E. Lattice Semiconductor Corporation - ICE40LP1K-SWG16TR Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	160
Number of Logic Elements/Cells	1280
Total RAM Bits	65536
Number of I/O	10
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	16-XFBGA, WLCSP
Supplier Device Package	16-WLCSP (1.4x1.48)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40lp1k-swg16tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iCE40 LP/HX Family Data Sheet Introduction

March 2017

Features

- Flexible Logic Architecture
 - Five devices with 384 to 7,680 LUT4s and 10 to 206 I/Os
- Ultra Low Power Devices
 - Advanced 40 nm low power process
 - As low as 21 µA standby power
 - Programmable low swing differential I/Os

Embedded and Distributed Memory

- Up to 128 kbits sysMEM[™] Embedded Block RAM
- Pre-Engineered Source Synchronous I/O
- DDR registers in I/O cells
- High Current LED Drivers
 - Three High Current Drivers used for three different LEDs or one RGB LED
- High Performance, Flexible I/O Buffer
 - Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8
 - LVDS25E, subLVDS

 Schmitt trigger inputs, to 200 mV typical hysteresis

Data Sheet DS1040

- Programmable pull-up mode
- Flexible On-Chip Clocking
 - · Eight low-skew global clock resources
 - Up to two analog PLLs per device
- Flexible Device Configuration
 - SRAM is configured through:
 - Standard SPI Interface
 - Internal Nonvolatile Configuration Memory (NVCM)
- Broad Range of Package Options
 - WLCSP, QFN, VQFP, TQFP, ucBGA, caBGA, and csBGA package options
 - Small footprint package options — As small as 1.40 mm x 1.48 mm
 - Advanced halogen-free packaging

Part Number		LP384	LP640	LP1K	LP4K	LP8K	HX1K	HX4K	HX8K
Logic Cells (LUT + Flip-Flop))	384 640 1,280 3,520 7,680 1,280 3,520 7				7,680			
RAM4K Memory Blocks		0	8	16	20	32	16	20	32
RAM4K RAM bits		0 32K 64K 80K 128K 64K 80K				128K			
Phase-Locked Loops (PLLs)		0	0	1 ¹	2 ²	2 ²	1 ¹	2	2
Maximum Programmable I/C	Pins	63	25	95	167	178	95	95	206
Maximum Differential Input F	Pairs	8	3	12	20	23	11	12	26
High Current LED Drivers		0	3	3	0	0	0	0	0
Package	Code			Programn	nable I/O: I	Max Inputs	(LVDS25)		
16 WLCSP (1.40 mm x 1.48 mm, 0.35 mm)	SWG16		10(0) ¹	10(0) ¹					
32 QFN (5 mm x 5 mm, 0.5 mm)	SG32	21(3)							
36 ucBGA (2.5 mm x 2.5 mm, 0.4 mm)	CM36	25(3)		25(3) ¹					
49 ucBGA (3 mm x 3 mm, 0.4 mm)	CM49	37(6)		35(5) ¹					
81 ucBGA (4 mm x 4 mm, 0.4 mm)	CM81			63(8)	63(9) ²	63(9) ²			
81 csBGA (5 mm x 5 mm, 0.5 mm)	CB81			62(9) ¹					

Table 1-1. iCE40 Family Selection Guide

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Routing

There are many resources provided in the iCE40 devices to route signals individually with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient connections in the diagonal, horizontal and vertical directions.

The design tool takes the output of the synthesis tool and places and routes the design.

Clock/Control Distribution Network

Each iCE40 device has eight global inputs, two pins on each side of the device. Note that not all GBINs are available in all packages.

These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are identified as GBIN[7:0] and the global buffers are identified as-GBUF[7:0]. These eight inputs may be used as general purpose I/O if they are not used to drive the clock nets. Global buffer GBUF7 in I/O Bank 3 also provides an optional direct LVDS25 or subLVDS differential clock input.

Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input.

