5	0.70	1.59	V
	iCE40LP640,	Power-On-Reset ramp-up trip point	VCC	0.55	0.75	V
iCE40LP		(band gap based circuit monitoring	VCCIO_2	0.86	1.29	V
	iCE40LP/HX8K V	VPP_2V5)	VCC_SPI	0.86	1.29	V
			VPP_2V5	0.86	1.33	V
V _{PORDN}	iCE40LP384	Power-On-Reset ramp-down trip point (band gap based circuit moni- toring VCC, VCCIO_2, VCC_SPI and VPP 2V5)	VCC	_	0.64	V
			VCCIO_2	_	1.59	V
			VCC_SPI		1.59	V
			VPP_2V5		1.59	V
	iCE40LP640,	Power-On-Reset ramp-down trip	VCC		0.75	V
		point (band gap based circuit moni-	VCCIO_2	_	1.29	V
	iCE40LP/HX8K	and VPP_2V5)	VCC_SPI	_	1.29	V
			VPP_2V5	_	1.33	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

ESD Performance

Please refer to the iCE40 Product Family Qualification Summary for complete qualification data, including ESD performance.

Peak Startup Supply Current – HX Devices

Symbol	Parameter	Device	Max	Units
		iCE40HX1K	6.9	mA
Symbol I _{ССРЕАК} С I _{ССРЕАК} ¹ Р I _{ССРЕАК} ¹ Р I _{РР_2V5РЕАК} NV I _{ССРОРЕАК} В	Core Power Supply	iCE40HX4K	22.3	mA
		Device Max Uni iCE40HX1K 6.9 m/ iCE40HX4K 22.3 m/ iCE40HX8K 22.3 m/ iCE40HX1K 1.8 m/ iCE40HX4K 6.4 m/ iCE40HX8K 6.4 m/ iCE40HX1K 1.8 m/ iCE40HX4K 6.4 m/ iCE40HX1K 2.8 m/ iCE40HX1K 4.1 m/ iCE40HX4K 4.1 m/ iCE40HX1K 6.8 m/ iCE40HX1K 6.8 m/	mA	
		iCE40HX1K	1.8	mA
ICCPLLPEAK ¹	PLL Power Supply	iCE40HX4K	6.4	mA
		iCE40HX8K	6.4	mA
		iCE40HX1K	2.8	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40HX4K	4.1	mA
		iCE40HX8K	iCE40HX8K 22.3 mA iCE40HX1K 1.8 mA iCE40HX1K 1.8 mA iCE40HX4K 6.4 mA iCE40HX8K 6.4 mA iCE40HX1K 2.8 mA iCE40HX1K 2.8 mA iCE40HX4K 4.1 mA iCE40HX4K 4.1 mA iCE40HX4K 6.8 mA iCE40HX1K 6.8 mA iCE40HX1K 6.8 mA	
ICCIOPEAK, ICC SPIPEAK		iCE40HX1K	6.8	mA
	Bank Power Supply	iCE40HX4K	6.8	mA
		iCE40HX8K	6.8	mA

1. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)				
Standard	Min.	Тур.	Max.		
LVCMOS 3.3	3.14	3.3	3.46		
LVCMOS 2.5	2.37	2.5	2.62		
LVCMOS 1.8	1.71	1.8	1.89		
LVDS25E ^{1, 2}	2.37	2.5	2.62		
subLVDSE ^{1, 2}	1.71	1.8	1.89		

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. Does not apply to Configuration Bank V_{CC_SPI}.

sysIO Single-Ended DC Electrical Characteristics

Input/	V _{IL}		V _{IH} ¹		V _{IH} ¹		V _{IH} ¹		1/ B.4			
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	v _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)				
	-0.3	0.8	20	.0 V _{CCIO} + 0.2 V	0.4	$V_{CCIO} - 0.4$	8, 16 ² , 24 ²	$-8, -16^2, -24^2$				
2000000.0	0.0	0.0	2.0		0.2	$V_{CCIO} - 0.2$	0.1	-0.1				
	-03	0.7	17	V . 0.2.V	0.4	$V_{CCIO} - 0.4$	6, 12 ² , 18 ²	-6, -12 ² , -18 ²				
20010032.5	-0.5	0.7	1.7	V CCIO + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1				
	-03	0.351/	0.651/		0.4	$V_{CCIO} - 0.4$	4, 8 ² , 12 ²	-4, -8 ² , -12 ²				
	-0.5	0.33 A CCIO	0.03 A CCIO	V CCIO + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1				

1. Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO.}}$

2. Only for High Drive LED outputs.

sysIO Differential Electrical Characteristics

The LVDS25E/subLVDSE differential output buffers are available on all banks but the LVDS/subLVDS input buffers are only available on Bank 3 of iCE40 devices.

