

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	35
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	49-VFBGA
Supplier Device Package	49-UCBGA (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40lp1k-cm49tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Routing

There are many resources provided in the iCE40 devices to route signals individually with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient connections in the diagonal, horizontal and vertical directions.

The design tool takes the output of the synthesis tool and places and routes the design.

Clock/Control Distribution Network

Each iCE40 device has eight global inputs, two pins on each side of the device. Note that not all GBINs are available in all packages.

These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are identified as GBIN[7:0] and the global buffers are identified as-GBUF[7:0]. These eight inputs may be used as general purpose I/O if they are not used to drive the clock nets. Global buffer GBUF7 in I/O Bank 3 also provides an optional direct LVDS25 or subLVDS differential clock input.

Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input.

Global Buffer	LUT Inputs	Clock	Reset	Clock Enable
GBUF0		Yes	Yes	
GBUF1		Yes		Yes
GBUF2		Yes	Yes	
GBUF3	Yes, any 4 of 8	Yes		Yes
GBUF4	GBUF Inputs	Yes	Yes	
GBUF5		Yes		Yes
GBUF6	7	Yes	Yes	
GBUF7		Yes		Yes

Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks

The maximum frequency for the global buffers are shown in the iCE40 External Switching Characteristics tables later in this document.

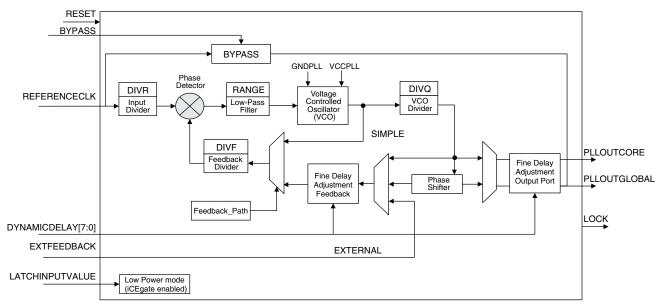
Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state.

Global Reset Control

The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application.

sysCLOCK Phase Locked Loops (PLLs)


The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 devices have one or more sys-CLOCK PLLs. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 6. The PLLOUT outputs can all be used to drive the iCE40 global clock network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3.

The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the t_{LOCK} parameter has been satisfied.

For more details on the PLL, see TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.

Figure 2-3. PLL Diagram

Table 2-3 provides signal descriptions of the PLL block.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Note the sysMEM Embedded Block RAM Memory address 0 cannot be initialized.

Memory Cascading

Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks.

RAM4k Block

Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array.

Figure 2-4. sysMEM Memory Primitives

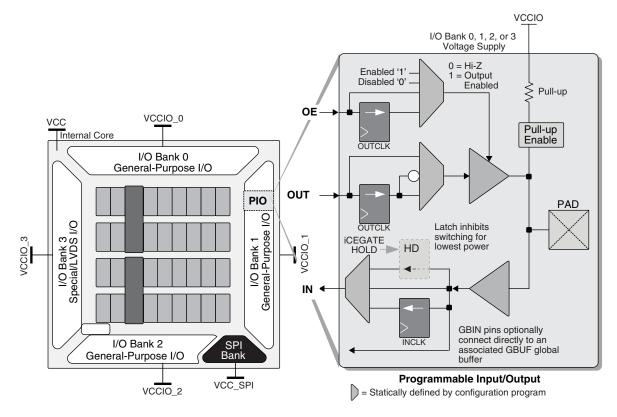


Table 2-5. EBR Signal Descriptions

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input.
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit; 1 = don't write bit
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.
WE	Input	Write Enable input.
WCLKE	Input	Write Clock Enable input.
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.
RDATA[15:0]	Output	Read Data output.
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.
RE	Input	Read Enable input.
RCLKE	Input	Read Clock Enable input.
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.

