
E. Lattice Semiconductor Corporation - ICE40LP384-SG32TR Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	48
Number of Logic Elements/Cells	384
Total RAM Bits	-
Number of I/O	21
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40lp384-sg32tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

						-		· · · · · · · · · · · · · · · · · · ·
84 QFN (7 mm x 7 mm, 0.5 mm)	QN84		67(7) ¹					
100 VQFP (14 mm x 14 mm, 0.5 mm)	VQ100					72(9) ¹		
121 ucBGA (5 mm x 5 mm, 0.4 mm)	CM121		95(12)	93(13)	93(13)			
121 csBGA (6 mm x 6 mm, 0.5 mm)	CB121		92(12)					
121 caBGA (9 mm x 9 mm, 0.8 mm)	BG121						93(13)	93(13)
132 csBGA (8 mm x 8 mm, 0.5 mm)	CB132					95(11)	95(12)	95(12)
144 TQFP (20 mm x 20 mm, 0.5 mm)	TQ144					96(12)	107(14)	
225 ucBGA (7 mm x 7 mm, 0.4 mm)	CM225			178(23)	178(23)			178(23)
256-ball caBGA (14 mm x 14 mm, 0.8 mm)	CT256							206(26)

1. No PLL available on the 16 WLCSP, 36 ucBGA, 81 csBGA, 84 QFN and 100 VQFP packages.

2. Only one PLL available on the 81 ucBGA package.

3. High Current I/Os only available on the 16 WLCSP package.

Introduction

The iCE40 family of ultra-low power, non-volatile FPGAs has five devices with densities ranging from 384 to 7680 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic, these devices feature Embedded Block RAM (EBR), Non-volatile Configuration Memory (NVCM) and Phase Locked Loops (PLLs). These features allow the devices to be used in low-cost, high-volume consumer and system applications. Select packages offer High-Current drivers that are ideal to drive three white LEDs, or one RGB LED.

The iCE40 devices are fabricated on a 40 nm CMOS low power process. The device architecture has several features such as programmable low-swing differential I/Os and the ability to turn off on-chip PLLs dynamically. These features help manage static and dynamic power consumption, resulting in low static power for all members of the family. The iCE40 devices are available in two versions – ultra low power (LP) and high performance (HX) devices.

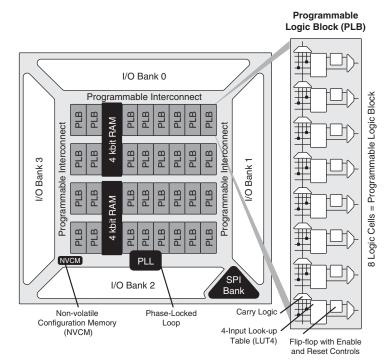
The iCE40 FPGAs are available in a broad range of advanced halogen-free packages ranging from the space saving 1.40x1.48 mm WLCSP to the PCB-friendly 20x20 mm TQFP. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The iCE40 devices offer enhanced I/O features such as pull-up resistors. Pull-up features are controllable on a "per-pin" basis.

The iCE40 devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices can also configure themselves from external SPI Flash or be configured by an external master such as a CPU.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40 family of devices. Popular logic synthesis tools provide synthesis library support for iCE40. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the iCE40 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules, including a number of reference designs, licensed free of charge, optimized for the iCE40 FPGA family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.


iCE40 LP/HX Family Data Sheet Architecture

March 2017

Data Sheet DS1040

Architecture Overview

The iCE40 family architecture contains an array of Programmable Logic Blocks (PLB), sysCLOCK[™] PLLs, Nonvolatile Programmable Configuration Memory (NVCM) and blocks of sysMEM[™] Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1 shows the block diagram of the iCE40LP/HX1K device.

