

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

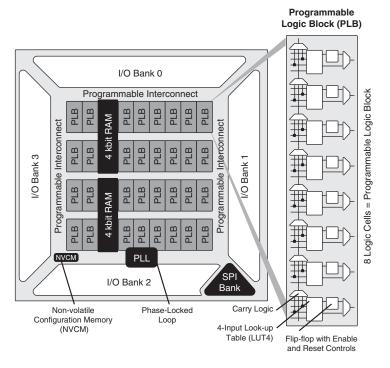
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	63
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	81-VFBGA
Supplier Device Package	81-UCBGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40lp1k-cm81

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


iCE40 LP/HX Family Data Sheet Architecture

March 2017 Data Sheet DS1040

Architecture Overview

The iCE40 family architecture contains an array of Programmable Logic Blocks (PLB), sysCLOCK™ PLLs, Non-volatile Programmable Configuration Memory (NVCM) and blocks of sysMEM™ Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1 shows the block diagram of the iCE40LP/HX1K device.

Figure 2-1. iCE40LP/HX1K Device, Top View

The logic blocks, Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either logic blocks or EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the iCE40 family, there are up to four independent sysIO banks. Note on some packages V_{CCIO} banks are tied together. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO.

The iCE40 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a SPI port that supports programming and configuration of the device. The iCE40 includes on-chip, Nonvolatile Configuration Memory (NVCM).

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Routing

There are many resources provided in the iCE40 devices to route signals individually with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient connections in the diagonal, horizontal and vertical directions.

The design tool takes the output of the synthesis tool and places and routes the design.

Clock/Control Distribution Network

Each iCE40 device has eight global inputs, two pins on each side of the device. Note that not all GBINs are available in all packages.

These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are identified as GBIN[7:0] and the global buffers are identified as-GBUF[7:0]. These eight inputs may be used as general purpose I/O if they are not used to drive the clock nets. Global buffer GBUF7 in I/O Bank 3 also provides an optional direct LVDS25 or subLVDS differential clock input.

Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input.

Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks

Global Buffer	LUT Inputs	Clock	Reset	Clock Enable
GBUF0		Yes	Yes	
GBUF1		Yes		Yes
GBUF2		Yes	Yes	
GBUF3	Yes, any 4 of 8	Yes		Yes
GBUF4	GBUF Inputs	Yes	Yes	
GBUF5	7	Yes		Yes
GBUF6		Yes	Yes	
GBUF7	7	Yes		Yes

The maximum frequency for the global buffers are shown in the iCE40 External Switching Characteristics tables later in this document.

Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state.

Global Reset Control

The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application.

sysCLOCK Phase Locked Loops (PLLs)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 devices have one or more sys-CLOCK PLLs. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 6. The PLLOUT outputs can all be used to drive the iCE40 global clock network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3.

The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the t_{LOCK} parameter has been satisfied.

For more details on the PLL, see TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.

Figure 2-3. PLL Diagram

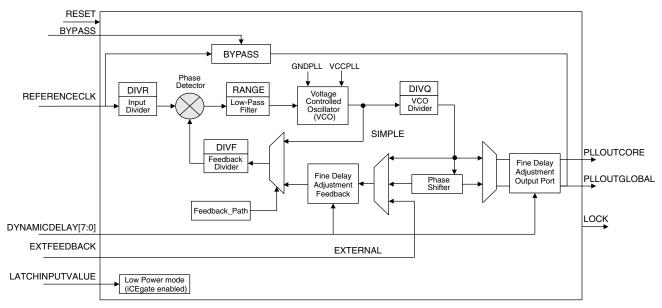


Table 2-3 provides signal descriptions of the PLL block.

Table 2-3. PLL Signal Descriptions

Signal Name	Direction	Description
REFERENCECLK	Input	Input reference clock
BYPASS	Input	When FEEDBACK_PATH is set to SIMPLE, the BYPASS control selects which clock signal connects to the PLLOUT output.
BTFAGG	при	0 = PLL generated signal 1 = REFERENCECLK
EXTFEEDBACK	Input	External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set to EXTERNAL.
DYNAMICDELAY[3:0]	Input	Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE is set to DYNAMIC.
LATCHINPUTVALUE	Input	When enabled, forces the PLL into low-power mode; PLL output is held static at the last input clock value. Set ENABLE ICEGATE_PORTA and PORTB to '1' to enable.
		Output from the Phase-Locked Loop (PLL). Drives a global clock network on the FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5.
PLLOUTCORE	Output	Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.
LOCK	Output	When High, indicates that the PLL output is phase aligned or locked to the input reference clock.
RESET	Input	Active low reset.

sysMEM Embedded Block RAM Memory

Larger iCE40 device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each 4 kbit in size. This memory can be used for a wide variety of purposes including data buffering, and FIFO.

sysMEM Memory Block

The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources. Each block can be used in a variety of depths and widths as shown in Table 2-4.