For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices.

syslO


Buffer Banks

iCE40 devices have up to four I/O banks with independent V_{CCIO} rails with an additional configuration bank V_{CC} SPI for the SPI I/Os.

Programmable I/O (PIO)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. The PIOs are placed on all four sides of the device.

Figure 2-5. I/O Bank and Programmable I/O Cell

The PIO contains three blocks: an input register block, output register block iCEgate[™] and tri-state register block. To save power, the optional iCEgate[™] latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Note that the freeze signal is common to the bank. These blocks can operate in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface signals before they are passed to the device core. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock signal, creating two data streams.

Output Register Block

The output register block can optionally register signals from the core of the device before they are passed to the sysIO buffers. In Generic DDR mode, two registers are used to capture the data on the positive and negative edge of the system clock and then muxed creating one data stream.

Figure 2-6 shows the input/output register block for the PIOs.

Power On Reset

iCE40 devices have power-on reset circuitry to monitor V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} (controls configuration) voltage levels. It then triggers download from the on-chip NVCM or external Flash memory after reaching the power-up levels specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tri-state. I/Os are released to user functionality once the device has finished configuration.

Programming and Configuration

This section describes the programming and configuration of the iCE40 family.

Device Programming

The NVCM memory can be programmed through the SPI port.

Device Configuration

There are various ways to configure the Configuration RAM (CRAM) including:

- 1. Internal NVCM Download
- 2. From a SPI Flash (Master SPI mode)
- 3. System microprocessor to drive a Serial Slave SPI port (SSPI mode)

The image to configure the CRAM can be selected by the user on power up (Cold Boot) or once powered up (Warm Boot).

For more details on programming and configuration, see TN1248, iCE40 Programming and Configuration Usage Guide.

Power Saving Options

iCE40 devices are available in two options for maximum flexibility: LP and HX devices. The LP devices have ultra low static and dynamic power consumption. HX devices are designed to provide high performance. Both the LP and the HX devices operate at 1.2 V V_{CC} .

iCE40 devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. While these features are available in both device types, these features are mainly intended for use with iCE40 LP devices to manage power consumption.

Table 2-9. iCE40 Power Saving Features Description

Device Subsystem	Feature Description				
	When LATCHINPUTVALUE is enabled, forces the PLL into low-power mode; PLL output held static at last input clock value.				
	To save power, the optional iCEgate latch can selectively freeze the state of individual, non-regis- tered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control.				

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter		Min.	Max.	Units
		All configuration modes. No power supply sequencing.	0.40	10	V/ms
	Power supply ramp rates for all power supplies.	Configuring from Slave SPI. No power supply sequencing,	0.01	10	V/ms
t _{RAMP}		Configuring from NVCM. V_{CC} and $V_{PP_{2V5}}$ to be powered 0.25 ms before $V_{CC_{SPI}}$.	0.01	10	V/ms
		Configuring from MSPI. V_{CC} and V_{PP_SPI} to be powered 0.25 ms before V_{PP_2V5} .	0.01	10	V/ms

1. Assumes monotonic ramp rates.

2. iCE40LP384 requires V_{CC} to be greater than 0.7V when V_{CCIO} and V_{CC_SPI} are above GND.