Figure 2-1. iCE40LP/HX1K Device, Top View

The logic blocks, Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either logic blocks or EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

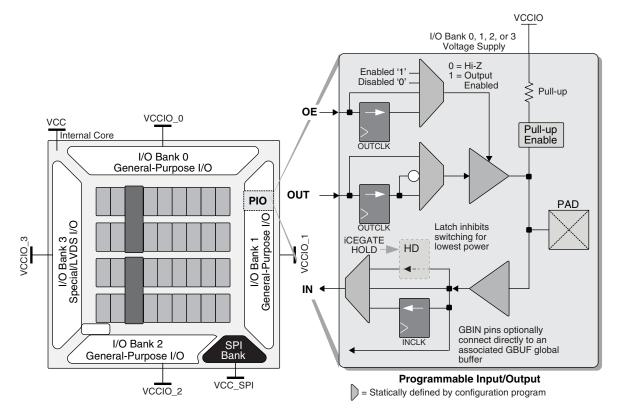
In the iCE40 family, there are up to four independent sysIO banks. Note on some packages V_{CCIO} banks are tied together. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO.

The iCE40 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a SPI port that supports programming and configuration of the device. The iCE40 includes on-chip, Nonvolatile Configuration Memory (NVCM).

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

syslO


Buffer Banks

iCE40 devices have up to four I/O banks with independent V_{CCIO} rails with an additional configuration bank V_{CC} SPI for the SPI I/Os.

Programmable I/O (PIO)

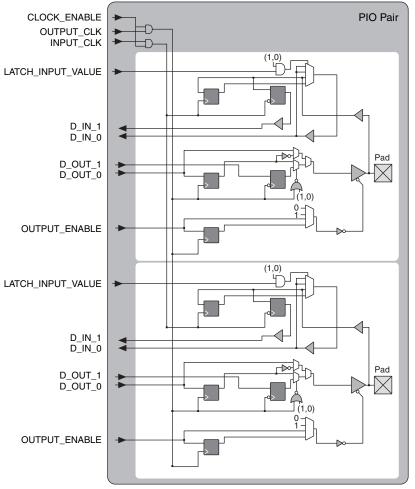
The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. The PIOs are placed on all four sides of the device.

Figure 2-5. I/O Bank and Programmable I/O Cell

The PIO contains three blocks: an input register block, output register block iCEgate[™] and tri-state register block. To save power, the optional iCEgate[™] latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Note that the freeze signal is common to the bank. These blocks can operate in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface signals before they are passed to the device core. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock signal, creating two data streams.


Output Register Block

The output register block can optionally register signals from the core of the device before they are passed to the sysIO buffers. In Generic DDR mode, two registers are used to capture the data on the positive and negative edge of the system clock and then muxed creating one data stream.

Figure 2-6 shows the input/output register block for the PIOs.

Figure 2-6. iCE I/O Register Block Diagram

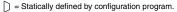


Table 2-6. PIO Signal List

Pin Name	I/O Type	Description
OUTPUT_CLK	Input	Output register clock
CLOCK_ENABLE	Input	Clock enable
INPUT_CLK	Input	Input register clock
OUTPUT_ENABLE	Input	Output enable
D_OUT_0/1	Input	Data from the core
D_IN_0/1	Output	Data to the core
LATCH_INPUT_VALUE	Input	Latches/holds the Input Value

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems including LVCMOS and LVDS25.

High Current LED Drivers combine three sysIO buffers together. This allows for programmable drive strength. This also allows for high current drivers that are ideal to drive three white LEDs, or one RGB LED. Each bank is capable of supporting multiple I/O standards including single-ended LVCMOS buffers and differential LVDS25E output buf-

Power On Reset

iCE40 devices have power-on reset circuitry to monitor V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} (controls configuration) voltage levels. It then triggers download from the on-chip NVCM or external Flash memory after reaching the power-up levels specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tri-state. I/Os are released to user functionality once the device has finished configuration.

Programming and Configuration

This section describes the programming and configuration of the iCE40 family.

Device Programming

The NVCM memory can be programmed through the SPI port.

Device Configuration

There are various ways to configure the Configuration RAM (CRAM) including:

- 1. Internal NVCM Download
- 2. From a SPI Flash (Master SPI mode)
- 3. System microprocessor to drive a Serial Slave SPI port (SSPI mode)

The image to configure the CRAM can be selected by the user on power up (Cold Boot) or once powered up (Warm Boot).

For more details on programming and configuration, see TN1248, iCE40 Programming and Configuration Usage Guide.

Power Saving Options

iCE40 devices are available in two options for maximum flexibility: LP and HX devices. The LP devices have ultra low static and dynamic power consumption. HX devices are designed to provide high performance. Both the LP and the HX devices operate at 1.2 V V_{CC} .

iCE40 devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. While these features are available in both device types, these features are mainly intended for use with iCE40 LP devices to manage power consumption.

