E. Keniconductor Corporation - ICE40LP1K-CM36TR1K Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detailo	
Product Status	Active
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	25
Number of Gates	
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	36-VFBGA
Supplier Device Package	36-UCBGA (2.5x2.5)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40lp1k-cm36tr1k

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iCE40 LP/HX Family Data Sheet Introduction

March 2017

Features

- Flexible Logic Architecture
 - Five devices with 384 to 7,680 LUT4s and 10 to 206 I/Os
- Ultra Low Power Devices
 - Advanced 40 nm low power process
 - As low as 21 µA standby power
 - Programmable low swing differential I/Os

Embedded and Distributed Memory

- Up to 128 kbits sysMEM[™] Embedded Block RAM
- Pre-Engineered Source Synchronous I/O
- DDR registers in I/O cells
- High Current LED Drivers
 - Three High Current Drivers used for three different LEDs or one RGB LED
- High Performance, Flexible I/O Buffer
 - Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8
 - LVDS25E, subLVDS

- Schmitt trigger inputs, to 200 mV typical hysteresis
- Programmable pull-up mode
- Flexible On-Chip Clocking
 - · Eight low-skew global clock resources
 - Up to two analog PLLs per device
- Flexible Device Configuration
 - SRAM is configured through:
 - Standard SPI Interface
 - Internal Nonvolatile Configuration Memory (NVCM)
- Broad Range of Package Options
 - WLCSP, QFN, VQFP, TQFP, ucBGA, caBGA, and csBGA package options
 - Small footprint package options — As small as 1.40 mm x 1.48 mm
 - Advanced halogen-free packaging

Part Number		LP384	LP640	LP1K	LP4K	LP8K	HX1K	HX4K	HX8K
Logic Cells (LUT + Flip-Flop)		384	640	1,280	3,520	7,680	1,280	3,520	7,680
RAM4K Memory Blocks		0	8	16	20	32	16	20	32
RAM4K RAM bits		0	32K	64K	80K	128K	64K	80K	128K
Phase-Locked Loops (PLLs)		0	0	1 ¹	2 ²	2 ²	1 ¹	2	2
Maximum Programmable I/C	Pins	63	25	95	167	178	95	95	206
Maximum Differential Input F	Pairs	8 3 12 20 23 11 12			12	26			
High Current LED Drivers		0	3	3	0	0	0	0	0
Package	Code	Programmable I/O: Max Inputs (LVDS25)							
16 WLCSP (1.40 mm x 1.48 mm, 0.35 mm)	SWG16		10(0) ¹	10(0) ¹					
32 QFN (5 mm x 5 mm, 0.5 mm)	SG32	21(3)							
36 ucBGA (2.5 mm x 2.5 mm, 0.4 mm)	CM36	25(3)		25(3) ¹					
49 ucBGA (3 mm x 3 mm, 0.4 mm)	CM49	37(6)		35(5) ¹					
81 ucBGA (4 mm x 4 mm, 0.4 mm)	CM81			63(8)	63(9) ²	63(9) ²			
81 csBGA (5 mm x 5 mm, 0.5 mm)	CB81			62(9) ¹					

Table 1-1. iCE40 Family Selection Guide

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Data Sheet DS1040

						-		· · · · · · · · · · · · · · · · · · ·
84 QFN (7 mm x 7 mm, 0.5 mm)	QN84		67(7) ¹					
100 VQFP (14 mm x 14 mm, 0.5 mm)	VQ100					72(9) ¹		
121 ucBGA (5 mm x 5 mm, 0.4 mm)	CM121		95(12)	93(13)	93(13)			
121 csBGA (6 mm x 6 mm, 0.5 mm)	CB121		92(12)					
121 caBGA (9 mm x 9 mm, 0.8 mm)	BG121						93(13)	93(13)
132 csBGA (8 mm x 8 mm, 0.5 mm)	CB132					95(11)	95(12)	95(12)
144 TQFP (20 mm x 20 mm, 0.5 mm)	TQ144					96(12)	107(14)	
225 ucBGA (7 mm x 7 mm, 0.4 mm)	CM225			178(23)	178(23)			178(23)
256-ball caBGA (14 mm x 14 mm, 0.8 mm)	CT256							206(26)