Table 2-4. sysMEM Block Configurations¹

Block RAM Configuration	Block RAM Configuration and Size	WADDR Port Size (Bits)	WDATA Port Size (Bits)	RADDR Port Size (Bits)	RDATA Port Size (Bits)	MASK Port Size (Bits)
SB_RAM256x16 SB_RAM256x16NR SB_RAM256x16NW SB_RAM256x16NRNW	256x16 (4K)	8 [7:0]	16 [15:0]	8 [7:0]	16 [15:0]	16 [15:0]
SB_RAM512x8 SB_RAM512x8NR SB_RAM512x8NW SB_RAM512x8NRNW	512x8 (4K)	9 [8:0]	8 [7:0]	9 [8:0]	8 [7:0]	No Mask Port
SB_RAM1024x4 SB_RAM1024x4NR SB_RAM1024x4NW SB_RAM1024x4NRNW	1024x4 (4K)	10 [9:0]	4 [3:0]	10 [9:0]	4 [3:0]	No Mask Port
SB_RAM2048x2 SB_RAM2048x2NR SB_RAM2048x2NW SB_RAM2048x2NRNW	2048x2 (4K)	11 [10:0]	2 [1:0]	11 [10:0]	2 [1:0]	No Mask Port

^{1.} For iCE40 EBR primitives with a negative-edged Read or Write clock, the base primitive name is appended with a 'N' and a 'R' or 'W' depending on the clock that is affected.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Note the sysMEM Embedded Block RAM Memory address 0 cannot be initialized.

Memory Cascading

Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks.

RAM4k Block

Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array.

Figure 2-4. sysMEM Memory Primitives

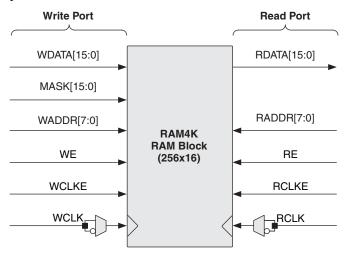
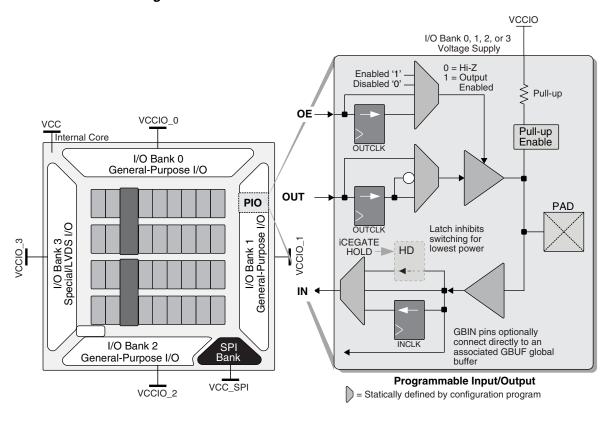


Table 2-5. EBR Signal Descriptions

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input.
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit; 1 = don't write bit
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.
WE	Input	Write Enable input.
WCLKE	Input	Write Clock Enable input.
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.
RDATA[15:0]	Output	Read Data output.
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.
RE	Input	Read Enable input.
RCLKE	Input	Read Clock Enable input.
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.

For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices.

sys_IO


Buffer Banks

iCE40 devices have up to four I/O banks with independent V_{CCIO} rails with an additional configuration bank $V_{CC\ SPI}$ for the SPI I/Os.

Programmable I/O (PIO)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. The PIOs are placed on all four sides of the device.

Figure 2-5. I/O Bank and Programmable I/O Cell

The PIO contains three blocks: an input register block, output register block iCEgate[™] and tri-state register block. To save power, the optional iCEgate[™] latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Note that the freeze signal is common to the bank. These blocks can operate in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface signals before they are passed to the device core. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock signal, creating two data streams.

Output Register Block

The output register block can optionally register signals from the core of the device before they are passed to the sysIO buffers. In Generic DDR mode, two registers are used to capture the data on the positive and negative edge of the system clock and then muxed creating one data stream.