Global Buffer	LUT Inputs	Clock	Reset	Clock Enable
GBUF0		Yes	Yes	
GBUF1		Yes		Yes
GBUF2		Yes	Yes	
GBUF3	Yes, any 4 of 8	Yes		Yes
GBUF4	GBUF Inputs	Yes	Yes	
GBUF5		Yes		Yes
GBUF6		Yes	Yes	
GBUF7] [Yes		Yes

Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks

The maximum frequency for the global buffers are shown in the iCE40 External Switching Characteristics tables later in this document.

Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Note the sysMEM Embedded Block RAM Memory address 0 cannot be initialized.

Memory Cascading

Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks.

RAM4k Block

Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array.

Figure 2-4. sysMEM Memory Primitives

Table 2-5. EBR Signal Descriptions

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input.
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit; $1 =$ don't write bit
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.
WE	Input	Write Enable input.
WCLKE	Input	Write Clock Enable input.
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.
RDATA[15:0]	Output	Read Data output.
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.
RE	Input	Read Enable input.
RCLKE	Input	Read Clock Enable input.
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.

For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices.

fers. Bank 3 additionally supports differential LVDS25 input buffers. Each sysIO bank has its own dedicated power supply.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SP1} have reached the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins will maintain the pre-configuration state until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached levels, at which time the I/Os will take on the software user-configured settings only after a proper download/configuration. Unused IOs are automatically blocked and the pullup termination is disabled.

Supported Standards

The iCE40 sysIO buffer supports both single-ended and differential input standards. The single-ended standard supported is LVCMOS. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none). The High Current output buffer have individually configurable options for drive strength.

Table 2-7 and Table 2-8 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 devices.

Input Standard	V _{CCIO} (Typical)					
input Standard	3.3 V	2.5 V	1.8 V			
Single-Ended Interfaces						
LVCMOS33	Yes					
LVCMOS25		Yes				
LVCMOS18			Yes			
Differential Interfaces						
LVDS25 ¹		Yes				
subLVDS ¹			Yes			

Table 2-7. Supported Input Standards

1. Bank 3 only.

Table 2-8. Supported Output Standards

Output Standard	V _{CCIO} (Typical)
Single-Ended Interfaces	
LVCMOS33	3.3
LVCMOS25	2.5
LVCMOS18	1.8
Differential Interfaces	
LVDS25E ¹	2.5
subLVDSE ¹	1.8

1. These interfaces can be emulated with external resistors in all devices.

Non-Volatile Configuration Memory

All iCE40 devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device.

For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration Usage Guide.

iCE40 LP/HX Family Data Sheet DC and Switching Characteristics

October 2015

Data Sheet DS1040

Absolute Maximum Ratings^{1, 2, 3, 4}

iCE40 LP/HX

Supply Voltage V _{CC}	–0.5 V to 1.42 V
Output Supply Voltage V _{CCIO,} V _{CC_SPI}	–0.5 V to 3.60 V
NVCM Supply Voltage V _{PP_2V5}	–0.5 V to 3.60 V
PLL Supply Voltage V _{CCPLL}	–0.5 V to 1.30 V
I/O Tri-state Voltage Applied	–0.5 V to 3.60 V
Dedicated Input Voltage Applied	–0.5 V to 3.60 V
Storage Temperature (Ambient)	–65 °C to 150 °C
Junction Temperature (T _J)	–55 °C to 125 °C

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

 IOs can support a 200 mV Overshoot above the Recommend Operating Conditions V_{CCIO} (Max) and -200mV Undershoot below V_{IL} (Min). Overshoot and Undershoot is permitted for 25% duty cycle but must not exceed 1.6 ns.