Power-On-Reset Voltage Levels¹

Symbol	Device	Parameter		Min.	Max.	Units
V _{PORUP}	iCE40LP384	Power-On-Reset ramp-up trip point	VCC	0.67	0.99	V
		(band gap based circuit monitoring VCC, VCCIO_2, VCC_SPI and	VCCIO_2	0.70	1.59	V
		VPP_2V5)	VCC_SPI	0.70	1.59	V
			VPP_2V5	0.70	1.59	V
	iCE40LP640,	IX1K, (band gap based circuit monitoring V IX4K, VCC, VCCIO_2, VCC_SPI and V IX8K VPP_2V5)	VCC	0.55	0.75	V
	iCE40LP/HX1K, iCE40LP/HX4K,		VCCIO_2	0.86	1.29	V
	iCE40LP/HX8K		VCC_SPI	0.86	1.29	V
			VPP_2V5	0.86	1.33	V
V _{PORDN}	iCE40LP384	Power-On-Reset ramp-down trip	VCC	—	0.64	V
		point (band gap based circuit moni- toring VCC, VCCIO_2, VCC_SPI	VCCIO_2	—	1.59	V
		and VPP_2V5)	VCC_SPI	—	1.59	V
		_ ,	VPP_2V5	—	1.59	V
	iCE40LP640,	Power-On-Reset ramp-down trip	VCC	—	0.75	V
	iCE40LP/HX1K, iCE40LP/HX4K,	point (band gap based circuit moni- toring VCC, VCCIO_2, VCC_SPI	VCCIO_2	—	1.29	V
	iCE40LP/HX8K	and VPP_2V5)	VCC_SPI	—	1.29	V
			VPP_2V5	—	1.33	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

ESD Performance

Please refer to the iCE40 Product Family Qualification Summary for complete qualification data, including ESD performance.

Static Supply Current – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
I _{CC}		iCE40HX1K	296	μΑ
	Core Power Supply	iCE40HX4K	1140	μΑ
		iCE40HX8K	1140	μΑ
I _{CCPLL} ⁵	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	1.0	μΑ
I _{CCIO,} I _{CC_SPI}	Bank Power Supply ⁴ $V_{CCIO} = 2.5 V$	All devices	3.5	μA

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

2. Frequency = 0 MHz.

3. $T_J = 25 \,^{\circ}C$, power supplies at nominal voltage.

4. Does not include pull-up.

5. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

Programming NVCM Supply Current – LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40LP384	60	μΑ
		iCE40LP640	120	μΑ
I _{CC}	Core Power Supply	iCE40LP1K	120	μΑ
		iCE40LP4K	350	μΑ
		iCE40LP8K	350	μΑ
I _{CCPLL} ^{6, 7}	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	2.5	mA
I _{CCIO⁸, I_{CC_SPI}}	Bank Power Supply ⁵	All devices	3.5	mA

1. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.

2. Typical user pattern.

3. SPI programming is at 8 MHz.

4. $T_J = 25 \degree C$, power supplies at nominal voltage.

5. Per bank. $V_{CCIO} = 2.5$ V. Does not include pull-up.

6. No PLL available on the iCE40-LP384 and iCE40-LP640 device.

7. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

8. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

sysIO Differential Electrical Characteristics

The LVDS25E/subLVDSE differential output buffers are available on all banks but the LVDS/subLVDS input buffers are only available on Bank 3 of iCE40 devices.

LVDS25

Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage	$V_{CCIO}^{1} = 2.5$	0	—	2.5	V
V _{THD}	Differential Input Threshold		250	350	450	mV
V _{CM}	Input Common Mode Voltage	$V_{\rm CCIO}^{1} = 2.5$	(V _{CCIO} /2) - 0.3	$V_{CCIO}/2$	$(V_{CCIO}/2) + 0.3$	V
I _{IN}	Input Current	Power on	—	—	±10	μΑ

1. Typical.

subLVDS

Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage	$V_{CCIO}^{1} = 1.8$	0		1.8	V
V _{THD}	Differential Input Threshold		100	150	200	mV
V _{CM}	Input Common Mode Voltage	$V_{CCIO}^{1} = 1.8$	(V _{CCIO} /2) - 0.25	$V_{CCIO}/2$	$(V_{CCIO}/2) + 0.25$	V
I _{IN}	Input Current	Power on	—		±10	μΑ

1. Typical.

Typical Building Block Function Performance – LP Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	11.0	ns
4:1 MUX	12.0	ns
16:1 MUX	13.0	ns