Figure 2-6 shows the input/output register block for the PIOs.

Figure 2-6. iCE I/O Register Block Diagram

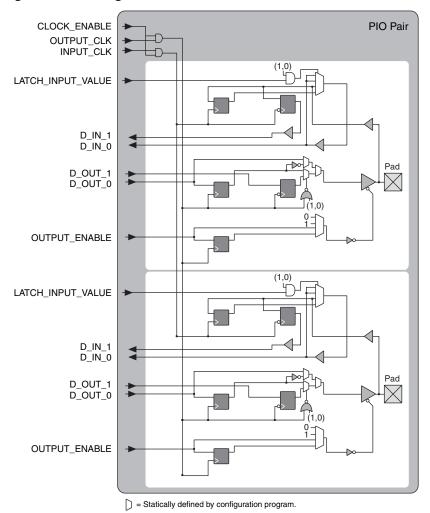


Table 2-6. PIO Signal List

Pin Name	I/O Type	Description
OUTPUT_CLK	Input	Output register clock
CLOCK_ENABLE	Input	Clock enable
INPUT_CLK	Input	Input register clock
OUTPUT_ENABLE	Input	Output enable
D_OUT_0/1	Input	Data from the core
D_IN_0/1	Output	Data to the core
LATCH_INPUT_VALUE	Input	Latches/holds the Input Value

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS and LVDS25.

High Current LED Drivers combine three sysIO buffers together. This allows for programmable drive strength. This also allows for high current drivers that are ideal to drive three white LEDs, or one RGB LED. Each bank is capable of supporting multiple I/O standards including single-ended LVCMOS buffers and differential LVDS25E output buf-

Power On Reset

iCE40 devices have power-on reset circuitry to monitor V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} (controls configuration) voltage levels. It then triggers download from the on-chip NVCM or external Flash memory after reaching the power-up levels specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tri-state. I/Os are released to user functionality once the device has finished configuration.

Programming and Configuration

This section describes the programming and configuration of the iCE40 family.

Device Programming

The NVCM memory can be programmed through the SPI port.

Device Configuration

There are various ways to configure the Configuration RAM (CRAM) including:

- 1. Internal NVCM Download
- 2. From a SPI Flash (Master SPI mode)
- 3. System microprocessor to drive a Serial Slave SPI port (SSPI mode)

The image to configure the CRAM can be selected by the user on power up (Cold Boot) or once powered up (Warm Boot).

For more details on programming and configuration, see TN1248, iCE40 Programming and Configuration Usage Guide.

Power Saving Options

iCE40 devices are available in two options for maximum flexibility: LP and HX devices. The LP devices have ultra low static and dynamic power consumption. HX devices are designed to provide high performance. Both the LP and the HX devices operate at 1.2 V $V_{\rm CC}$.

iCE40 devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. While these features are available in both device types, these features are mainly intended for use with iCE40 LP devices to manage power consumption.

Table 2-9. iCE40 Power Saving Features Description

Device Subsystem	Feature Description
	When LATCHINPUTVALUE is enabled, forces the PLL into low-power mode; PLL output held static at last input clock value.
	To save power, the optional iCEgate latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control.

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter		Min.	Max.	Units
		All configuration modes. No power supply sequencing.	0.40	10	V/ms
		Configuring from Slave SPI. No power supply sequencing,	0.01	10	V/ms
^t RAMP	Power supply ramp rates for all power supplies.	Configuring from NVCM. V_{CC} and V_{PP_2V5} to be powered 0.25 ms before V_{CC_SPI} .	0.01	10	V/ms
		Configuring from MSPI. V_{CC} and V_{PP_SPI} to be powered 0.25 ms before V_{PP_2V5} .	0.01	10	V/ms

^{1.} Assumes monotonic ramp rates.