1. No PLL available on the 16 WLCSP, 36 ucBGA, 81 csBGA, 84 QFN and 100 VQFP packages.

2. Only one PLL available on the 81 ucBGA package.

3. High Current I/Os only available on the 16 WLCSP package.

Introduction

The iCE40 family of ultra-low power, non-volatile FPGAs has five devices with densities ranging from 384 to 7680 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic, these devices feature Embedded Block RAM (EBR), Non-volatile Configuration Memory (NVCM) and Phase Locked Loops (PLLs). These features allow the devices to be used in low-cost, high-volume consumer and system applications. Select packages offer High-Current drivers that are ideal to drive three white LEDs, or one RGB LED.

The iCE40 devices are fabricated on a 40 nm CMOS low power process. The device architecture has several features such as programmable low-swing differential I/Os and the ability to turn off on-chip PLLs dynamically. These features help manage static and dynamic power consumption, resulting in low static power for all members of the family. The iCE40 devices are available in two versions – ultra low power (LP) and high performance (HX) devices.

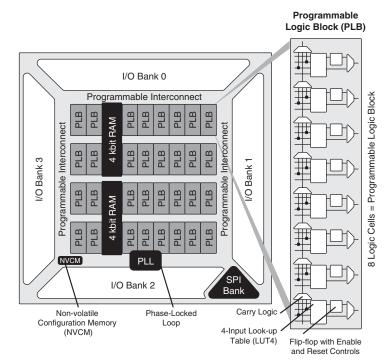
The iCE40 FPGAs are available in a broad range of advanced halogen-free packages ranging from the space saving 1.40x1.48 mm WLCSP to the PCB-friendly 20x20 mm TQFP. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The iCE40 devices offer enhanced I/O features such as pull-up resistors. Pull-up features are controllable on a "per-pin" basis.

The iCE40 devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices can also configure themselves from external SPI Flash or be configured by an external master such as a CPU.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40 family of devices. Popular logic synthesis tools provide synthesis library support for iCE40. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the iCE40 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules, including a number of reference designs, licensed free of charge, optimized for the iCE40 FPGA family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.


iCE40 LP/HX Family Data Sheet Architecture

March 2017

Data Sheet DS1040

Architecture Overview

The iCE40 family architecture contains an array of Programmable Logic Blocks (PLB), sysCLOCK[™] PLLs, Nonvolatile Programmable Configuration Memory (NVCM) and blocks of sysMEM[™] Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1 shows the block diagram of the iCE40LP/HX1K device.

Figure 2-1. iCE40LP/HX1K Device, Top View

The logic blocks, Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either logic blocks or EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the iCE40 family, there are up to four independent sysIO banks. Note on some packages V_{CCIO} banks are tied together. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO.

The iCE40 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a SPI port that supports programming and configuration of the device. The iCE40 includes on-chip, Nonvolatile Configuration Memory (NVCM).

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Routing

There are many resources provided in the iCE40 devices to route signals individually with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient connections in the diagonal, horizontal and vertical directions.

The design tool takes the output of the synthesis tool and places and routes the design.

Clock/Control Distribution Network

Each iCE40 device has eight global inputs, two pins on each side of the device. Note that not all GBINs are available in all packages.

These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are identified as GBIN[7:0] and the global buffers are identified as-GBUF[7:0]. These eight inputs may be used as general purpose I/O if they are not used to drive the clock nets. Global buffer GBUF7 in I/O Bank 3 also provides an optional direct LVDS25 or subLVDS differential clock input.

Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input.

Global Buffer	LUT Inputs	Clock	Reset	Clock Enable
GBUF0		Yes	Yes	
GBUF1		Yes		Yes
GBUF2		Yes	Yes	
GBUF3	Yes, any 4 of 8	Yes		Yes
GBUF4	GBUF Inputs	Yes	Yes	
GBUF5		Yes		Yes
GBUF6	7	Yes	Yes	
GBUF7		Yes		Yes

Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks

The maximum frequency for the global buffers are shown in the iCE40 External Switching Characteristics tables later in this document.

Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state.

fers. Bank 3 additionally supports differential LVDS25 input buffers. Each sysIO bank has its own dedicated power supply.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SP1} have reached the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins will maintain the pre-configuration state until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached levels, at which time the I/Os will take on the software user-configured settings only after a proper download/configuration. Unused IOs are automatically blocked and the pullup termination is disabled.

Supported Standards

The iCE40 sysIO buffer supports both single-ended and differential input standards. The single-ended standard supported is LVCMOS. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none). The High Current output buffer have individually configurable options for drive strength.

Table 2-7 and Table 2-8 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 devices.

Input Standard	V _{CCIO} (Typical)					
input Standard	3.3 V	2.5 V	1.8 V			
Single-Ended Interfaces		•				
LVCMOS33	Yes					
LVCMOS25		Yes				
LVCMOS18			Yes			
Differential Interfaces		•				
LVDS251		Yes				
subLVDS ¹			Yes			

Table 2-7. Supported Input Standards

1. Bank 3 only.

Table 2-8. Supported Output Standards

Output Standard	V _{CCIO} (Typical)
Single-Ended Interfaces	
LVCMOS33	3.3
LVCMOS25	2.5
LVCMOS18	1.8
Differential Interfaces	
LVDS25E1	2.5
subLVDSE ¹	1.8

1. These interfaces can be emulated with external resistors in all devices.

Non-Volatile Configuration Memory

All iCE40 devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device.

For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration Usage Guide.

iCE40 LP/HX Family Data Sheet DC and Switching Characteristics

October 2015

Data Sheet DS1040

Absolute Maximum Ratings^{1, 2, 3, 4}

iCE40 LP/HX

Supply Voltage V _{CC}	/
Output Supply Voltage V _{CCIO} , V _{CC_SPI} 0.5 V to 3.60 V	/
NVCM Supply Voltage V _{PP_2V5}	/
PLL Supply Voltage V _{CCPLL} 0.5 V to 1.30 V	/
I/O Tri-state Voltage Applied	/
Dedicated Input Voltage Applied0.5 V to 3.60 V	/
Storage Temperature (Ambient)65 °C to 150 °C	С
Junction Temperature (T _J)55 °C to 125 °C	С

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

 IOs can support a 200 mV Overshoot above the Recommend Operating Conditions V_{CCIO} (Max) and -200mV Undershoot below V_{IL} (Min). Overshoot and Undershoot is permitted for 25% duty cycle but must not exceed 1.6 ns.

Recommended Operating Conditions¹

Symbol	Param	neter	Min.	Max.	Units
V _{CC} ¹	Core Supply Voltage		1.14	1.26	V
	V NVCM Programming and	Slave SPI Configuration	1.71	3.46	V
V	V _{PP_2V5} NVCM Programming and Operating Supply Voltage	Master SPI Configuration	2.30	3.46	V
V _{PP_2V5}	Operating Supply Voltage	Configure from NVCM	2.30	3.46	V
		NVCM Programming	2.30	3.00	V
V _{PP_FAST} ⁴	Optional fast NVCM programming supply	ming supply. Leave unconnected.		N/A	V
V _{CCPLL} ^{5, 6}	PLL Supply Voltage		1.14	1.26	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	V _{CCIO0-3}	1.71	3.46	V
V CCIO	NO Driver Supply Voltage	V _{CC_SPI}	1.71	3.46	V
t _{JIND}	Junction Temperature Industrial Operation	on	-40	100	°C
t _{PROG}	Junction Temperature NVCM Programm	ing	10	30	°C

1. Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC_SPI} are both the same voltage, they must also be the same supply.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

5. No PLL available on the iCE40LP384 and iCE40LP640 device.

6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

^{© 2015} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter		Min.	Max.	Units
		All configuration modes. No power supply sequencing.	0.40	10	V/ms
		Configuring from Slave SPI. No power supply sequencing,	0.01	10	V/ms
t _{RAMP}	Power supply ramp rates for all power supplies.	Configuring from NVCM. V_{CC} and $V_{PP_{2V5}}$ to be powered 0.25 ms before $V_{CC_{SPI}}$.	0.01	10	V/ms
		Configuring from MSPI. V_{CC} and V_{PP_SPI} to be powered 0.25 ms before V_{PP_2V5} .	0.01	10	V/ms

1. Assumes monotonic ramp rates.

2. iCE40LP384 requires V_{CC} to be greater than 0.7V when V_{CCIO} and V_{CC_SPI} are above GND.