Register-to-Register Performance

Function	Timing	Units
Basic Functions	· · ·	
16:1 MUX	190	MHz
16-bit adder	160	MHz
16-bit counter	175	MHz
64-bit counter	65	MHz
Embedded Memory Functions		-
256x16 Pseudo-Dual Port RAM	240	MHz

1. The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

Typical Building Block Function Performance – HX Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	10.0	ns
4:1 MUX	9.0	ns
16:1 MUX	9.5	ns

Register-to-Register Performance

Function	Timing	Units
Basic Functions		•
16:1 MUX	305	MHz
16-bit adder	220	MHz
16-bit counter	255	MHz
64-bit counter	105	MHz
Embedded Memory Functions		•
256x16 Pseudo-Dual Port RAM	403	MHz

1. The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

Over Recommended Commercial Operating Conditions - HX Devices^{1, 2, 3, 4, 5}

Buffer Type	Buffer Type Description		Units
Input Adjusters	I		
LVDS25 LVDS, V _{CCIO} = 2.5 V		0.13	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	1.03	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.16	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.23	ns
Output Adjusters	· · ·		
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.76	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.17	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.76	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

iCE40 External Switching Characteristics – LP Devices (Continued)^{1, 2}

Over Recommended Operating Conditions

Parameter	Description	Device	Min.	Max.	Units
		iCE40LP1K	-0.90	_	ns
t _{HPLL}		iCE40LP4K	-0.80	_	ns
		iCE40LP8K	-0.80		ns

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions can be extracted from the iCECube2 software.

2. General I/O timing numbers based on LVCMOS 2.5, 0pf load.

3. Supported on devices with a PLL.

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (REFERENCECLK, EXTFEEDBACK)		10	133	MHz
fout	Output Clock Frequency (PLLOUT)		16	275	MHz
f _{VCO}	PLL VCO Frequency		533	1066	MHz
f _{PFD}	Phase Detector Input Frequency		10	133	MHz
AC Characteris	tics				
t	Output Clock Duty Cycle	f _{OUT} < 175 MHz	40	50	%
t _{DT}		175 MHz < f _{OUT} < 275 MHz	35	65	"%
t _{PH}	Output Phase Accuracy		—	+/-12	deg
	Output Clock Period Jitter	f _{OUT} <= 100 MHz	_	450	ps p-p
		f _{OUT} > 100 MHz	—	0.05	UIPP
t _{opjit} 1,5	Output Clock Cycle-to-cycle Jitter	f _{OUT} <= 100 MHz	—	750	ps p-p
		f _{OUT} > 100 MHz	_	0.10	UIPP
	Output Clock Phase Jitter	f _{PFD} <= 25 MHz	_	275	ps p-p
	Ouput Clock Phase Siller	f _{PFD} > 25 MHz	_	0.05	UIPP
t _W	Output Clock Pulse Width	At 90% or 10%	1.3	—	ns
t _{LOCK} ^{2, 3}	PLL Lock-in Time		—	50	us
t _{UNLOCK}	PLL Unlock Time		—	50	ns
t _{IPJIT} ⁴	Input Clock Period Jitter	$f_{PFD} \ge 20 \text{ MHz}$	—	1000	ps p-p
ЧРЈІТ		f _{PFD} < 20 MHz	—	0.02	UIPP
t _{FDTAP}	Fine Delay adjustment, per Tap		147	195	ps
t _{STABLE} ³	LATCHINPUTVALUE LOW to PLL Stable		_	500	ns
t _{STABLE_PW} ³	LATCHINPUTVALUE Pulse Width		_	100	ns
t _{RST}	RESET Pulse Width		10	—	ns
t _{RSTREC}	RESET Recovery Time		10	—	us
t _{DYNAMIC_WD}	DYNAMICDELAY Pulse Width		100	_	VCO Cycles
t===:/=: ==	Propagation delay with the PLL in bypass	iCE40LP	1.18	4.68	ns
t _{PDBYPASS}	mode	iCE40HX	1.73	4.07	ns

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after $t_{\mbox{LOCK}}$ for PLL reset and dynamic delay adjustment.