Table 2-9. iCE40 Power Saving Features Description

Device Subsystem	Feature Description
	When LATCHINPUTVALUE is enabled, forces the PLL into low-power mode; PLL output held static at last input clock value.
	To save power, the optional iCEgate latch can selectively freeze the state of individual, non-regis- tered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control.

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter		Min.	Max.	Units
		All configuration modes. No power supply sequencing.	0.40	10	V/ms
		Configuring from Slave SPI. No power supply sequencing,	0.01	10	V/ms
t _{RAMP}	power supplies.	Configuring from NVCM. V_{CC} and $V_{PP_{2V5}}$ to be powered 0.25 ms before $V_{CC_{SPI}}$.	0.01	10	V/ms
		Configuring from MSPI. V_{CC} and V_{PP_SPI} to be powered 0.25 ms before V_{PP_2V5} .	0.01	10	V/ms

1. Assumes monotonic ramp rates.

2. iCE40LP384 requires V_{CC} to be greater than 0.7V when V_{CCIO} and V_{CC_SPI} are above GND.

Power-On-Reset Voltage Levels¹

Symbol	Device	Parameter		Min.	Max.	Units
V _{PORUP}	iCE40LP384		VCC	0.67	0.99	V
		(band gap based circuit monitoring VCC, VCCIO_2, VCC_SPI and	VCCIO_2	0.70	1.59	V
		VPP_2V5)	VCC_SPI	0.70	1.59	V
		Y	VPP_2V5	0.70	1.59	V
	iCE40LP640,	Power-On-Reset ramp-up trip point	VCC	0.55	0.75	V
	iCE40LP/HX1K, iCE40LP/HX4K,	K, VCC, VCCIO_2, VCC_SPI and K VPP_2V5)	VCCIO_2	0.86	1.29	V
	iCE40LP/HX8K		VCC_SPI	0.86	1.29	V
			VPP_2V5	0.86	1.33	V
V _{PORDN}	iCE40LP384	Power-On-Reset ramp-down trip	VCC	—	0.64	V
		point (band gap based circuit moni- toring VCC, VCCIO_2, VCC_SPI	VCCIO_2	—	1.59	V
		and VPP_2V5)	VCC_SPI	—	1.59	V
			VPP_2V5	—	1.59	V
	iCE40LP640,	Power-On-Reset ramp-down trip	VCC	—	0.75	V
		point (band gap based circuit moni- toring VCC, VCCIO_2, VCC_SPI	VCCIO_2	—	1.29	V
			VCC_SPI	—	1.29	V
			VPP_2V5	—	1.33	V

1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.

ESD Performance

Please refer to the iCE40 Product Family Qualification Summary for complete qualification data, including ESD performance.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL,} I _{IH} ^{1, 3, 4, 5, 6, 7}	Input or I/O Leakage	$0V < V_{IN} < V_{CCIO} + 0.2 V$	—	—	+/—10	μA
C ₁ ^{6, 7}	I/O Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 to V_{CCIO} + 0.2 V$	_	6	_	pf
C ₂ ^{6, 7}	Global Input Buffer Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 to V_{CCIO} + 0.2 V$	_	6	_	pf
V _{HYST}	Input Hysteresis	V _{CCIO} = 1.8 V, 2.5 V, 3.3 V	—	200		mV
I _{PU} ^{6, 7}	Internal PIO Pull-up	$V_{CCIO} = 1.8 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-3		-31	μΑ
	Current	$V_{CCIO} = 2.5 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-8	—	-72	μA
		$V_{CCIO} = 3.3 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-11	—	-128	μA

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled.

2. T_J 25°C, f = 1.0 MHz.

3. Please refer to VIL and VIH in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. Only applies to IOs in the SPI bank following configuration.

5. Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO}}.$

6. High current IOs has three sysIO buffers connected together.

7. The iCE40LP640 and iCE40LP1K SWG16 package has CDONE and a sysIO buffer are connected together.

Static Supply Current – LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
I _{CC} Core Power Supply		iCE40LP384	21	μA
		iCE40LP640	100	μA
	Core Power Supply	iCE40LP1K	100	μA
		iCE40LP4K	250	μA
	iCE40LP8K	250	μA	
I _{CCPLL} ^{5, 6}	PLL Power Supply	All devices	0.5	μA
I _{PP_2V5}	NVCM Power Supply	All devices	1.0	μA
ICCIO, ICC_SPI	Bank Power Supply⁴ V _{CCIO} = 2.5 V	All devices	3.5	μΑ

1. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

2. Frequency = 0 MHz.

3. $T_J = 25$ °C, power supplies at nominal voltage.