Power-On-Reset Voltage Levels¹

Symbol	Device	Parameter		Min.	Max.	Units
V _{PORUP}	iCE40LP384		VCC	0.67	0.99	V
		(band gap based circuit monitoring VCC, VCCIO_2, VCC_SPI and	VCCIO_2	0.70	1.59	V
		VPP_2V5)	VCC_SPI	0.70	1.59	V
		Power-On-Reset ramp-up trip point	VPP_2V5	0.70	1.59	V
	iCE40LP640,	Power-On-Reset ramp-up trip point	VCC	0.55	0.75	V
	iCE40LP/HX1K, iCE40LP/HX4K,	(band gap based circuit monitoring VCC, VCCIO_2, VCC_SPI and	VCCIO_2	0.86	1.29	V
	iCE40LP/HX8K	VPP_2V5)	VCC_SPI	0.86	1.29	V
			VPP_2V5	0.86	1.33	V
V _{PORDN}	iCE40LP384	Power-On-Reset ramp-down trip V	VCC	—	0.64	V
		point (band gap based circuit moni- toring VCC, VCCIO_2, VCC_SPI	VCCIO_2	—	1.59	V
		and VPP_2V5)	VCC_SPI	—	1.59	V
			VPP_2V5	—	1.59	V
	iCE40LP640,	Power-On-Reset ramp-down trip	VCC	—	0.75	V
	iCE40LP/HX1K, iCE40LP/HX4K,	point (band gap based circuit moni- toring VCC, VCCIO_2, VCC_SPI	VCCIO_2	—	1.29	V
	iCE40LP/HX8K	and VPP_2V5)	VCC_SPI	—	1.29	V
			VPP_2V5	—	1.33	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

ESD Performance

Please refer to the iCE40 Product Family Qualification Summary for complete qualification data, including ESD performance.

Peak Startup Supply Current – HX Devices

Symbol	Parameter	Device	Max	Units
		iCE40HX1K	6.9	mA
ICCPEAK	Core Power Supply	iCE40HX4K	22.3	mA
		iCE40HX8K	22.3	mA
		iCE40HX1K	1.8	mA
I _{CCPLLPEAK} ¹	PLL Power Supply	iCE40HX4K	6.4	mA
		iCE40HX8K	6.4	mA
		iCE40HX1K	2.8	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40HX4K	4.1	mA
		iCE40HX8K	4.1	mA
		iCE40HX1K	6.8	mA
ICCIOPEAK, ICC_SPIPEAK	Bank Power Supply	iCE40HX4K	6.8	mA
		iCE40HX8K	6.8	mA

1. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)				
Standard	Min.	Тур.	Max.		
LVCMOS 3.3	3.14	3.3	3.46		
LVCMOS 2.5	2.37	2.5	2.62		
LVCMOS 1.8	1.71	1.8	1.89		
LVDS25E ^{1, 2}	2.37	2.5	2.62		
subLVDSE ^{1, 2}	1.71	1.8	1.89		

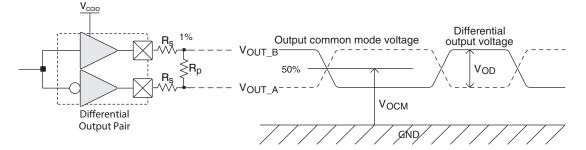
1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. Does not apply to Configuration Bank V_{CC_SPI}.

sysIO Single-Ended DC Electrical Characteristics

Input/	V _{IL}		V _{IH} ¹				1		
Output Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)	
LVCMOS 3.3	-0.3	0.8	2.0	V _{CCIO} + 0.2 V	0.4	$V_{CCIO} - 0.4$	8, 16 ² , 24 ²	-8, -16 ² , -24 ²	
EVOINOU 0.0	0.0	0.0	2.0	VCCIO + 0.2 V	CCIO + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1
LVCMOS 2.5	-0.3	0.7	1.7		0.4	$V_{CCIO} - 0.4$	6, 12 ² , 18 ²	-6, -12 ² , -18 ²	
2.0	0.0	0.7	1.7	V _{CCIO} + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1	
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}		0.4	$V_{CCIO} - 0.4$	4, 8 ² , 12 ²	-4, -8 ² , -12 ²	
	-0.5	0.33 A CCIO	0.03 A CCIO	V _{CCIO} + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1	

1. Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO.}}$


2. Only for High Drive LED outputs.

LVDS25E Emulation

iCE40 devices can support LVDSE outputs via emulation on all banks. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS25E standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS25E Using External Resistors

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	150	Ohms
R _P	Driver parallel resistor	140	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.30	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

Over Recommended Operating Conditions

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

Maximum sysIO Buffer Performance²

I/O Standard	Max. Speed	Units				
Inputs						
LVDS251	400	MHz				
subLVDS18 ¹	400	MHz				
LVCMOS33	250	MHz				
LVCMOS25	250	MHz				
LVCMOS18	250	MHz				
	Outputs					
LVDS25E	250	MHz				
subLVDS18E	155	MHz				
LVCMOS33	250	MHz				
LVCMOS25	250	MHz				
LVCMOS18	155	MHz				

1. Supported in Bank 3 only.

2. Measured with a toggling pattern

iCE40 Family Timing Adders

Over Recommended Commercial Operating Conditions - LP Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units
Input Adjusters	I		
LVDS25	LVDS, $V_{CCIO} = 2.5 V$	-0.18	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	0.82	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.18	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.19	ns
Output Adjusters			
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.32	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	-0.12	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.32	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

iCE40 External Switching Characteristics – LP Devices ^{1, 2}

Over Recommended Operating Conditions

Parameter	Description	Device	Min.	Max.	Units
Clocks					
Global Clocks					
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All iCE40LP devices	—	275	MHz
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All iCE40LP devices	0.92	—	ns
W_GBOI		iCE40LP384	-	370	ps
		iCE40LP640	-	230	ps
t _{SKEW_GBUF}	Global Buffer Clock Skew Within a Device	iCE40LP1K	-	230	ps
		iCE40LP4K	-	340	ps
		iCE40LP8K	-	340	ps
Pin-LUT-Pin Propa	agation Delay			1	1
t _{PD}	Best case propagation delay through one LUT-4	All iCE40LP devices	—	9.36	ns
General I/O Pin Pa	rameters (Using Global Buffer Clock withou	it PLL) ³			
		iCE40LP384	_	300	ps
		iCE40LP640	—	200	ps
t _{SKEW_} IO	Data bus skew across a bank of IOs	iCE40LP1K		200	ps
		iCE40LP4K		280	ps
		iCE40LP8K		280	ps
		iCE40LP384		6.33	ns
		iCE40LP640		5.91	ns
t _{co}	Clock to Output - PIO Output Register	iCE40LP1K		5.91	ns
		iCE40LP4K		6.58	ns
		iCE40LP8K		6.58	ns
		iCE40LP384	-0.08	_	ns
		iCE40LP640	-0.33	_	ns
t _{SU}	Clock to Data Setup - PIO Input Register	iCE40LP1K	-0.33	_	ns
		iCE40LP4K	-0.63	_	ns
		iCE40LP8K	-0.63	_	ns
		iCE40LP384	1.99	_	ns
		iCE40LP640	2.81	_	ns
t _H	Clock to Data Hold - PIO Input Register	iCE40LP1K	2.81	—	ns
		iCE40LP4K	3.48	—	ns
		iCE40LP8K	3.48	—	ns
General I/O Pin Pa	arameters (Using Global Buffer Clock with P	LL) ³	I	1	1
		iCE40LP1K	_	2.20	ns
t _{COPLL}	Clock to Output - PIO Output Register	iCE40LP4K		2.30	ns
		iCE40LP8K	— —	2.30	ns
		iCE40LP1K	5.23	—	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	iCE40LP4K	6.13	—	ns
		iCE40LP8K	6.13		ns