3. At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

4. Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table.

5. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

sysCONFIG Port Timing Specifications¹

Symbol	Parameter		Min.	Тур.	Max.	Units
All Configuration	on Modes	11		1	I.	1
t _{CRESET_B}	Minimum CRESET_B Low pulse width required to restart configu- ration, from falling edge to rising edge		200	—	_	ns
t _{DONE_IO}	Number of configuration clock cycles after CDONE goes High before the PIO pins are activated		49	_	_	Clock Cycles
Slave SPI	•					•
	Minimum time from a rising edge	iCE40LP384	600	-	—	us
t _{CR_SCK}	on CRESET_B until the first SPI write operation, first SPI_SCK. During this time, the iCE40	iCE40LP640, iCE40LP/HX1K	800	-	_	us
	device is clearing its internal con-	iCE40LP/HX4K	1200	-	—	us
	figuration memory	iCE40LP/HX8K	1200	-	—	us
f _{MAX} 1		Write	1	-	25	MHz
		Read iCE40LP384 ²	-	15	-	MHz
	CCLK clock frequency	Read iCE40LP640, iCE40LP/HX1K ²	-	15	-	MHz
·MAX		Read iCE40LP/ HX4K ²	-	15	-	MHz
		Read iCE40LP/ HX8K ²	-	15	-	MHz
t _{CCLKH}	CCLK clock pulse width high		20		—	ns
t _{CCLKL}	CCLK clock pulse width low		20	—	—	ns
t _{STSU}	CCLK setup time		12		—	ns
t _{STH}	CCLK hold time		12	_	—	ns
t _{STCO}	CCLK falling edge to valid output		13		—	ns
Master SPI		·				
		Off		0	_	MHz
f _{MCLK}	MCLK clock frequency	Low Frequency (Default)	_	7.5	_	MHz
		Medium Frequency ³		24	-	MHz
		High Frequency ³	_	40	—	MHz

sysCONFIG Port Timing Specifications¹ (Continued)

Symbol	Parameter		Min.	Тур.	Max.	Units
		iCE40LP384 - Low Frequency (Default)	600	_	—	us
		iCE40LP384 - Medium Frequency	600	_	—	us
		iCE40LP384 - High Frequency	600	_	—	us
		iCE40LP640, iCE40LP/HX1K - Low Frequency (Default)	800	_	_	us
		iCE40LP640, iCE40LP/HX1K - Medium Frequency	800	_	_	us
		iCE40LP640, iCE40LP/HX1K - High Frequency	800	—	_	us
	CRESET_B high to first MCLK	iCE40LP/HX1K -Low Frequency (Default)	800	_	—	us
^I MCLK	edge	iCE40LP/HX1K - Medium Frequency	800	_	—	us
		iCE40LP/HX1K - High Frequency	800	_	—	us
		iCE40LP/HX4K - Low Frequency (Default)	1200	_	—	us
		iCE40LP/HX4K - Medium Frequency	1200	_	-	us
		iCE40LP/HX4K - high frequency	1200	_	—	us
		iCE40LP/HX8K - Low Frequency (Default)	1200	_	—	us
		iCE40LP/HX8K - Medium Frequency	1200	_	—	us
		iCE40LP/HX8K - High Frequency	1200			us

Does not apply for NVCM.
Supported only with 1.2 V V_{CC} and at 25 °C.
Extended range f_{MAX} Write operations support up to 53 MHz only with 1.2 V V_{CC} and at 25 °C.