Recommended Operating Conditions¹

Symbol	Paramete	er	Min.	Max.	Units
V _{CC} ¹	Core Supply Voltage		1.14	1.26	V
		Slave SPI Configuration	1.71	3.46	V
V	V _{PP_2V5} NVCM Programming and Operating Supply Voltage	Master SPI Configuration	2.30	3.46	V
VPP_2V5		Configure from NVCM	2.30	3.46	V
		NVCM Programming	2.30	3.00	V
V _{PP_FAST} ⁴	Optional fast NVCM programming supply. Leave unconnected.		N/A	N/A	V
V _{CCPLL} ^{5, 6}	PLL Supply Voltage		1.14	1.26	V
V ¹ , 2, 3	1/0 Driver Supply Veltage	V _{CCIO0-3}	1.71	3.46	V
V CCIO	NO Driver Supply Voltage	V _{CC_SPI}	1.71	3.46	V
t _{JIND}	Junction Temperature Industrial Operation		-40	100	°C
t _{PROG}	Junction Temperature NVCM Programming		10	30	°C

1. Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC_SPI} are both the same voltage, they must also be the same supply.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

5. No PLL available on the iCE40LP384 and iCE40LP640 device.

6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

^{© 2015} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL,} I _{IH} ^{1, 3, 4, 5, 6, 7}	Input or I/O Leakage	$0V < V_{IN} < V_{CCIO} + 0.2 V$		_	+/—10	μΑ
C ₁ ^{6, 7}	I/O Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 V$		6		pf
C ₂ ^{6, 7}	Global Input Buffer Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 \text{ to } V_{CCIO} + 0.2 V$		6		pf
V _{HYST}	Input Hysteresis	V _{CCIO} = 1.8 V, 2.5 V, 3.3 V		200		mV
I _{PU} ^{6, 7}	Internal PIO Pull-up	$V_{CCIO} = 1.8 \text{ V}, 0 = < V_{IN} < =0.65 \text{ V}_{CCIO}$	-3		-31	μΑ
	Current	$V_{CCIO} = 2.5 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-8	_	-72	μΑ
		$V_{CCIO} = 3.3 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-11	_	-128	μA

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled.

2. T_J 25°C, f = 1.0 MHz.

3. Please refer to VIL and VIH in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. Only applies to IOs in the SPI bank following configuration.

5. Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO}}.$

6. High current IOs has three sysIO buffers connected together.

7. The iCE40LP640 and iCE40LP1K SWG16 package has CDONE and a sysIO buffer are connected together.

Static Supply Current – LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
		iCE40LP384	21	μA
Icc	Core Power Supply	iCE40LP640	100	μΑ
		iCE40LP1K	100	μA
		iCE40LP4K	250	μA
		iCE40LP8K	250	μΑ
I _{CCPLL} ^{5, 6}	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	1.0	μΑ
I _{CCIO} , I _{CC_SPI}	Bank Power Supply⁴ V _{CCIO} = 2.5 V	All devices	3.5	μΑ

1. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

2. Frequency = 0 MHz.

3. $T_J = 25$ °C, power supplies at nominal voltage.

4. Does not include pull-up.

5. No PLL available on the iCE40LP384 and iCE40LP640 device.

6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

Static Supply Current – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
		iCE40HX1K	296	μA
I _{CC}	Core Power Supply	iCE40HX4K	1140	μA
		iCE40HX8K	1140	μA
I _{CCPLL} ⁵	PLL Power Supply	All devices	0.5	μA
I _{PP_2V5}	NVCM Power Supply	All devices	1.0	μA
I _{CCIO} , I _{CC_SPI}	Bank Power Supply ⁴ V _{CCIO} = 2.5 V	All devices	3.5	μΑ

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

2. Frequency = 0 MHz.

3. $T_J = 25$ °C, power supplies at nominal voltage.

4. Does not include pull-up.

5. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

Programming NVCM Supply Current – LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40LP384	60	μA
Icc	Core Power Supply	iCE40LP640	120	μA
		iCE40LP1K	120	μA
		iCE40LP4K	350	μA
		iCE40LP8K	350	μA
I _{CCPLL} ^{6, 7}	PLL Power Supply	All devices	0.5	μA
I _{PP_2V5}	NVCM Power Supply	All devices	2.5	mA
ICCIO ⁸ , ICC_SPI	Bank Power Supply ⁵	All devices	3.5	mA

1. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.

2. Typical user pattern.

3. SPI programming is at 8 MHz.

4. $T_J = 25 \degree C$, power supplies at nominal voltage.