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (REFERENCECLK, EXTFEEDBACK)		10	133	MHz
f _{OUT}	Output Clock Frequency (PLLOUT)		16	275	MHz
f _{VCO}	PLL VCO Frequency		533	1066	MHz
f _{PFD}	Phase Detector Input Frequency		10	133	MHz
AC Characteris	tics				
t	Output Clock Duty Cycle	f _{OUT} < 175 MHz	40	50	%
t _{DT}	Output Clock Duty Cycle	175 MHz < f _{OUT} < 275 MHz	35	65	"%
t _{PH}	Output Phase Accuracy		—	+/-12	deg
Output Clock	Output Clock Period Jitter	f _{OUT} <= 100 MHz	_	450	ps p-p
		f _{OUT} > 100 MHz	—	0.05	UIPP
+ 1,5	Output Clock Cycle-to-cycle Jitter	f _{OUT} <= 100 MHz	—	750	ps p-p
t _{OPJIT} ^{1, 5} C	Output Clock Cycle-10-Cycle Siller	f _{OUT} > 100 MHz	_	0.10	UIPP
Output	Output Clock Phase litter	f _{PFD} <= 25 MHz	_	275	ps p-p
	Output Clock Phase Jitter	f _{PFD} > 25 MHz	_	0.05	UIPP
t _W	Output Clock Pulse Width	At 90% or 10%	1.3	—	ns
t _{LOCK} ^{2, 3}	PLL Lock-in Time		_	50	us
t _{UNLOCK}	PLL Unlock Time		_	50	ns
+ 4	Input Clock Period Jitter	$f_{PFD} \ge 20 \text{ MHz}$	_	1000	ps p-p
t _{IPJIT} ⁴	Input Clock Feriod Siller	f _{PFD} < 20 MHz	_	0.02	UIPP
t _{FDTAP}	Fine Delay adjustment, per Tap		147	195	ps
t _{STABLE} ³	LATCHINPUTVALUE LOW to PLL Stable		—	500	ns
t _{STABLE_PW} ³	LATCHINPUTVALUE Pulse Width		—	100	ns
t _{RST}	RESET Pulse Width		10	—	ns
t _{RSTREC}	RESET Recovery Time		10	—	us
t _{DYNAMIC_WD}	DYNAMICDELAY Pulse Width		100	_	VCO Cycles
t	Propagation delay with the PLL in bypass	iCE40LP	1.18	4.68	ns
t _{PDBYPASS}	mode	iCE40HX	1.73	4.07	ns

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after $t_{\mbox{LOCK}}$ for PLL reset and dynamic delay adjustment.

3. At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

4. Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table.

5. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

sysCONFIG Port Timing Specifications¹ (Continued)

Symbol	Parameter		Min.	Тур.	Max.	Units
		iCE40LP384 - Low Frequency (Default)	600	_	—	us
		iCE40LP384 - Medium Frequency	600	_	—	us
		iCE40LP384 - High Frequency	600	_	—	us
		iCE40LP640, iCE40LP/HX1K - Low Frequency (Default)	800	_	_	us
		iCE40LP640, iCE40LP/HX1K - Medium Frequency	800	_	_	us
CRESET B high to first MCLK	iCE40LP640, iCE40LP/HX1K - High Frequency	800		_	us	
	CRESET_B high to first MCLK	iCE40LP/HX1K-Low Frequency (Default)	800	_	—	us
^I MCLK	edge	iCE40LP/HX1K - Medium Frequency	800	_	—	us
		iCE40LP/HX1K - High Frequency	800	_	—	us
		iCE40LP/HX4K - Low Frequency (Default)	1200		—	us
		iCE40LP/HX4K - Medium Frequency	1200	_	—	us
		iCE40LP/HX4K - high frequency	1200	_	—	US
		iCE40LP/HX8K - Low Frequency (Default)	1200	_	—	us
		iCE40LP/HX8K - Medium Frequency	1200		—	us
		iCE40LP/HX8K - High Frequency	1200			us

Does not apply for NVCM.
 Supported only with 1.2 V V_{CC} and at 25 °C.
 Extended range f_{MAX} Write operations support up to 53 MHz only with 1.2 V V_{CC} and at 25 °C.

Switching Test Conditions

Figure 3-3 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-3.