4. Does not include pull-up.

5. No PLL available on the iCE40LP384 and iCE40LP640 device.

6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

Typical Building Block Function Performance – LP Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	11.0	ns
4:1 MUX	12.0	ns
16:1 MUX	13.0	ns

Register-to-Register Performance

Function	Timing	Units
Basic Functions	· · ·	
16:1 MUX	190	MHz
16-bit adder	160	MHz
16-bit counter	175	MHz
64-bit counter	65	MHz
Embedded Memory Functions		-
256x16 Pseudo-Dual Port RAM	240	MHz

1. The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

Typical Building Block Function Performance – HX Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	10.0	ns
4:1 MUX	9.0	ns
16:1 MUX	9.5	ns

Register-to-Register Performance

Function	Timing	Units			
Basic Functions		•			
16:1 MUX	305	MHz			
16-bit adder	220	MHz			
16-bit counter	255	MHz			
64-bit counter	105	MHz			
Embedded Memory Functions					
256x16 Pseudo-Dual Port RAM	403	MHz			

1. The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

Over Recommended Commercial Operating Conditions - HX Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units	
Input Adjusters	I			
LVDS25	LVDS, $V_{CCIO} = 2.5 V$	0.13	ns	
subLVDS	subLVDS, V _{CCIO} = 1.8 V	1.03	ns	
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.16	ns	
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns	
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.23	ns	
Output Adjusters	· · ·			
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns	
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.76	ns	
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.17	ns	
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns	
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.76	ns	

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

iCE40 External Switching Characteristics – LP Devices ^{1, 2}

Over Recommended Operating Conditions

Parameter	Description	Device	Min.	Max.	Units
Clocks					
Global Clocks					
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All iCE40LP devices	—	275	MHz
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All iCE40LP devices	0.92	—	ns
		iCE40LP384	-	370	ps
		iCE40LP640	-	230	ps
t _{SKEW_GBUF}	Global Buffer Clock Skew Within a Device	iCE40LP1K	-	230	ps
		iCE40LP4K	-	340	ps
		iCE40LP8K	-	340	ps
Pin-LUT-Pin Propa	agation Delay				1
t _{PD}	Best case propagation delay through one LUT-4	All iCE40LP devices	—	9.36	ns
General I/O Pin Pa	rameters (Using Global Buffer Clock withou	it PLL) ³			
		iCE40LP384	_	300	ps
		iCE40LP640	—	200	ps
t _{SKEW_} IO	Data bus skew across a bank of IOs	iCE40LP1K		200	ps
		iCE40LP4K		280	ps
		iCE40LP8K		280	ps
		iCE40LP384		6.33	ns
		iCE40LP640		5.91	ns
t _{co}	Clock to Output - PIO Output Register	iCE40LP1K		5.91	ns
		iCE40LP4K		6.58	ns
		iCE40LP8K		6.58	ns
		iCE40LP384	-0.08	_	ns
		iCE40LP640	-0.33	_	ns
t _{SU}	Clock to Data Setup - PIO Input Register	iCE40LP1K	-0.33	_	ns
		iCE40LP4K	-0.63	_	ns
		iCE40LP8K	-0.63	_	ns
		iCE40LP384	1.99	_	ns
		iCE40LP640	2.81	_	ns
t _H	Clock to Data Hold - PIO Input Register	iCE40LP1K	2.81	_	ns
		iCE40LP4K	3.48	—	ns
		iCE40LP8K	3.48	—	ns
General I/O Pin Pa	arameters (Using Global Buffer Clock with P	LL) ³	I	1	1
		iCE40LP1K	_	2.20	ns
t _{COPLL}	Clock to Output - PIO Output Register	iCE40LP4K		2.30	ns
		iCE40LP8K	— —	2.30	ns
		iCE40LP1K	5.23	—	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	iCE40LP4K	6.13	—	ns
		iCE40LP8K	6.13		ns

iCE40 External Switching Characteristics – LP Devices (Continued)^{1, 2}

Over Recommended Operating Conditions

Parameter	Description	Device	Min.	Max.	Units
		iCE40LP1K	-0.90	_	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	iCE40LP4K	-0.80	_	ns
		iCE40LP8K	-0.80		ns

1. Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions can be extracted from the iCECube2 software.