5. Per bank. $V_{CCIO} = 2.5$ V. Does not include pull-up.

6. No PLL available on the iCE40-LP384 and iCE40-LP640 device.

7. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

8. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Peak Startup Supply Current – HX Devices

Symbol	Parameter	Device	Max	Units
		iCE40HX1K	6.9	mA
I _{CCPEAK}	Core Power Supply	iCE40HX4K	22.3	mA
		iCE40HX8K	22.3	mA
ICCPLLPEAK ¹		iCE40HX1K	1.8	mA
	PLL Power Supply	iCE40HX4K	6.4	mA
		iCE40HX8K	6.4	mA
		iCE40HX1K	2.8	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40HX4K	4.1	mA
		iCE40HX8K	4.1	mA
		iCE40HX1K	6.8	mA
I _{CCIOPEAK} , I _{CC_SPIPEAK}	Bank Power Supply	iCE40HX4K	6.8	mA
_		iCE40HX8K	6.8	mA

1. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)					
Standard	Min.	Тур.	Max.			
LVCMOS 3.3	3.14	3.3	3.46			
LVCMOS 2.5	2.37	2.5	2.62			
LVCMOS 1.8	1.71	1.8	1.89			
LVDS25E ^{1, 2}	2.37	2.5	2.62			
subLVDSE ^{1, 2}	1.71	1.8	1.89			

1. Inputs on-chip. Outputs are implemented with the addition of external resistors.

2. Does not apply to Configuration Bank V_{CC_SPI}.

sysIO Single-Ended DC Electrical Characteristics

Input/	V	IL		V _{IH} ¹				
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	v _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)
	-0.3	0.8	20	$V_{000} \pm 0.2 V$	0.4	$V_{CCIO} - 0.4$	8, 16 ² , 24 ²	$-8, -16^2, -24^2$
2000000.0	0.0	0.0	2.0	V CCIO + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1
	-03	0.7	17		0.4	$V_{CCIO} - 0.4$	6, 12 ² , 18 ²	-6, -12 ² , -18 ²
20010032.5	-0.5	0.7	1.7	V CCIO + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1
	-03	0.351/	0.651/		0.4	$V_{CCIO} - 0.4$	4, 8 ² , 12 ²	-4, -8 ² , -12 ²
	-0.5	0.33 A CCIO	0.03 A CCIO	V CCIO + 0.2 V	0.2	$V_{CCIO} - 0.2$	0.1	-0.1

1. Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO.}}$

2. Only for High Drive LED outputs.

SubLVDS Emulation

The iCE40 family supports the differential subLVDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all banks of the devices. The sub-LVDS input standard is supported by the LVDS25 differential input buffer. The scheme shown in Figure 3-2 is one possible solution for subLVDSE output standard implementation. Use LVDS25E mode with suggested resistors for subLVDSE operation. Resistor values in Figure 3-2 are industry standard values for 1% resistors.

Figure 3-2. subLVDSE

Table 3-2. subLVDSE DC Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	270	Ohms
R _P	Driver parallel resistor	120	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	0.9	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	2.8	mA

Over Recommended Operating Conditions

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

Maximum sysIO Buffer Performance²

I/O Standard	Max. Speed	Units						
Inputs								
LVDS251	400	MHz						
subLVDS18 ¹	400	MHz						
LVCMOS33	250	MHz						
LVCMOS25	250	MHz						
LVCMOS18	250	MHz						
	Outputs							
LVDS25E	250	MHz						
subLVDS18E	155	MHz						
LVCMOS33	250	MHz						
LVCMOS25	250	MHz						
LVCMOS18	155	MHz						

1. Supported in Bank 3 only.

2. Measured with a toggling pattern

iCE40 Family Timing Adders

Over Recommended Commercial Operating Conditions - LP Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units
Input Adjusters	· ·		
LVDS25	LVDS, V _{CCIO} = 2.5 V	-0.18	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	0.82	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.18	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.19	ns
Output Adjusters			
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.32	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	-0.12	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.32	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