Figure 3-3. Output Test Load, LVCMOS Standards

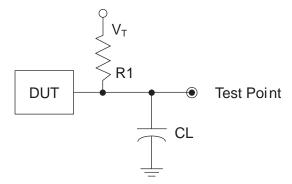


Table 3-3. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Reference	V _T
			LVCMOS 3.3 = 1.5 V	—
LVCMOS settings (L -> H, H -> L)	×	0 pF	LVCMOS 2.5 = $V_{CCIO}/2$	—
			LVCMOS 1.8 = $V_{CCIO}/2$	—
LVCMOS 3.3 (Z -> H)			1.5	V _{OL}
LVCMOS 3.3 (Z -> L)			1.5	V _{OH}
Other LVCMOS (Z -> H)	188	0	V _{CCIO} /2	V _{OL}
Other LVCMOS (Z -> L)	100	0 pF	V _{CCIO} /2	V _{OH}
LVCMOS (H -> Z)			V _{OH} - 0.15	V _{OL}
LVCMOS (L -> Z)			V _{OL} - 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Signal Descriptions (Continued)

Signal Name	I/O	Descriptions
VPP_FAST		Optional fast NVCM programming supply. V _{PP_FAST} , used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V _{PP_FAST} ball connected to V _{CCIO_0} ball externally.
VPP_2V5	—	VPP_2V5 NVCM programming and operating supply

Pin Information Summary (Continued)

	iCE40HX4K			iCE40HX8K			
	BG121	CB132	TQ144	BG121	CB132	CM225	CT256
General Purpose I/O per Bank							
Bank 0	23	24	27	23	24	46	52
Bank 1	21	25	29	21	25	42	52
Bank 2	19	18	19	19	18	40	46
Bank 3	26	24	28	26	24	46	52
Configuration	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	93	95	107	93	95	178	206
High Current Outputs per Bank		•	•		•		
Bank 0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0
Total Differential Inputs	0	0	0	0	0	0	0
Differential Inputs per Bank	•	•			•	•	
Bank 0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0
Bank 3	13	12	14	13	12	23	26
Total Differential Inputs	13	12	14	13	12	23	26
Dedicated Inputs per Bank	•		•	•	•		•
Bank 0	0	0	0	0	0	0	0
Bank 1	0	1	1	0	1	1	1
Bank 2	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0
Total Dedicated Inputs	2	3	3	2	3	3	3
Vccio Pins	•	•	•	•	•		•
Bank 0	1	2	2	1	2	3	4
Bank 1	1	2	2	1	2	3	4
Bank 2	1	2	2	1	2	3	4
Bank 3	2	3	2	2	3	4	4
VCC	4	5	4	4	5	8	6
VCC_SPI	1	1	1	1	1	1	1
VPP_2V5	1	1	1	1	1	1	1
VPP_FAST ¹	1	1	1	1	1	1	1
VCCPLL	2	2	2	2	2	2	2
GND	12	15	11	12	15	18	20
NC	0	0	6	0	0	0	0
Total Count of Bonded Pins	121	132	144	121	132	225	256

1. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.

Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40LP384-CM36	384	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP384-CM36TR	384	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP384-CM36TR1K	384	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP384-CM49	384	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP384-CM49TR	384	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP384-CM49TR1K	384	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP384-SG32	384	1.2 V	Halogen-Free QFN	32	IND
ICE40LP384-SG32TR	384	1.2 V	Halogen-Free QFN	32	IND
ICE40LP384-SG32TR1K	384	1.2 V	Halogen-Free QFN	32	IND
ICE40LP640-SWG16TR	640	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP640-SWG16TR50	640	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP640-SWG16TR1K	640	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-SWG16TR	1280	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-SWG16TR50	1280	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-SWG16TR1K	1280	1.2 V	Halogen-Free WLCSP	16	IND
ICE40LP1K-CM36	1280	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP1K-CM36TR	1280	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP1K-CM36TR1K	1280	1.2 V	Halogen-Free ucBGA	36	IND
ICE40LP1K-CM49	1280	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP1K-CM49TR	1280	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP1K-CM49TR1K	1280	1.2 V	Halogen-Free ucBGA	49	IND
ICE40LP1K-CM81	1280	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP1K-CM81TR	1280	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP1K-CM81TR1K	1280	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP1K-CB81	1280	1.2 V	Halogen-Free csBGA	81	IND
ICE40LP1K-CB81TR	1280	1.2 V	Halogen-Free csBGA	81	IND
ICE40LP1K-CB81TR1K	1280	1.2 V	Halogen-Free csBGA	81	IND
ICE40LP1K-CM121	1280	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP1K-CM121TR	1280	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP1K-CM121TR1K	1280	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP1K-CB121	1280	1.2 V	Halogen-Free csBGA	121	IND
ICE40LP1K-QN84	1280	1.2 V	Halogen-Free QFN	84	IND
ICE40LP4K-CM81	3520	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP4K-CM81TR	3520	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP4K-CM81TR1K	3520	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP4K-CM121	3520	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP4K-CM121TR	3520	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP4K-CM121TR1K	3520	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP4K-CM225	3520	1.2 V	Halogen-Free ucBGA	225	IND
ICE40LP8K-CM81	7680	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP8K-CM81TR	7680	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP8K-CM81TR1K	7680	1.2 V	Halogen-Free ucBGA	81	IND
ICE40LP8K-CM121	7680	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP8K-CM121TR	7680	1.2 V	Halogen-Free ucBGA	121	IND

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40LP8K-CM121TR1K	7680	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND

High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40HX1K-CB132	1280	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX1K-VQ100	1280	1.2 V	Halogen-Free VQFP	100	IND
ICE40HX1K-TQ144	1280	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX4K-BG121	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-BG121TR	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-CB132	3520	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX4K-TQ144	3520	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX8K-BG121	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-BG121TR	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-CB132	7680	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND
ICE40HX8K-CT256	7680	1.2 V	Halogen-Free caBGA	256	IND

iCE40 LP/HX Family Data Sheet Supplemental Information

March 2017

Data Sheet DS1040

For Further Information

A variety of technical notes for the iCE40 family are available on the Lattice web site.

- TN1248, iCE40 Programming and Configuration
- TN1250, Memory Usage Guide for iCE40 Devices
- TN1251, iCE40 sysCLOCK PLL Design and Usage Guide
- TN1252, iCE40 Hardware Checklist
- TN1253, Using Differential I/O (LVDS, Sub-LVDS) in iCE40 Devices
- TN1074, PCB Layout Recommendations for BGA Packages
- iCE40 Pinout Files
- Thermal Management document
- Lattice design tools
- IBIS
- Package Diagrams Data Sheet
- Schematic Symbols

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary		
April 2013 02.2		Introduction	Added the LP8K 81 ucBGA.		
		Architecture	Corrected typos.		
		DC and Switching Characteristics	Corrected typos. Added 7:1 LVDS waveforms.		
		Pinout Information	Corrected typos in signal descriptions. Added the LP8K 81 ucBGA.		
		Ordering Information	Added the LP8K 81 ucBGA.		
March 2013	02.1	DC and Switching	Recommended operating conditions added requirement for Master SPI.		
		Characteristics	Updated Recommended Operating Conditions for V _{PP_2V5} .		
			Updated Power-On-Reset Voltage Levels and sequence requirements.		
			Updated Static Supply Current conditions.		
			Changed unit for t _{SKEW_IO} from ns to ps.		
			Updated range of CCLK f _{MAX} .		
		Ordering Information	Updated ordering information to include tape and reel part numbers.		
September 2012	02.0	_	Merged SiliconBlue iCE40 LP and HX data sheets and updated to Lat- tice format.		
	01.31	—	Updated Table 1.		
01.3	01.3	—	Production release.		
			Updated notes on Table 3: Recommended Operating Conditions.		
			Updated values in Table 4, Table 5, Table 12, Table 13 and Table 17.		
	01.21	_	Updated Figure 3 and Figure 4 to specify iCE40.		
Aug 2012	01.2	—	Updated company name.		
July 2011	01.1	_	Moved package specifications to iCE40 pinout Excel files.		
			Updated Table 1 maximum I/Os.		
	01.01	—	Added 640, 1K and 4K to Table 13 configuration times. Updated Table 1 maximum I/Os.		
	01.0	—	Initial release.		