LVDS25

Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage	$V_{CCIO}^{1} = 2.5$	0	—	2.5	V
V _{THD}	Differential Input Threshold		250	350	450	mV
V _{CM}	Input Common Mode Voltage	$V_{CCIO}^{1} = 2.5$	(V _{CCIO} /2) - 0.3	$V_{CCIO}/2$	$(V_{CCIO}/2) + 0.3$	V
I _{IN}	Input Current	Power on			±10	μA

1. Typical.

subLVDS

Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage	$V_{CCIO}^{1} = 1.8$	0		1.8	V
V _{THD}	Differential Input Threshold		100	150	200	mV
V _{CM}	Input Common Mode Voltage	$V_{CCIO}^{1} = 1.8$	(V _{CCIO} /2) - 0.25	$V_{CCIO}/2$	$(V_{CCIO}/2) + 0.25$	V
I _{IN}	Input Current	Power on	—		±10	μΑ

1. Typical.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

Maximum sysIO Buffer Performance²

I/O Standard	Max. Speed	Units
	Inputs	
LVDS251	400	MHz
subLVDS18 ¹	400	MHz
LVCMOS33	250	MHz
LVCMOS25	250	MHz
LVCMOS18	250	MHz
	Outputs	
LVDS25E	250	MHz
subLVDS18E	155	MHz
LVCMOS33	250	MHz
LVCMOS25	250	MHz
LVCMOS18	155	MHz

1. Supported in Bank 3 only.

2. Measured with a toggling pattern

iCE40 Family Timing Adders

Over Recommended Commercial Operating Conditions - LP Devices^{1, 2, 3, 4, 5}

Buffer Type	pe Description		Units
Input Adjusters	· ·		
LVDS25	LVDS, V _{CCIO} = 2.5 V	-0.18	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	0.82	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.18	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.19	ns
Output Adjusters			
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.32	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	-0.12	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.32	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

Over Recommended Commercial Operating Conditions - HX Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units
Input Adjusters			
LVDS25	LVDS, $V_{CCIO} = 2.5 V$	0.13	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	1.03	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.16	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.23	ns
Output Adjusters			
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.76	ns
LVCMOS33	LVCMOS, $V_{CCIO} = 3.3 V$	0.17	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.76	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

iCE40 External Switching Characteristics – LP Devices ^{1, 2}

Over Recommended Operating Conditions

Parameter	Description	Device	Min.	Max.	Units
Clocks					
Global Clocks					
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All iCE40LP devices	—	275	MHz
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All iCE40LP devices	0.92	_	ns
		iCE40LP384	—	370	ps
		iCE40LP640	—	230	ps
t _{SKEW_GBUF}	Global Buffer Clock Skew Within a Device	iCE40LP1K	—	230	ps
		iCE40LP4K	—	340	ps
		iCE40LP8K	—	340	ps
Pin-LUT-Pin Propaga	ation Delay				
t _{PD}	Best case propagation delay through one LUT-4	All iCE40LP devices	_	9.36	ns
General I/O Pin Para	meters (Using Global Buffer Clock withou	ut PLL) ³			•
		iCE40LP384	—	300	ps
		iCE40LP640	—	200	ps
t _{SKEW_IO}	Data bus skew across a bank of IOs	iCE40LP1K	—	200	ps
		iCE40LP4K	—	280	ps
		iCE40LP8K	—	280	ps
		iCE40LP384	—	6.33	ns
	Clock to Output - PIO Output Register	iCE40LP640	—	5.91	ns
t _{CO}		iCE40LP1K	—	5.91	ns
		iCE40LP4K	—	6.58	ns
		iCE40LP8K	—	6.58	ns
		iCE40LP384	-0.08	_	ns
		iCE40LP640	-0.33	_	ns
t _{SU}	Clock to Data Setup - PIO Input Register	iCE40LP1K	-0.33	_	ns
		iCE40LP4K	-0.63	_	ns
		iCE40LP8K	-0.63	_	ns
		iCE40LP384	1.99	_	ns
		iCE40LP640	2.81	—	ns
t _H	Clock to Data Hold - PIO Input Register	iCE40LP1K	2.81	_	ns
		iCE40LP4K	3.48	—	ns
		iCE40LP8K	3.48	—	ns
General I/O Pin Para	meters (Using Global Buffer Clock with P	LL) ³			
		iCE40LP1K	_	2.20	ns
t _{COPLL}	Clock to Output - PIO Output Register	iCE40LP4K	_	2.30	ns
		iCE40LP8K	—	2.30	ns
		iCE40LP1K	5.23		ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	iCE40LP4K	6.13		ns
		iCE40LP8K	6.13	—	ns