Power-On-Reset Voltage Levels¹

Symbol	Device	Parameter		Min.	Max.	Units
iCE40LP640 iCE40LP/HX iCE40LP/HX	iCE40LP384	Power-On-Reset ramp-up trip point	VCC	0.67	0.99	V
		(band gap based circuit monitoring VCC, VCCIO 2, VCC SPI and	VCCIO_2	0.70	1.59	V
		VPP_2V5)	VCC_SPI	0.70	1.59	V
		·	VPP_2V5	0.70	1.59	V
	iCE40LP640,	Power-On-Reset ramp-up trip point	VCC	0.55	0.75	V
	iCE40LP/HX1K,	K, VCC, VCCIO_2, VCC_SPI and VPP_2V5)	VCCIO_2	0.86	1.29	V
	iCE40LP/HX8K		VCC_SPI	0.86	1.29	V
	_		VPP_2V5	0.86	1.33	V
V _{PORDN}	iCE40LP384	point (band gap based circuit monitoring VCC, VCCIO_2, VCC_SPI and VPP_2V5)	VCC	_	0.64	V
			VCCIO_2	_	1.59	V
			VCC_SPI	_	1.59	V
			VPP_2V5	_	1.59	V
	iCE40LP640,	Power-On-Reset ramp-down trip	VCC	_	0.75	V
	iCE40LP/HX1K, iCE40LP/HX4K,	point (band gap based circuit monitoring VCC, VCCIO_2, VCC_SPI	VCCIO_2	_	1.29	V
	iCE40LP/HX8K	and VPP_2V5)	VCC_SPI	_	1.29	V
			VPP_2V5	_	1.33	V

^{1.} These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

ESD Performance

Please refer to the iCE40 Product Family Qualification Summary for complete qualification data, including ESD performance.

^{2.} iCE40LP384 requires V_{CC} to be greater than 0.7V when V_{CCIO} and V_{CC_SPI} are above GND.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
·-, ···	Input or I/O Leakage	$0V < V_{IN} < V_{CCIO} + 0.2 V$	_	_	+/-10	μΑ
C ₁ ^{6, 7}	I/O Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}$ $V_{CC} = \text{Typ.}, V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$	_	6	_	pf
C ₂ ^{6, 7}	Global Input Buffer Capacitance ²	$V_{CCIO} = 3.3 \text{ V}, 2.5 \text{ V}, 1.8 \text{ V}$ $V_{CC} = \text{Typ.}, V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 \text{ V}$	_	6	_	pf
V_{HYST}	Input Hysteresis	V _{CCIO} = 1.8 V, 2.5 V, 3.3 V	_	200	_	mV
I _{PU} ^{6, 7}	Internal PIO Pull-up	$V_{CCIO} = 1.8 \text{ V}, 0 = < V_{IN} < = 0.65 V_{CCIO}$	-3	_	-31	μΑ
	Current	$V_{CCIO} = 2.5 \text{ V}, 0 = < V_{IN} < = 0.65 V_{CCIO}$	-8	_	-72	μΑ
		$V_{CCIO} = 3.3 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-11		-128	μΑ

- 1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled.
- 2. T_{.1} 25°C, f = 1.0 MHz.
- 3. Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.
- 4. Only applies to IOs in the SPI bank following configuration.
- 5. Some products are clamped to a diode when V_{IN} is larger than V_{CCIO} .
- 6. High current IOs has three sysIO buffers connected together.
- 7. The iCE40LP640 and iCE40LP1K SWG16 package has CDONE and a sysIO buffer are connected together.

Static Supply Current - LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
Icc		iCE40LP384	21	μΑ
		iCE40LP640	100	μΑ
	Core Power Supply	iCE40LP1K	100	μΑ
		iCE40LP4K	250	μΑ
		iCE40LP8K	250	μΑ
I _{CCPLL} ^{5, 6}	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	1.0	μΑ
I _{CCIO,} I _{CC_SPI}	Bank Power Supply ⁴ V _{CCIO} = 2.5 V	All devices	3.5	μΑ

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

- 2. Frequency = 0 MHz.
- 3. $T_{J} = 25$ °C, power supplies at nominal voltage.
- 4. Does not include pull-up.
- 5. No PLL available on the iCE40LP384 and iCE40LP640 device.
- 6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

Programming NVCM Supply Current – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40HX1K	278	μΑ
I _{CC}	Core Power Supply	iCE40HX4K	1174	μΑ
		iCE40HX8K	1174	μΑ
I _{CCPLL} ⁶	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	2.5	mA
I _{CCIO} ⁷ , I _{CC SPI}	Bank Power Supply⁵	All devices	3.5	mA

- 1. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.
- 2. Typical user pattern.
- 3. SPI programming is at 8 MHz.
- 4. $T_{J} = 25$ °C, power supplies at nominal voltage.
- 5. Per bank. V_{CCIO} = 2.5 V. Does not include pull-up.
- 6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.
- 7. V_{PP FAST}, used only for fast production programming, must be left floating or unconnected in applications.