Over Recommended Commercial Operating Conditions - HX Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units
Input Adjusters			
LVDS25	LVDS, $V_{CCIO} = 2.5 V$	0.13	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	1.03	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.16	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.23	ns
Output Adjusters			
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.76	ns
LVCMOS33	LVCMOS, $V_{CCIO} = 3.3 V$	0.17	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.76	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

iCE40 External Switching Characteristics – LP Devices (Continued)^{1, 2}

Over Recommended Operating Conditions

Parameter	Description	Device	Min.	Max.	Units
t _{HPLL}	Clock to Data Hold - PIO Input Register	iCE40LP1K	-0.90	_	ns
		iCE40LP4K	-0.80		ns
		iCE40LP8K	-0.80	_	ns

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions can be extracted from the iCECube2 software.

2. General I/O timing numbers based on LVCMOS 2.5, 0pf load.

3. Supported on devices with a PLL.

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (REFERENCECLK, EXTFEEDBACK)		10	133	MHz
f _{OUT}	Output Clock Frequency (PLLOUT)		16	275	MHz
f _{VCO}	PLL VCO Frequency		533	1066	MHz
f _{PFD}	Phase Detector Input Frequency		10	133	MHz
AC Characterist	ics				
+	Output Cleak Duty Cycla	f _{OUT} < 175 MHz	40	50	%
ЪТ		175 MHz < f _{OUT} < 275 MHz	35	65	"%
t _{PH}	Output Phase Accuracy		_	+/-12	deg
	Output Cleak Daviad Littar	f _{OUT} <= 100 MHz	—	450	ps p-p
		f _{OUT} > 100 MHz	_	0.05	UIPP
t _{opjit} 1,5		f _{OUT} <= 100 MHz	_	750	ps p-p
		f _{OUT} > 100 MHz	_	0.10	UIPP
	Output Cleak Phase litter	f _{PFD} <= 25 MHz	_	275	ps p-p
	Output Clock Phase Jiller	f _{PFD} > 25 MHz	_	0.05	UIPP
t _W	Output Clock Pulse Width	At 90% or 10%	1.3	—	ns
t _{LOCK} ^{2, 3}	PLL Lock-in Time		_	50	us
t _{UNLOCK}	PLL Unlock Time		—	50	ns
. 4	Input Clock Poriod litter	$f_{PFD} \ge 20 \text{ MHz}$	—	1000	ps p-p
ЧРЈІТ		f _{PFD} < 20 MHz	_	0.02	UIPP
t _{FDTAP}	Fine Delay adjustment, per Tap		147	195	ps
t _{STABLE} ³	LATCHINPUTVALUE LOW to PLL Stable		_	500	ns
t _{STABLE_PW} ³	LATCHINPUTVALUE Pulse Width		_	100	ns
t _{RST}	RESET Pulse Width		10	—	ns
t _{RSTREC}	RESET Recovery Time		10	—	us
t _{DYNAMIC_WD}	DYNAMICDELAY Pulse Width		100	_	VCO Cycles
	Propagation delay with the PLL in bypass	iCE40LP	1.18	4.68	ns
t _{PDBYPASS}	mode	iCE40HX	1.73	4.07	ns

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after $t_{\mbox{LOCK}}$ for PLL reset and dynamic delay adjustment.

3. At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

4. Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table.

5. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

SPI Master or NVCM Configuration Time^{1, 2}

Symbol	Parameter	Conditions	Тур.	Units
		iCE40LP384 - Low Frequency (Default)	25	ms
		iCE40LP384 - Medium Frequency	15	ms
		iCE40LP384 - High Frequency	11	ms
		iCE40LP640 - Low Frequency (Default)	53	ms
		iCE40LP640 - Medium Frequency	25	ms
		iCE40LP640 - High Frequency	13	ms
		iCE40LP/HX1K - Low Frequency (Default)	53	ms
t _{CONFIG}	POR/CRESEI_B to Device I/O Active	iCE40LP/HX1K - Medium Frequency	25	ms
		iCE40LP/HX1K - High Frequency	13	ms
		iCE40LP/HX4K - Low Frequency (Default)	230	ms
		iCE40LP/HX4K - Medium Frequency	110	ms
		iCE40LP/HX4K - High Frequency	70	ms
		iCE40LP/HX8K - Low Frequency (Default)	230	ms
		iCE40LP/HX8K - Medium Frequency	110	ms
		iCE40LP/HX8K - High Frequency	70	ms

1. Assumes sysMEM Block is initialized to an all zero pattern if they are used.

2. The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

Switching Test Conditions

Figure 3-3 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-3.