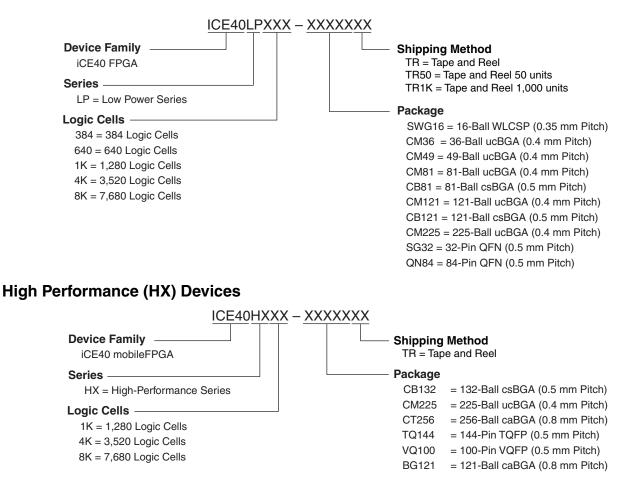
Signal Descriptions (Continued)

Signal Name	I/O	Descriptions
VPP_FAST		Optional fast NVCM programming supply. V _{PP_FAST} , used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V _{PP_FAST} ball connected to V _{CCIO_0} ball externally.
VPP_2V5	—	VPP_2V5 NVCM programming and operating supply

Pin Information Summary (Continued)

		iCE40LP4K		iCE40LP8K			iCE40HX1K		
	CM81	CM121	CM225	CM81	CM121	CM225	VQ100	CB132	TQ144
General Purpose I/O per	r Bank								
Bank 0	17	23	46	17	23	46	19	24	23
Bank 1	15	21	42	15	21	42	19	25	25
Bank 2	9	19	40	9	19	40	12	20	20
Bank 3	18	26	46	18	26	46	18	22	24
Configuration	4	4	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	63	93	178	63	93	178	72	95	96
High Current Outputs p	er Bank	•	•				•	•	•
Bank 0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0	0	0
Total Differential Inputs	0	0	0	0	0	0	0	0	0
Differential Inputs per B	ank					•			
Bank 0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0
Bank 3	9	13	23	9	13	23	9	11	12
Total Differential Inputs	9	13	23	9	13	23	9	11	12
Dedicated Inputs per Ba	ank								
Bank 0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	1	0	0	1	0	1	1
Bank 2	2	2	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0	0	0
Total Dedicated Inputs	2	2	3	2	2	3	2	3	3
Vccio Pins									
Bank 0	1	1	3	1	1	3	2	2	2
Bank 1	1	1	3	1	1	3	2	2	2
Bank 2	1	1	3	1	1	3	2	2	2
Bank 3	1	2	4	1	2	4	3	3	2
VCC	3	4	8	3	4	8	4	5	4
VCC_SPI	1	1	1	1	1	1	1	1	1
VPP_2V5	1	1	1	1	1	1	1	1	1
VPP_FAST ¹	1	1	1	1	1	1	1	1	1
VCCPLL	1	2	2	1	2	2	0	1	1
GND	5	12	18	5	12	18	10	14	10
NC	0	0	0	0	0	0	0	2	19
Total Count of Bonded Pins	81	121	225	81	121	225	100	132	144

1. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.


iCE40 LP/HX Family Data Sheet Ordering Information

March 2017

Data Sheet DS1040

iCE40 Part Number Description

Ultra Low Power (LP) Devices

All parts shipped in trays unless noted.

Ordering Information

iCE40 devices have top-side markings as shown below:

Note: Markings are abbreviated for small packages.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

iCE40 LP/HX Family Data Sheet Supplemental Information

March 2017

Data Sheet DS1040

For Further Information

A variety of technical notes for the iCE40 family are available on the Lattice web site.