Peak Startup Supply Current – LP Devices

Symbol	Parameter	Device	Max	Units
		iCE40LP384	7.7	mA
		iCELP640	6.4	mA
I _{CCPEAK}	Core Power Supply	iCE40LP1K	6.4	mA
		iCE40LP4K	15.7	mA
		iCE40LP8K	15.7	mA
		iCE40LP1K	1.5	mA
1, 2, 4	PLL Power Supply	iCELP640	1.5	mA
CCPLLPEAK ^{1, 2, 4}	FLL Fower Supply	iCE40LP4K	8.0	mA
		iCE40LP8K iCE40LP384	8.0	mA
		iCE40LP384	3.0	mA
		iCELP640	7.7	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40LP1K	7.7	mA
		iCE40LP4K	4.2	mA
		iCE40LP8K	4.2	mA
		iCE40LP384	5.7	mA
I _{PP_FASTPEAK} ³	NVCM Programming Supply	iCELP640	8.1	mA
		iCE40LP1K	8.1	mA
		iCE40LP384	8.4	mA
		iCELP640	3.3	mA
ICCIOPEAK ⁵ , ICC_SPIPEAK	Bank Power Supply	iCE40LP1K	3.3	mA
		iCE40LP4K	8.2	mA
		iCE40LP8K	8.2	mA

- 1. No PLL available on the iCE40LP384 and iCE40LP640 device.
- 2. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.
- 3. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.
- 4. While no PLL is available in the iCE40-LP640 the $I_{CCPLLPEAK}$ is additive to I_{CCPEAK} .
- 5. iCE40LP384 requires V_{CC} to be greater than 0.7 V when V_{CCIO} and V_{CC_SPI} are above GND.

Peak Startup Supply Current – HX Devices

Symbol	Parameter	Device	Max	Units
		iCE40HX1K	6.9	mA
I _{CCPEAK}	Core Power Supply	iCE40HX4K	22.3	mA
		iCE40HX8K	22.3	mA
		iCE40HX1K	1.8	mA
I _{CCPLLPEAK} ¹	PLL Power Supply	iCE40HX4K	6.4	mA
		iCE40HX8K	6.4	mA
		iCE40HX1K	2.8	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40HX4K	4.1	mA
		iCE40HX8K	4.1	mA
		iCE40HX1K	6.8	mA
ICCIOPEAK, ICC_SPIPEAK	Bank Power Supply	iCE40HX4K	6.8	mA
		iCE40HX8K	6.8	mA

^{1.} $\rm V_{CCPLL}$ is tied to $\rm V_{CC}$ internally in packages without PLLs pins.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)			
Standard	Min.	Тур.	Max.	
LVCMOS 3.3	3.14	3.3	3.46	
LVCMOS 2.5	2.37	2.5	2.62	
LVCMOS 1.8	1.71	1.8	1.89	
LVDS25E ^{1, 2}	2.37	2.5	2.62	
subLVDSE ^{1, 2}	1.71	1.8	1.89	

^{1.} Inputs on-chip. Outputs are implemented with the addition of external resistors.

sysIO Single-Ended DC Electrical Characteristics

Input/	V	IL	,	V _{IH} 1		\/ B#1			
Output Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)	
LVCMOS 3.3	-0.3	0.8	2.0	V _{CCIO} + 0.2 V	0.4	V _{CCIO} - 0.4	8, 16 ² , 24 ²	$-8, -16^2, -24^2$	
LV OIVIOU 3.5	0.0	0.0	0.0	V _{CCIO} + 0.2 V	2.0 VCCIO + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 2.5	-0.3	0.7	1.7	V _{CCIO} + 0.2 V	0.4	V _{CCIO} - 0.4	6, 12 ² , 18 ²	$-6, -12^2, -18^2$	
LV CIVIOS 2.5	-0.5	0.7	1.7	VCCIO + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1	
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	V 0.2.V	0.4	V _{CCIO} - 0.4	4, 8 ² , 12 ²	$-4, -8^2, -12^2$	
LVCIVIOS 1.8	-0.5	0.33 V CCIO	0.03 V CCIO	V _{CCIO} + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1	

^{1.} Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO.}}$

^{2.} Does not apply to Configuration Bank V_{CC SPI}.

^{2.} Only for High Drive LED outputs.