Figure 3-3. Output Test Load, LVCMOS Standards

Table 3-3. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Reference	V _T
			LVCMOS 3.3 = 1.5 V	_
LVCMOS settings (L -> H, H -> L)	∞	0 pF	LVCMOS 2.5 = $V_{CCIO}/2$	_
			LVCMOS 1.8 = $V_{CCIO}/2$	_
LVCMOS 3.3 (Z -> H)			1.5	V _{OL}
LVCMOS 3.3 (Z -> L)	100	0	1.5	V _{OH}
Other LVCMOS (Z -> H)			V _{CCIO} /2	V _{OL}
Other LVCMOS (Z -> L)	100	υpi	V _{CCIO} /2	V _{OH}
LVCMOS (H -> Z)			V _{OH} - 0.15	V _{OL}
LVCMOS (L -> Z)			V _{OL} - 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

Pin Information Summary

	i	CE40LP38	4	iCE40LP640	0 iCE40LP1K							
	SG32	CM36 ²	CM49 ²	SWG16	SWG16	CM36 ^{1, 2}	CM49 ^{1, 2}	CM81	CB81	QN84	CM121	CB121
General Purpose I/O per Bar	ık			L								
Bank 0	6	4	10	3	3	4	10	17	17	17	24	24
Bank 1	5	7	7	0	0	7	7	15	16	17	25	21
Bank 2	0	4	4	1	1	4	4	11	8	11	18	19
Bank 3	6	6	12	2	2	6	10	16	17	18	24	24
Configuration	4	4	4	4	4	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	21	25	37	10	10	25	35	63	62	67	95	92
High Current Outputs per Ba	ink											
Bank 0	0	0	0	3	3	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0
Total Current Outputs	0	0	0	3	3	0	0	0	0	0	0	0
Differential Inputs per Bank												
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0	0	0	0
Bank 3	3	3	6	1	1	3	5	8	9	7	12	12
Total Differential Inputs	3	3	6	1	1	3	5	8	9	7	12	12
Dedicated Inputs per Bank												
Bank 0	0	0	0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0
Bank 2	2	2	2	1	1	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0	0	0	0	0	0
Total Dedicated Inputs	2	2	2	1	1	2	2	2	2	2	2	2
Vccio Pins												
Bank 0	1	1	1	1	1	1	1	1	1	1	2	1
Bank 1	1	1	1	0	0	0	0	1	1	1	2	1
Bank 2	1	1	1	1	1	1	1	1	1	1	2	1
Bank 3	1	0	0	0	0	0	0	1	1	1	2	2
VCC	1	1	2	1	1	1	2	3	3	4	4	4
VCC_SPI	1	1	1	0	0	1	1	1	1	1	1	1
VPP_2V5	1	1	1	0	0	1	1	1	1	1	1	1
VPP_FAST ³	0	0	0	0	0	1	1	1	0	1	1	1
VCCPLL	0	0	0	0	0	0	1	1	0	0	1	1
GND	2	3	3	2	2	3	4	5	8	4	8	11
NC	0	0	0	0	0	0	0	0	0	0	0	3
Total Count of Bonded Pins	32	36	49	16	16	36	49	81	81	84	121	121