SPI Master or NVCM Configuration Time^{1, 2}

Symbol	Parameter	Conditions	Тур.	Units
		iCE40LP384 - Low Frequency (Default)	25	ms
		iCE40LP384 - Medium Frequency	15	ms
		iCE40LP384 - High Frequency	11	ms
		iCE40LP640 - Low Frequency (Default)	53	ms
		iCE40LP640 - Medium Frequency	25	ms
		iCE40LP640 - High Frequency	13	ms
		iCE40LP/HX1K - Low Frequency (Default)	53	ms
t _{CONFIG}	POR/CRESET_B to Device I/O Active	iCE40LP/HX1K - Medium Frequency	25	ms
		iCE40LP/HX1K - High Frequency	13	ms
		iCE40LP/HX4K - Low Frequency (Default)	230	ms
		iCE40LP/HX4K - Medium Frequency	110	ms
		iCE40LP/HX4K - High Frequency	70	ms
		iCE40LP/HX8K - Low Frequency (Default)	230	ms
		iCE40LP/HX8K - Medium Frequency	110	ms
		iCE40LP/HX8K - High Frequency	70	ms

1. Assumes sysMEM Block is initialized to an all zero pattern if they are used.

2. The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

sysCONFIG Port Timing Specifications¹

Symbol	Parameter		Min.	Тур.	Max.	Units
All Configuration	on Modes	•			•	
^t CRESET_B	Minimum CRESET_B Low pulse width required to restart configu- ration, from falling edge to rising edge		200	_	_	ns
t _{DONE_IO}	Number of configuration clock cycles after CDONE goes High before the PIO pins are activated		49	_	_	Clock Cycles
Slave SPI	•				•	•
	Minimum time from a rising edge	iCE40LP384	600	-	—	us
t _{CR SCK}	on CRESET_B until the first SPI write operation, first SPI_SCK.	iCE40LP640, iCE40LP/HX1K	800	-	—	us
	device is clearing its internal con-	iCE40LP/HX4K	1200	-	—	us
	figuration memory	iCE40LP/HX8K	1200	-	—	us
	CCLK clock frequency	Write	1	-	25	MHz
		Read iCE40LP384 ²	-	15	-	MHz
franx ¹		Read iCE40LP640, iCE40LP/HX1K ²	-	15	-	MHz
'MAX		Read iCE40LP/ HX4K ²	-	15	-	MHz
		Read iCE40LP/ HX8K ²	-	15	-	MHz
^t сськн	CCLK clock pulse width high		20		—	ns
t _{CCLKL}	CCLK clock pulse width low		20	_	—	ns
t _{STSU}	CCLK setup time		12		_	ns
t _{STH}	CCLK hold time		12	_	—	ns
t _{STCO}	CCLK falling edge to valid output		13	_	—	ns
Master SPI						
		Off		0	—	MHz
f _{MCLK}	MCLK clock frequency	Low Frequency (Default)	_	7.5	—	MHz
		Medium Frequency ³		24	_	MHz
		High Frequency ³		40		MHz