2. General I/O timing numbers based on LVCMOS 2.5, 0pf load.

3. Supported on devices with a PLL.

sysCLOCK PLL Timing

Over Recommended Operating Conditions

Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (REFERENCECLK, EXTFEEDBACK)		10	133	MHz
f _{OUT}	Output Clock Frequency (PLLOUT)		16	275	MHz
f _{VCO}	PLL VCO Frequency		533	1066	MHz
f _{PFD}	Phase Detector Input Frequency		10	133	MHz
AC Characteris	tics				
t	Output Clock Duty Cycle	f _{OUT} < 175 MHz	40	50	%
t _{DT}	Output Clock Duty Cycle	175 MHz < f _{OUT} < 275 MHz	35	65	"%
t _{PH}	Output Phase Accuracy		—	+/-12	deg
	Output Clock Period Jitter	f _{OUT} <= 100 MHz	_	450	ps p-p
		f _{OUT} > 100 MHz	—	0.05	UIPP
+ 1,5	Output Clock Cycle-to-cycle Jitter	f _{OUT} <= 100 MHz	—	750	ps p-p
t _{OPJIT} ^{1, 5}	Output Clock Cycle-10-Cycle Siller	f _{OUT} > 100 MHz	_	0.10	UIPP
	Output Clock Phase Jitter	f _{PFD} <= 25 MHz	_	275	ps p-p
	Ouput Clock Phase Siller	f _{PFD} > 25 MHz	_	0.05	UIPP
t _W	Output Clock Pulse Width	At 90% or 10%	1.3	—	ns
t _{LOCK} ^{2, 3}	PLL Lock-in Time		_	50	us
t _{UNLOCK}	PLL Unlock Time		_	50	ns
+ 4	Input Clock Period Jitter	$f_{PFD} \ge 20 \text{ MHz}$	_	1000	ps p-p
t _{IPJIT} ⁴	Input Clock Feriod Siller	f _{PFD} < 20 MHz	_	0.02	UIPP
t _{FDTAP}	Fine Delay adjustment, per Tap		147	195	ps
t _{STABLE} ³	LATCHINPUTVALUE LOW to PLL Stable		—	500	ns
t _{STABLE_PW} ³	LATCHINPUTVALUE Pulse Width		—	100	ns
t _{RST}	RESET Pulse Width		10	—	ns
t _{RSTREC}	RESET Recovery Time		10	—	us
t _{DYNAMIC_WD}	DYNAMICDELAY Pulse Width		100	_	VCO Cycles
t	Propagation delay with the PLL in bypass	iCE40LP	1.18	4.68	ns
t _{PDBYPASS}	mode	iCE40HX	1.73	4.07	ns

1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.

2. Output clock is valid after $t_{\mbox{LOCK}}$ for PLL reset and dynamic delay adjustment.

3. At minimum f_{PFD} . As the f_{PFD} increases the time will decrease to approximately 60% the value listed.

4. Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed in this table.

5. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.