LVDS25E Emulation

iCE40 devices can support LVDSE outputs via emulation on all banks. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS25E standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS25E Using External Resistors

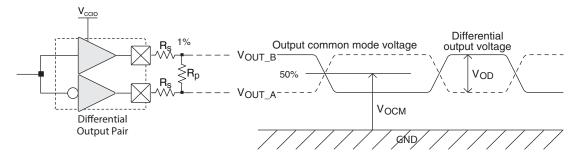


Table 3-1. LVDS25E DC Conditions

Over Recommended Operating Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	150	Ohms
R _P	Driver parallel resistor	140	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.30	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

Typical Building Block Function Performance – LP Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		•
16-bit decoder	11.0	ns
4:1 MUX	12.0	ns
16:1 MUX	13.0	ns

Register-to-Register Performance

Function	Timing	Units
Basic Functions	<u> </u>	•
16:1 MUX	190	MHz
16-bit adder	160	MHz
16-bit counter	175	MHz
64-bit counter	65	MHz
Embedded Memory Functions	·	•
256x16 Pseudo-Dual Port RAM	240	MHz

The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

Typical Building Block Function Performance – HX Devices^{1, 2} Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	10.0	ns
4:1 MUX	9.0	ns
16:1 MUX	9.5	ns

Register-to-Register Performance

Function	Timing	Units			
Basic Functions	•	·			
16:1 MUX	305	MHz			
16-bit adder	220	MHz			
16-bit counter	255	MHz			
64-bit counter	105	MHz			
Embedded Memory Functions					
256x16 Pseudo-Dual Port RAM	403	MHz			

^{1.} The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

^{2.} Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

^{2.} Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

Maximum sysIO Buffer Performance²

I/O Standard	Max. Speed	Units			
Inputs					
LVDS25 ¹	400	MHz			
subLVDS18 ¹	400	MHz			
LVCMOS33	250	MHz			
LVCMOS25	250	MHz			
LVCMOS18	250	MHz			
	Outputs				
LVDS25E	250	MHz			
subLVDS18E	155	MHz			
LVCMOS33	250	MHz			
LVCMOS25	250	MHz			
LVCMOS18	155	MHz			

^{1.} Supported in Bank 3 only.

iCE40 Family Timing Adders

Over Recommended Commercial Operating Conditions - LP Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units
Input Adjusters			
LVDS25	LVDS, V _{CCIO} = 2.5 V	-0.18	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	0.82	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.18	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.19	ns
Output Adjusters	·		
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.32	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	-0.12	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.32	ns

- 1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.
- 2. LVCMOS timing measured with the load specified in Switching Test Condition table.
- 3. All other standards tested according to the appropriate specifications.
- 4. Commercial timing numbers are shown.
- 5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

^{2.} Measured with a toggling pattern

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (REFERENCECLK, EXTFEEDBACK)		10	133	MHz
f _{OUT}	Output Clock Frequency (PLLOUT)		16	275	MHz
f_{VCO}	PLL VCO Frequency		533	1066	MHz
f _{PFD}	Phase Detector Input Frequency		10	133	MHz
AC Characterist	tics		•		
	Output Clock Duty Cycle	f _{OUT} < 175 MHz	40	50	%
t _{DT}	Output Clock Duty Cycle	175 MHz < f _{OUT} < 275 MHz	35	65	"%
t _{PH}	Output Phase Accuracy		_	+/-12	deg
	Output Clock Period Jitter	f _{OUT} <= 100 MHz	_	450	ps p-p
	Output Clock Period Sitter	f _{OUT} > 100 MHz	_	0.05	UIPP
1 , 5	Output Clock Cycle-to-cycle Jitter	f _{OUT} <= 100 MHz	_	750	ps p-p
t _{OPJIT} 1, 5	Output Clock Cycle-to-cycle Sitter	f _{OUT} > 100 MHz	_	0.10	UIPP
	Output Clask Phase litter	f _{PFD} <= 25 MHz	_	275	ps p-p
	Output Clock Phase Jitter	f _{PFD} > 25 MHz	_	0.05	UIPP
t _W	Output Clock Pulse Width	At 90% or 10%	1.3	_	ns
t _{LOCK} ^{2, 3}	PLL Lock-in Time		_	50	us
t _{UNLOCK}	PLL Unlock Time		_	50	ns
+ 4	Input Clock Period Jitter	f _{PFD} ≥ 20 MHz	_	1000	ps p-p
t _{IPJIT} ⁴	Input Clock Feriod Sitter	f _{PFD} < 20 MHz	_	0.02	UIPP
t _{FDTAP}	Fine Delay adjustment, per Tap		147	195	ps
t _{STABLE} ³	LATCHINPUTVALUE LOW to PLL Stable		_	500	ns
t _{STABLE_PW} ³	LATCHINPUTVALUE Pulse Width		_	100	ns
t _{RST}	RESET Pulse Width		10	_	ns
t _{RSTREC}	RESET Recovery Time		10	_	us
t _{DYNAMIC_WD}	DYNAMICDELAY Pulse Width		100	_	VCO Cycles
+	Propagation delay with the PLL in bypass	iCE40LP	1.18	4.68	ns
t _{PDBYPASS}	mode	iCE40HX	1.73	4.07	ns