V_{CCIO2} and V_{CCIO1} are connected together.
 V_{CCIO2} and V_{CCIO3} are connected together.
 V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Pin Information Summary (Continued)

	iCE40LP4K			iCE40LP8K			iCE40HX1K		
	CM81	CM121	CM225	CM81	CM121	CM225	VQ100	CB132	TQ144
General Purpose I/O per	General Purpose I/O per Bank								
Bank 0	17	23	46	17	23	46	19	24	23
Bank 1	15	21	42	15	21	42	19	25	25
Bank 2	9	19	40	9	19	40	12	20	20
Bank 3	18	26	46	18	26	46	18	22	24
Configuration	4	4	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	63	93	178	63	93	178	72	95	96
High Current Outputs per Bank									
Bank 0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0	0	0
Total Differential Inputs	0	0	0	0	0	0	0	0	0
Differential Inputs per B	ank								
Bank 0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0
Bank 3	9	13	23	9	13	23	9	11	12
Total Differential Inputs	9	13	23	9	13	23	9	11	12
Dedicated Inputs per Ba	ink								
Bank 0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	1	0	0	1	0	1	1
Bank 2	2	2	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0	0	0
Total Dedicated Inputs	2	2	3	2	2	3	2	3	3
Vccio Pins									
Bank 0	1	1	3	1	1	3	2	2	2
Bank 1	1	1	3	1	1	3	2	2	2
Bank 2	1	1	3	1	1	3	2	2	2
Bank 3	1	2	4	1	2	4	3	3	2
VCC	3	4	8	3	4	8	4	5	4
VCC_SPI	1	1	1	1	1	1	1	1	1
VPP_2V5	1	1	1	1	1	1	1	1	1
VPP_FAST ¹	1	1	1	1	1	1	1	1	1
VCCPLL	1	2	2	1	2	2	0	1	1
GND	5	12	18	5	12	18	10	14	10
NC	0	0	0	0	0	0	0	2	19
Total Count of Bonded Pins	81	121	225	81	121	225	100	132	144

1. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.

Pin Information Summary (Continued)

		iCE40HX4K		iCE40HX8K				
	BG121	CB132	TQ144	BG121	CB132	CM225	CT256	
General Purpose I/O per Bank	General Purpose I/O per Bank							
Bank 0	23	24	27	23	24	46	52	
Bank 1	21	25	29	21	25	42	52	
Bank 2	19	18	19	19	18	40	46	
Bank 3	26	24	28	26	24	46	52	
Configuration	4	4	4	4	4	4	4	
Total General Purpose Single Ended I/O	93	95	107	93	95	178	206	
High Current Outputs per Bank								
Bank 0	0	0	0	0	0	0	0	
Bank 1	0	0	0	0	0	0	0	
Bank 2	0	0	0	0	0	0	0	
Bank 3	0	0	0	0	0	0	0	
Total Differential Inputs	0	0	0	0	0	0	0	
Differential Inputs per Bank								
Bank 0	0	0	0	0	0	0	0	
Bank 1	0	0	0	0	0	0	0	
Bank 2	0	0	0	0	0	0	0	
Bank 3	13	12	14	13	12	23	26	
Total Differential Inputs	13	12	14	13	12	23	26	
Dedicated Inputs per Bank	•		•	•	•	•	•	
Bank 0	0	0	0	0	0	0	0	
Bank 1	0	1	1	0	1	1	1	
Bank 2	2	2	2	2	2	2	2	
Bank 3	0	0	0	0	0	0	0	
Configuration	0	0	0	0	0	0	0	
Total Dedicated Inputs	2	3	3	2	3	3	3	
Vccio Pins		-						
Bank 0	1	2	2	1	2	3	4	
Bank 1	1	2	2	1	2	3	4	
Bank 2	1	2	2	1	2	3	4	
Bank 3	2	3	2	2	3	4	4	
VCC	4	5	4	4	5	8	6	
VCC_SPI	1	1	1	1	1	1	1	
VPP_2V5	1	1	1	1	1	1	1	
VPP_FAST ¹	1	1	1	1	1	1	1	
VCCPLL	2	2	2	2	2	2	2	
GND	12	15	11	12	15	18	20	
NC	0	0	6	0	0	0	0	
Total Count of Bonded Pins	121	132	144	121	132	225	256	

1. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.