sysCONFIG Port Timing Specifications¹

Symbol	Parameter		Min.	Тур.	Max.	Units
All Configuration	on Modes	11		1	I	1
t _{CRESET_B}	Minimum CRESET_B Low pulse width required to restart configu- ration, from falling edge to rising edge		200	—	_	ns
t _{DONE_IO}	Number of configuration clock cycles after CDONE goes High before the PIO pins are activated		49	_	_	Clock Cycles
Slave SPI				•	•	
	Minimum time from a rising edge	iCE40LP384	600	-	—	us
t _{CR_SCK}	on CRESET_B until the first SPI write operation, first SPI_SCK. During this time, the iCE40	iCE40LP640, iCE40LP/HX1K	800	-	—	us
	device is clearing its internal con-	iCE40LP/HX4K	1200	-	—	us
	figuration memory	iCE40LP/HX8K	1200	-	—	us
		Write	1	-	25	MHz
		Read iCE40LP384 ²	-	15	-	MHz
£ 1	CCLK clock frequency	Read iCE40LP640, iCE40LP/HX1K ²	-	15	-	MHz
f _{MAX} ¹		Read iCE40LP/ HX4K ²	-	15	-	MHz
		Read iCE40LP/ HX8K ²	-	15	-	MHz
t _{CCLKH}	CCLK clock pulse width high		20	—	—	ns
t _{CCLKL}	CCLK clock pulse width low		20	—	—	ns
t _{STSU}	CCLK setup time		12		—	ns
t _{STH}	CCLK hold time		12		—	ns
t _{STCO}	CCLK falling edge to valid output		13		—	ns
Master SPI		·				
		Off		0		MHz
f _{MCLK}	MCLK clock frequency	Low Frequency (Default)	_	7.5	_	MHz
		Medium Frequency ³		24	—	MHz
		High Frequency ³	_	40	_	MHz

Switching Test Conditions

Figure 3-3 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-3.

Figure 3-3. Output Test Load, LVCMOS Standards

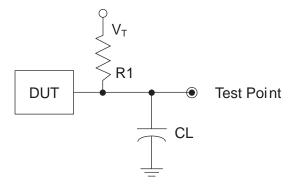


Table 3-3. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Reference	V _T								
			LVCMOS 3.3 = 1.5 V	—								
LVCMOS settings (L -> H, H -> L)	×	0 pF	LVCMOS 2.5 = $V_{CCIO}/2$	—								
			LVCMOS 1.8 = $V_{CCIO}/2$	—								
LVCMOS 3.3 (Z -> H)			1.5	V _{OL}								
LVCMOS 3.3 (Z -> L)	100	100	100	100	188 0		l				1.5	V _{OH}
Other LVCMOS (Z -> H)						0 pF	V _{CCIO} /2	V _{OL}				
Other LVCMOS (Z -> L)	100	0 pr	V _{CCIO} /2	V _{OH}								
LVCMOS (H -> Z)			V _{OH} - 0.15	V _{OL}								
LVCMOS (L -> Z)			V _{OL} - 0.15	V _{OH}								

Note: Output test conditions for all other interfaces are determined by the respective standards.

iCE40 LP/HX Family Data Sheet Pinout Information

March 2017

Data Sheet DS1040

Signal Descriptions

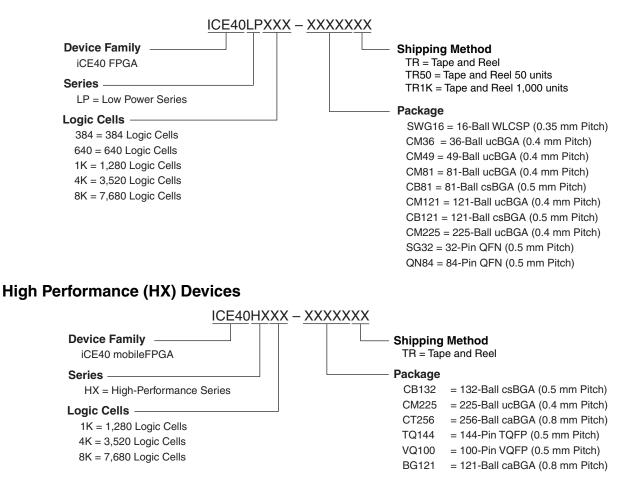
Signal Name	I/O	Descriptions
General Purpose		
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device.
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device. [A/B] indicates the differential I/O. 'A' = negative input. 'B' = positive input.
HCIO[Bank]_[Number]	I/O	High Current IO. [Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number.
NC	—	No connect
GND	—	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together.
VCC	—	VCC – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
VCCIO_x	—	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. All VCCIOs located in the same bank are tied to the same supply.
PLL and Global Functions (Used as u	ser-programmable I/O pins when not used for PLL or clock pins)
VCCPLLx	_	PLL VCC – Power. Dedicated pins. The PLL requires a separate power and ground that is quiet and stable to reduce the output clock jitter of the PLL.
GNDPLLx	_	PLL GND – Ground. Dedicated pins. The sysCLOCK PLL has the DC ground con- nection made on the FPGA, so the external PLL ground connection (GNDPLL) must NOT be connected to the board's ground.
GBINx	—	Global pads. Two per side.
Programming and Configur	ation	
CBSEL[0:1]	I/O	Dual function pins. I/Os when not used as CBSEL. Optional ColdBoot configuration SELect input, if ColdBoot mode is enabled.
CRESET_B	I	Configuration Reset, active Low. Dedicated input. No internal pull-up resistor. Either actively drive externally or connect a 10 KOhm pull-up resistor to VCCIO_2.
CDONE	I/O	Configuration Done. Includes a permanent weak pull-up resistor to VCCIO_2. If driv- ing external devices with CDONE output, an external pull-up resistor to VCCIO_2 may be required. Refer to the TN1248, iCE40 Programming and Configuration for more details. Following device configuration the iCE40LP640 and iCE40LP1K in the SWG16 package CDONE pin can be used as a user output.
VCC_SPI	—	SPI interface voltage supply input. Must have a valid voltage even if configuring from NVCM.
SPI_SCK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA configuration modes.
SPI_SS_B	I/O	SPI Slave Select. Active Low. Includes an internal weak pull-up resistor to VCC_SPI during configuration. During configuration, the logic level sampled on this pin determines the configuration mode used by the iCE40 device. An input when sampled at the start of configuration. An input when in SPI Peripheral configuration mode (SPI_SS_B = Low). An output when in Master SPI Flash configuration mode.
SPI_SI	I/O	Slave SPI serial data input and master SPI serial data output
SPI_SO	I/O	Slave SPI serial data output and master SPI serial data input