^{1.} Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

^{2.} Output clock is valid after $t_{\mbox{\scriptsize LOCK}}$ for PLL reset and dynamic delay adjustment.

^{3.} At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

^{4.} Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table.

^{5.} The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

SPI Master or NVCM Configuration Time^{1, 2}

Symbol	Parameter	Parameter Conditions			
	POR/CRESET_B to Device I/O Active	iCE40LP384 - Low Frequency (Default)	25	ms	
		iCE40LP384 - Medium Frequency	15	ms	
		iCE40LP384 - High Frequency	11	ms	
		iCE40LP640 - Low Frequency (Default)	53	ms	
		iCE40LP640 - Medium Frequency	25	ms	
		iCE40LP640 - High Frequency	13	ms	
		iCE40LP/HX1K - Low Frequency (Default)	53	ms	
t _{CONFIG}		iCE40LP/HX1K - Medium Frequency	25	ms	
		iCE40LP/HX1K - High Frequency	13	ms	
		iCE40LP/HX4K - Low Frequency (Default)	230	ms	
		iCE40LP/HX4K - Medium Frequency	110	ms	
		iCE40LP/HX4K - High Frequency	70	ms	
		iCE40LP/HX8K - Low Frequency (Default)	230	ms	
		iCE40LP/HX8K - Medium Frequency	110	ms	
		iCE40LP/HX8K - High Frequency	70	ms	

^{1.} Assumes sysMEM Block is initialized to an all zero pattern if they are used.

^{2.} The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

iCE40 LP/HX Family Data Sheet Pinout Information

March 2017 Data Sheet DS1040

Signal Descriptions

Signal Name	I/O	Descriptions			
General Purpose	·				
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device.			
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device. [A/B] indicates the differential I/O. 'A' = negative input. 'B' = positive input.			
HCIO[Bank]_[Number]	I/O	High Current IO. [Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number.			
NC	_	No connect			
GND	_	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together.			
VCC	_	VCC – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.			
VCCIO_x	_	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. All VCCIOs located in the same bank are tied to the same supply.			
PLL and Global Functions	(Used as ι	ser-programmable I/O pins when not used for PLL or clock pins)			
VCCPLLx	_	PLL VCC – Power. Dedicated pins. The PLL requires a separate power and ground that is quiet and stable to reduce the output clock jitter of the PLL.			
GNDPLLx	_	PLL GND – Ground. Dedicated pins. The sysCLOCK PLL has the DC ground connection made on the FPGA, so the external PLL ground connection (GNDPLL) must NOT be connected to the board's ground.			
GBINx	_	Global pads. Two per side.			
Programming and Configu	ration				
CBSEL[0:1]	I/O	Dual function pins. I/Os when not used as CBSEL. Optional ColdBoot configura SELect input, if ColdBoot mode is enabled.			
CRESET_B	I	Configuration Reset, active Low. Dedicated input. No internal pull-up resistor. Ei actively drive externally or connect a 10 KOhm pull-up resistor to VCCIO_2.			
CDONE	I/O	Configuration Done. Includes a permanent weak pull-up resistor to VCCIO_2. If c ing external devices with CDONE output, an external pull-up resistor to VCCIO_2 may be required. Refer to the TN1248, iCE40 Programming and Configuration fo more details. Following device configuration the iCE40LP640 and iCE40LP1K in SWG16 package CDONE pin can be used as a user output.			
VCC_SPI	_	SPI interface voltage supply input. Must have a valid voltage even if configuring fro NVCM.			
SPI_SCK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Confuration Clock for configuring an FPGA configuration modes.			
SPI_SS_B	I/O	SPI Slave Select. Active Low. Includes an internal weak pull-up resistor to VCC_S during configuration. During configuration, the logic level sampled on this pin determines the configuration mode used by the iCE40 device. An input when sampled at the start of configuration. An input when in SPI Peripheral configuration mode (SPI_SS_B = Low). An output when in Master SPI Flash configuration mode.			
SPI_SI	I/O	Slave SPI serial data input and master SPI serial data output			
SPI_SO	I/O	Slave SPI serial data output and master SPI serial data input			