- TN1248, iCE40 Programming and Configuration
- TN1250, Memory Usage Guide for iCE40 Devices
- TN1251, iCE40 sysCLOCK PLL Design and Usage Guide
- TN1252, iCE40 Hardware Checklist
- TN1253, Using Differential I/O (LVDS, Sub-LVDS) in iCE40 Devices
- TN1074, PCB Layout Recommendations for BGA Packages
- iCE40 Pinout Files
- Thermal Management document
- Lattice design tools
- IBIS
- Package Diagrams Data Sheet
- Schematic Symbols

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
February 2014	02.8	Introduction	Updated Features section. — Corrected standby power units. — Included High Current LED Drivers
			Updated Table 1-1, iCE40 Family Selection Guide. — Removed LP384 Programmable I/O for 81 ucBGA package.
		Architecture	Updated Supported Standards section. Added information on High Current LED drivers.
		DC and Switching	Corrected typos.
		Characteristics	Added footnote to the Peak Startup Supply Current – LP Devices table.
		Ordering Information	Updated part number description in the Ultra Low Power (LP) Devices section.
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
October 2013	02.7	Introduction	Updated Features list and iCE40 Family Selection Guide table.
		Architecture	Revised iCE40-1K device to iCE40LP/HX1K device.
		DC and Switching Characteristics	Added iCE40LP640 device information.
		Pinout Information	Added iCE40LP640 and iCE40LP1K information.
		Ordering Information	Added iCE40LP640 and iCE40LP1K information.
September 2013	02.6	DC and Switching	Updated Absolute Maximum Ratings section.
		Characteristics	Updated sysCLOCK PLL Timing – Preliminary table.
		Pinout Information	Updated Pin Information Summary table.
August 2013	02.5	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching Characteristics	Updated the following tables: — Absolute Maximum Ratings — Power-On-Reset Voltage Levels — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices — Peak Startup Supply Current – LP Devices — sysIO Recommended Operating Conditions — Typical Building Block Function Performance – HX Devices — iCE40 External Switching Characteristics – HX Devices — sysCLOCK PLL Timing – Preliminary — SPI Master or NVCM Configuration Time
		Pinout Information	Updated the Pin Information Summary table.
July 2013	02.4	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching	Updated the sysCONFIG Port Timing Specifications table.
		Characteristics	Updated footnote in DC Electrical Characteristics table.
			GDDR tables removed. Support to be provided in a technical note.
		Pinout Information	Updated the Pin Information Summary table.
		Ordering Information	Updated the top-side markings figure.
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
May 2013	02.3	DC and Switching Characteristics	Added new data from Characterization.

Date	Version	Section	Change Summary
April 2013	02.2	Introduction	Added the LP8K 81 ucBGA.
		Architecture	Corrected typos.
		DC and Switching Characteristics	Corrected typos. Added 7:1 LVDS waveforms.
		Pinout Information	Corrected typos in signal descriptions. Added the LP8K 81 ucBGA.
		Ordering Information	Added the LP8K 81 ucBGA.
March 2013	02.1	DC and Switching	Recommended operating conditions added requirement for Master SPI.
		Characteristics	Updated Recommended Operating Conditions for V _{PP_2V5} .
			Updated Power-On-Reset Voltage Levels and sequence requirements.
			Updated Static Supply Current conditions.
			Changed unit for t _{SKEW_IO} from ns to ps.
			Updated range of CCLK f _{MAX} .
		Ordering Information	Updated ordering information to include tape and reel part numbers.
September 2012	02.0	_	Merged SiliconBlue iCE40 LP and HX data sheets and updated to Lat- tice format.
	01.31	—	Updated Table 1.
	01.3	—	Production release.
			Updated notes on Table 3: Recommended Operating Conditions.
			Updated values in Table 4, Table 5, Table 12, Table 13 and Table 17.
	01.21	_	Updated Figure 3 and Figure 4 to specify iCE40.
Aug 2012	01.2	—	Updated company name.
July 2011	01.1	_	Moved package specifications to iCE40 pinout Excel files.
			Updated Table 1 maximum I/Os.
	01.01	—	Added 640, 1K and 4K to Table 13 configuration times. Updated Table 1 maximum I/Os.
	01.0	_	Initial release.