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Pin Information Summary (Continued)

	iCE40LP4K			iCE40LP8K			iCE40HX1K		
	CM81	CM121	CM225	CM81	CM121	CM225	VQ100	CB132	TQ144
General Purpose I/O per	r Bank								
Bank 0	17	23	46	17	23	46	19	24	23
Bank 1	15	21	42	15	21	42	19	25	25
Bank 2	9	19	40	9	19	40	12	20	20
Bank 3	18	26	46	18	26	46	18	22	24
Configuration	4	4	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	63	93	178	63	93	178	72	95	96
High Current Outputs p	er Bank	•	•			•			•
Bank 0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0	0	0
Total Differential Inputs	0	0	0	0	0	0	0	0	0
Differential Inputs per B	ank								
Bank 0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0	0	0
Bank 3	9	13	23	9	13	23	9	11	12
Total Differential Inputs	9	13	23	9	13	23	9	11	12
Dedicated Inputs per Ba	ank								
Bank 0	0	0	0	0	0	0	0	0	0
Bank 1	0	0	1	0	0	1	0	1	1
Bank 2	2	2	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0	0	0
Total Dedicated Inputs	2	2	3	2	2	3	2	3	3
Vccio Pins				•			•	•	
Bank 0	1	1	3	1	1	3	2	2	2
Bank 1	1	1	3	1	1	3	2	2	2
Bank 2	1	1	3	1	1	3	2	2	2
Bank 3	1	2	4	1	2	4	3	3	2
VCC	3	4	8	3	4	8	4	5	4
VCC_SPI	1	1	1	1	1	1	1	1	1
VPP_2V5	1	1	1	1	1	1	1	1	1
VPP_FAST ¹	1	1	1	1	1	1	1	1	1
VCCPLL	1	2	2	1	2	2	0	1	1
GND	5	12	18	5	12	18	10	14	10
NC	0	0	0	0	0	0	0	2	19
Total Count of Bonded Pins	81	121	225	81	121	225	100	132	144

1. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.


iCE40 LP/HX Family Data Sheet Ordering Information

March 2017

Data Sheet DS1040

iCE40 Part Number Description

Ultra Low Power (LP) Devices

All parts shipped in trays unless noted.