Date	Version	Section	Change Summary				
February 2014 02.8		Introduction	Updated Features section. — Corrected standby power units. — Included High Current LED Drivers				
			Updated Table 1-1, iCE40 Family Selection Guide. — Removed LP384 Programmable I/O for 81 ucBGA package.				
		Architecture	Updated Supported Standards section. Added information on High Current LED drivers.				
		DC and Switching	Corrected typos.				
		Characteristics	Added footnote to the Peak Startup Supply Current – LP Devices table.				
		Ordering Information	Updated part number description in the Ultra Low Power (LP) Devices section.				
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.				
October 2013	02.7	Introduction	Updated Features list and iCE40 Family Selection Guide table.				
		Architecture	Revised iCE40-1K device to iCE40LP/HX1K device.				
		DC and Switching Characteristics	Added iCE40LP640 device information.				
		Pinout Information	Added iCE40LP640 and iCE40LP1K information.				
		Ordering Information	Added iCE40LP640 and iCE40LP1K information.				
September 2013	02.6	DC and Switching	Updated Absolute Maximum Ratings section.				
		Characteristics	Updated sysCLOCK PLL Timing – Preliminary table.				
		Pinout Information	Updated Pin Information Summary table.				
August 2013	02.5	Introduction	Updated the iCE40 Family Selection Guide table.				
		DC and Switching Characteristics	Updated the following tables: — Absolute Maximum Ratings — Power-On-Reset Voltage Levels — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices — Peak Startup Supply Current – LP Devices — sysIO Recommended Operating Conditions — Typical Building Block Function Performance – HX Devices — iCE40 External Switching Characteristics – HX Devices — sysCLOCK PLL Timing – Preliminary — SPI Master or NVCM Configuration Time				
		Pinout Information	Updated the Pin Information Summary table.				
July 2013	02.4	Introduction	Updated the iCE40 Family Selection Guide table.				
		DC and Switching	Updated the sysCONFIG Port Timing Specifications table.				
		Characteristics	Updated footnote in DC Electrical Characteristics table.				
			GDDR tables removed. Support to be provided in a technical note.				
		Pinout Information	Updated the Pin Information Summary table.				
		Ordering Information	Updated the top-side markings figure.				
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.				
May 2013	02.3	DC and Switching Characteristics	Added new data from Characterization.				

Date	Version	Section	Change Summary				
April 2013 02.2 Introduction Architecture DC and Switchin Characteristics		Introduction	Added the LP8K 81 ucBGA.				
		Architecture	Corrected typos.				
		DC and Switching Characteristics	Corrected typos. Added 7:1 LVDS waveforms.				
		Pinout Information	Corrected typos in signal descriptions. Added the LP8K 81 ucBGA.				
		Ordering Information	Added the LP8K 81 ucBGA.				
March 2013	02.1	DC and Switching	Recommended operating conditions added requirement for Master SF				
		Characteristics	Updated Recommended Operating Conditions for VPP_2V5.				
			Updated Power-On-Reset Voltage Levels and sequence requirements.				
			Updated Static Supply Current conditions.				
			Changed unit for t _{SKEW_IO} from ns to ps.				
			Updated range of CCLK f _{MAX} .				
		Ordering Information	Updated ordering information to include tape and reel part numbers.				
September 2012	02.0	_	Merged SiliconBlue iCE40 LP and HX data sheets and updated to Lat- tice format.				
	01.31	_	Updated Table 1.				
	01.3	_	Production release.				
			Updated notes on Table 3: Recommended Operating Conditions.				
			Updated values in Table 4, Table 5, Table 12, Table 13 and Table 17.				
	01.21	_	Updated Figure 3 and Figure 4 to specify iCE40.				
Aug 2012	01.2	—	Updated company name.				
July 2011	01.1	—	Moved package specifications to iCE40 pinout Excel files.				
			Updated Table 1 maximum I/Os.				
	01.01	_	Added 640, 1K and 4K to Table 13 configuration times. Updated Table 1 maximum I/Os.				
	01.0	-	Initial release.				