iCE40 LP/HX Family Data Sheet Pinout Information

March 2017

Data Sheet DS1040

Signal Descriptions

Signal Name	I/O	Descriptions	
General Purpose			
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device.	
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device. [A/B] indicates the differential I/O. 'A' = negative input. 'B' = positive input.	
HCIO[Bank]_[Number]	I/O	High Current IO. [Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number.	
NC	_	No connect	
GND	—	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together.	
VCC	_	VCC – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.	
VCCIO_x	_	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. All VCCIOs located in the same bank are tied to the same supply.	
PLL and Global Functions	(Used as u	iser-programmable I/O pins when not used for PLL or clock pins)	
VCCPLLx	_	PLL VCC – Power. Dedicated pins. The PLL requires a separate power and ground that is quiet and stable to reduce the output clock jitter of the PLL.	
GNDPLLx	_	PLL GND – Ground. Dedicated pins. The sysCLOCK PLL has the DC ground con- nection made on the FPGA, so the external PLL ground connection (GNDPLL) must NOT be connected to the board's ground.	
GBINx	—	Global pads. Two per side.	
Programming and Configu	ration		
CBSEL[0:1]	I/O	Dual function pins. I/Os when not used as CBSEL. Optional ColdBoot configuration SELect input, if ColdBoot mode is enabled.	
CRESET_B	I	Configuration Reset, active Low. Dedicated input. No internal pull-up resistor. Either actively drive externally or connect a 10 KOhm pull-up resistor to VCCIO_2.	
CDONE	 Configuration Done. Includes a permanent weak pull-up resistor to VCCIO_2. ing external devices with CDONE output, an external pull-up resistor to VCCIO may be required. Refer to the TN1248, iCE40 Programming and Configuration more details. Following device configuration the iCE40LP640 and iCE40LP1K SWG16 package CDONE pin can be used as a user output. 		
VCC_SPI	_	SPI interface voltage supply input. Must have a valid voltage even if configuring from NVCM.	
SPI_SCK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA configuration modes.	
SPI_SS_B	I/O	 SPI Slave Select. Active Low. Includes an internal weak pull-up resistor to VCC_during configuration. During configuration, the logic level sampled on this pin de mines the configuration mode used by the iCE40 device. An input when sampled the start of configuration. An input when in SPI Peripheral configuration mode (SPI_SS_B = Low). An output when in Master SPI Flash configuration mode. 	
SPI_SI	I/O	Slave SPI serial data input and master SPI serial data output	
SPI_SO	I/O	Slave SPI serial data output and master SPI serial data input	

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Signal Descriptions (Continued)

Signal Name	I/O	Descriptions
VPP_FAST	_	Optional fast NVCM programming supply. V_{PP_FAST} , used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.
VPP_2V5	_	VPP_2V5 NVCM programming and operating supply

Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40LP384-CM36	384	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP384-CM36TR	384	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP384-CM36TR1K	384	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP384-CM49	384	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP384-CM49TR	384	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP384-CM49TR1K	384	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP384-SG32	384	1.2 V	Halogen-Free QFN	32	IND
ICE40LP384-SG32TR	384	1.2 V	Halogen-Free QFN	32	IND
ICE40LP384-SG32TR1K	384	1.2 V	Halogen-Free QFN	32	IND
ICE40LP640-SWG16TR	640	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP640-SWG16TR50	640	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP640-SWG16TR1K	640	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-SWG16TR	1280	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-SWG16TR50	1280	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-SWG16TR1K	1280	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-CM36	1280	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP1K-CM36TR	1280	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP1K-CM36TR1K	1280	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP1K-CM49	1280	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP1K-CM49TR	1280	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP1K-CM49TR1K	1280	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP1K-CM81	1280	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP1K-CM81TR	1280	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP1K-CM81TR1K	1280	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP1K-CB81	1280	1.2 V	Halogen-Free csBGA	81	IND
ICE40LP1K-CB81TR	1280	1.2 V	Halogen-Free csBGA	81	IND
ICE40LP1K-CB81TR1K	1280	1.2 V	Halogen-Free csBGA	81	IND
ICE40LP1K-CM121	1280	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP1K-CM121TR	1280	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP1K-CM121TR1K	1280	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP1K-CB121	1280	1.2 V	Halogen-Free csBGA	121	IND
ICE40LP1K-QN84	1280	1.2 V	Halogen-Free QFN	84	IND
ICE40LP4K-CM81	3520	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP4K-CM81TR	3520	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP4K-CM81TR1K	3520	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP4K-CM121	3520	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP4K-CM121TR	3520	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP4K-CM121TR1K	3520	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP4K-CM225	3520	1.2 V	Halogen-Free ucBGA	225	IND
ICE40LP8K-CM81	7680	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP8K-CM81TR	7680	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP8K-CM81TR1K	7680	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP8K-CM121	7680	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP8K-CM121TR	7680	1.2 V	Halogen-Free ucBGA	121	IND