Ordering Information

iCE40 devices have top-side markings as shown below:

Note: Markings are abbreviated for small packages.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40LP8K-CM121TR1K	7680	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND

High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40HX1K-CB132	1280	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX1K-VQ100	1280	1.2 V	Halogen-Free VQFP	100	IND
ICE40HX1K-TQ144	1280	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX4K-BG121	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-BG121TR	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-CB132	3520	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX4K-TQ144	3520	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX8K-BG121	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-BG121TR	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-CB132	7680	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND
ICE40HX8K-CT256	7680	1.2 V	Halogen-Free caBGA	256	IND

iCE40 LP/HX Family Data Sheet Revision History

March 2017

Data Sheet DS1040

Date	Version	Section	Change Summary
March 2017	7 3.3 Introduction		Updated Features section. Added 121-ball caBGA package for ICE40 HX4K/8K to Table 1-1, iCE40 Family Selection Guide.
		Architecture	Updated PLB Blocks section. Changed "subtracters" to "subtractors" in the Carry Logic description.
			Updated Clock/Control Distribution Network section. Switched the "Clock Enable" and the "Reset" headings in Table 2-2, Global Buffer (GBUF) Connections to Programmable Logic Blocks.
		Pinout Information	Updated Pin Information Summary section. Added BG121information under iCE40HX4K and iCE40HX8K.
		Ordering Information	Updated iCE40 Part Number Description section. Added Shipping Method and BG121 package under High Performance (HX) Devices.
			Updated Ordering Information section. Added part numbers for BG121 under High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging.
		Supplemental Information	Corrected reference to "Package Diagrams Data Sheet".
October 2015	er 2015 3.2 Introduction		Updated Features section. Added footnote to 16 WLCSP Programma- ble I/O: Max Inputs (LVDS25) in Table 1-1, iCE40 Family Selection Guide.
		DC and Switching	Updated sysCLOCK PLL Timing section. Changed t _{DT} conditions.
		Characteristics	Updated Programming NVCM Supply Current – LP Devices section. Changed $I_{PP_{2V5}}$ and I_{CCIO} , $I_{CC_{SPI}}$ units.
March 2015	3.1	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics section. Changed LVCMOS 3.3 and LVCMOS 2. 5 V _{OH} Min. (V) from 0.5 to 0.4.
July 2014	3.0	DC and Switching Characteristics	Revised and/or added Typ. V _{CC} data in the following sections. — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices In each section table, the footnote indicating Advanced device status was removed.
		Pinout Information	Updated Pin Information Summary section. Added footnote 1 to CM49 under iCE40LP1K.
April 2014	02.9	Ordering Information	Changed "i" to "I" in part number description and ordering part numbers.
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary
February 2014	02.8	Introduction	Updated Features section. — Corrected standby power units. — Included High Current LED Drivers
			Updated Table 1-1, iCE40 Family Selection Guide. — Removed LP384 Programmable I/O for 81 ucBGA package.
		Architecture	Updated Supported Standards section. Added information on High Current LED drivers.
		DC and Switching Characteristics	Corrected typos.
			Added footnote to the Peak Startup Supply Current – LP Devices table.
		Ordering Information	Updated part number description in the Ultra Low Power (LP) Devices section.
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
October 2013	02.7	Introduction	Updated Features list and iCE40 Family Selection Guide table.
		Architecture	Revised iCE40-1K device to iCE40LP/HX1K device.
		DC and Switching Characteristics	Added iCE40LP640 device information.
		Pinout Information	Added iCE40LP640 and iCE40LP1K information.
		Ordering Information	Added iCE40LP640 and iCE40LP1K information.
September 2013	02.6	DC and Switching Characteristics	Updated Absolute Maximum Ratings section.
			Updated sysCLOCK PLL Timing – Preliminary table.
		Pinout Information	Updated Pin Information Summary table.
August 2013	02.5	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching Characteristics	Updated the following tables: — Absolute Maximum Ratings — Power-On-Reset Voltage Levels — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices — Peak Startup Supply Current – LP Devices — sysIO Recommended Operating Conditions — Typical Building Block Function Performance – HX Devices — iCE40 External Switching Characteristics – HX Devices — sysCLOCK PLL Timing – Preliminary — SPI Master or NVCM Configuration Time
		Pinout Information	Updated the Pin Information Summary table.
July 2013	02.4	Introduction	Updated the iCE40 Family Selection Guide table.
		DC and Switching Characteristics	Updated the sysCONFIG Port Timing Specifications table.
			Updated footnote in DC Electrical Characteristics table.
			GDDR tables removed. Support to be provided in a technical note.
		Pinout Information	Updated the Pin Information Summary table.
		Ordering Information	Updated the top-side markings figure.
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.
May 2013	02.3	DC and Switching Characteristics	Added new data from Characterization.