Pin Information Summary

	iCE40LP384		iCE40LP640	iCE40LP1K								
	SG32	CM36 ²	CM49 ²	SWG16	SWG16	CM36 ^{1, 2}	CM49 ^{1, 2}	CM81	CB81	QN84	CM121	CB121
General Purpose I/O per Bank									I			
Bank 0	6	4	10	3	3	4	10	17	17	17	24	24
Bank 1	5	7	7	0	0	7	7	15	16	17	25	21
Bank 2	0	4	4	1	1	4	4	11	8	11	18	19
Bank 3	6	6	12	2	2	6	10	16	17	18	24	24
Configuration	4	4	4	4	4	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	21	25	37	10	10	25	35	63	62	67	95	92
High Current Outputs per Ba	nk		1		ı		l .		1		I	I
Bank 0	0	0	0	3	3	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0
Total Current Outputs	0	0	0	3	3	0	0	0	0	0	0	0
Differential Inputs per Bank			•		•				•	•	•	•
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	3	3	6	1	1	3	5	8	9	7	12	12
Total Differential Inputs	3	3	6	1	1	3	5	8	9	7	12	12
Dedicated Inputs per Bank			ı				l .		ı		ı	ı
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	2	2	2	1	1	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0	0	0	0	0	0
Total Dedicated Inputs	2	2	2	1	1	2	2	2	2	2	2	2
Vccio Pins			•		•					•	•	•
Bank 0	1	1	1	1	1	1	1	1	1	1	2	1
Bank 1	1	1	1	0	0	0	0	1	1	1	2	1
Bank 2	1	1	1	1	1	1	1	1	1	1	2	1
Bank 3	1	0	0	0	0	0	0	1	1	1	2	2
VCC	1	1	2	1	1	1	2	3	3	4	4	4
VCC_SPI	1	1	1	0	0	1	1	1	1	1	1	1
VPP_2V5	1	1	1	0	0	1	1	1	1	1	1	1
VPP_FAST ³	0	0	0	0	0	1	1	1	0	1	1	1
VCCPLL	0	0	0	0	0	0	1	1	0	0	1	1
GND	2	3	3	2	2	3	4	5	8	4	8	11
NC	0	0	0	0	0	0	0	0	0	0	0	3
Total Count of Bonded Pins	32	36	49	16	16	36	49	81	81	84	121	121

V_{CCIO0} and V_{CCIO1} are connected together.
 V_{CCIO2} and V_{CCIO3} are connected together.
 V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Date	Version	Section	Change Summary				
April 2013	02.2	Introduction	Added the LP8K 81 ucBGA.				
		Architecture	Corrected typos.				
		DC and Switching Characteristics	Corrected typos. Added 7:1 LVDS waveforms.				
		Pinout Information	Corrected typos in signal descriptions. Added the LP8K 81 ucBGA.				
		Ordering Information	Added the LP8K 81 ucBGA.				
March 2013	02.1	DC and Switching	Recommended operating conditions added requirement for Master SP				
		Characteristics	Updated Recommended Operating Conditions for V _{PP_2V5} .				
			Updated Power-On-Reset Voltage Levels and sequence requirements.				
			Updated Static Supply Current conditions.				
			Changed unit for t _{SKEW_IO} from ns to ps.				
			Updated range of CCLK f _{MAX} .				
		Ordering Information	Updated ordering information to include tape and reel part numbers.				
September 2012	02.0	_	Merged SiliconBlue iCE40 LP and HX data sheets and updated to Lattice format.				
	01.31	_	Updated Table 1.				
	01.3	_	Production release.				
			Updated notes on Table 3: Recommended Operating Conditions.				
			Updated values in Table 4, Table 5, Table 12, Table 13 and Table 17.				
	01.21	_	Updated Figure 3 and Figure 4 to specify iCE40.				
Aug 2012	01.2	_	Updated company name.				
July 2011	01.1	_	Moved package specifications to iCE40 pinout Excel files.				
			Updated Table 1 maximum I/Os.				
	01.01	_	Added 640, 1K and 4K to Table 13 configuration times. Updated Table 1 maximum I/Os.				
	01.0	_	Initial release.				