iCE40 LP/HX Family Data Sheet Revision History

March 2017

Data Sheet DS1040

Date	Version	Section	Change Summary
March 2017	3.3	Introduction	Updated Features section. Added 121-ball caBGA package for ICE40 HX4K/8K to Table 1-1, iCE40 Family Selection Guide.
		Architecture	Updated PLB Blocks section. Changed "subtracters" to "subtractors" in the Carry Logic description.
			Updated Clock/Control Distribution Network section. Switched the "Clock Enable" and the "Reset" headings in Table 2-2, Global Buffer (GBUF) Connections to Programmable Logic Blocks.
		Pinout Information	Updated Pin Information Summary section. Added BG121information under iCE40HX4K and iCE40HX8K.
		Ordering Information	Updated iCE40 Part Number Description section. Added Shipping Method and BG121 package under High Performance (HX) Devices.
			Updated Ordering Information section. Added part numbers for BG121 under High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging.
		Supplemental Information	Corrected reference to "Package Diagrams Data Sheet".
October 2015	3.2	Introduction	Updated Features section. Added footnote to 16 WLCSP Programma- ble I/O: Max Inputs (LVDS25) in Table 1-1, iCE40 Family Selection Guide.
		DC and Switching	Updated sysCLOCK PLL Timing section. Changed t _{DT} conditions.
		Characteristics	Updated Programming NVCM Supply Current – LP Devices section. Changed I_{PP_2V5} and $I_{CCIO},$ I_{CC_SPI} units.
March 2015	3.1	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics section. Changed LVCMOS 3.3 and LVCMOS 2. 5 V_{OH} Min. (V) from 0.5 to 0.4.
July 2014	3.0	DC and Switching Characteristics	 Revised and/or added Typ. V_{CC} data in the following sections. Static Supply Current – LP Devices Static Supply Current – HX Devices Programming NVCM Supply Current – LP Devices Programming NVCM Supply Current – HX Devices In each section table, the footnote indicating Advanced device status was removed.
		Pinout Information	Updated Pin Information Summary section. Added footnote 1 to CM49 under iCE40LP1K.
April 2014	02.9	Ordering Information	Changed "i" to "I" in part number description and ordering part numbers.
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
February 2014	02.8	Introduction	Updated Features section. — Corrected standby power units. — Included High Current LED Drivers
			Updated Table 1-1, iCE40 Family Selection Guide. — Removed LP384 Programmable I/O for 81 ucBGA package.
		Architecture	Updated Supported Standards section. Added information on High Current LED drivers.
		DC and Switching	Corrected typos.
		Characteristics	Added footnote to the Peak Startup Supply Current – LP Devices table.
		Ordering Information	Updated part number description in the Ultra Low Power (LP) Devices section.
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
October 2013	02.7	Introduction	Updated Features list and iCE40 Family Selection Guide table.
		Architecture	Revised iCE40-1K device to iCE40LP/HX1K device.
		DC and Switching Characteristics	Added iCE40LP640 device information.
		Pinout Information	Added iCE40LP640 and iCE40LP1K information.
		Ordering Information	Added iCE40LP640 and iCE40LP1K information.
September 2013	02.6	DC and Switching	Updated Absolute Maximum Ratings section.
		Characteristics	Updated sysCLOCK PLL Timing – Preliminary table.
		Pinout Information	Updated Pin Information Summary table.
August 2013	02.5	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching Characteristics	Updated the following tables: — Absolute Maximum Ratings — Power-On-Reset Voltage Levels — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices — Peak Startup Supply Current – LP Devices — sysIO Recommended Operating Conditions — Typical Building Block Function Performance – HX Devices — iCE40 External Switching Characteristics – HX Devices — sysCLOCK PLL Timing – Preliminary — SPI Master or NVCM Configuration Time
		Pinout Information	Updated the Pin Information Summary table.
July 2013	02.4	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching	Updated the sysCONFIG Port Timing Specifications table.
		Characteristics	Updated footnote in DC Electrical Characteristics table.
			GDDR tables removed. Support to be provided in a technical note.
		Pinout Information	Updated the Pin Information Summary table.
		Ordering Information	Updated the top-side markings figure.
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
May 2013	02.3	DC and Switching Characteristics	Added new data from Characterization.