

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	440
Number of Logic Elements/Cells	3520
Total RAM Bits	81920
Number of I/O	93
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	121-VFBGA
Supplier Device Package	121-UCBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40lp4k-cm121

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

						-		· · · · · · · · · · · · · · · · · · ·
84 QFN (7 mm x 7 mm, 0.5 mm)	QN84		67(7) ¹					
100 VQFP (14 mm x 14 mm, 0.5 mm)	VQ100					72(9) ¹		
121 ucBGA (5 mm x 5 mm, 0.4 mm)	CM121		95(12)	93(13)	93(13)			
121 csBGA (6 mm x 6 mm, 0.5 mm)	CB121		92(12)					
121 caBGA (9 mm x 9 mm, 0.8 mm)	BG121						93(13)	93(13)
132 csBGA (8 mm x 8 mm, 0.5 mm)	CB132					95(11)	95(12)	95(12)
144 TQFP (20 mm x 20 mm, 0.5 mm)	TQ144					96(12)	107(14)	
225 ucBGA (7 mm x 7 mm, 0.4 mm)	CM225			178(23)	178(23)			178(23)
256-ball caBGA (14 mm x 14 mm, 0.8 mm)	CT256							206(26)

1. No PLL available on the 16 WLCSP, 36 ucBGA, 81 csBGA, 84 QFN and 100 VQFP packages.

2. Only one PLL available on the 81 ucBGA package.

3. High Current I/Os only available on the 16 WLCSP package.

Introduction

The iCE40 family of ultra-low power, non-volatile FPGAs has five devices with densities ranging from 384 to 7680 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic, these devices feature Embedded Block RAM (EBR), Non-volatile Configuration Memory (NVCM) and Phase Locked Loops (PLLs). These features allow the devices to be used in low-cost, high-volume consumer and system applications. Select packages offer High-Current drivers that are ideal to drive three white LEDs, or one RGB LED.

The iCE40 devices are fabricated on a 40 nm CMOS low power process. The device architecture has several features such as programmable low-swing differential I/Os and the ability to turn off on-chip PLLs dynamically. These features help manage static and dynamic power consumption, resulting in low static power for all members of the family. The iCE40 devices are available in two versions – ultra low power (LP) and high performance (HX) devices.

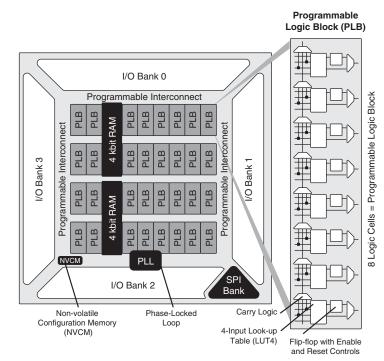
The iCE40 FPGAs are available in a broad range of advanced halogen-free packages ranging from the space saving 1.40x1.48 mm WLCSP to the PCB-friendly 20x20 mm TQFP. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The iCE40 devices offer enhanced I/O features such as pull-up resistors. Pull-up features are controllable on a "per-pin" basis.

The iCE40 devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices can also configure themselves from external SPI Flash or be configured by an external master such as a CPU.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40 family of devices. Popular logic synthesis tools provide synthesis library support for iCE40. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the iCE40 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

Lattice provides many pre-engineered IP (Intellectual Property) modules, including a number of reference designs, licensed free of charge, optimized for the iCE40 FPGA family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.


iCE40 LP/HX Family Data Sheet Architecture

March 2017

Data Sheet DS1040

Architecture Overview

The iCE40 family architecture contains an array of Programmable Logic Blocks (PLB), sysCLOCK[™] PLLs, Nonvolatile Programmable Configuration Memory (NVCM) and blocks of sysMEM[™] Embedded Block RAM (EBR) surrounded by Programmable I/O (PIO). Figure 2-1 shows the block diagram of the iCE40LP/HX1K device.

Figure 2-1. iCE40LP/HX1K Device, Top View

The logic blocks, Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and columns. Each column has either logic blocks or EBR blocks. The PIO cells are located at the periphery of the device, arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

In the iCE40 family, there are up to four independent sysIO banks. Note on some packages V_{CCIO} banks are tied together. There are different types of I/O buffers on the different banks. Refer to the details in later sections of this document. The sysMEM EBRs are large 4 kbit, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO.

The iCE40 architecture also provides up to two sysCLOCK Phase Locked Loop (PLL) blocks. The PLLs have multiply, divide, and phase shifting capabilities that are used to manage the frequency and phase relationships of the clocks.

Every device in the family has a SPI port that supports programming and configuration of the device. The iCE40 includes on-chip, Nonvolatile Configuration Memory (NVCM).

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

PLB Blocks

The core of the iCE40 device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register.

Figure 2-2. PLB Block Diagram

Logic Cells

Each Logic Cell includes three primary logic elements shown in Figure 2-2.

- A four-input Look-Up Table (LUT4) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT4 element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUT4s to create wider logic functions.
- A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration.
- Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtractors, comparators, binary counters and some wide, cascaded logic functions.

Function	Туре	Signal Names	Description
Input	Data signal	10, 11, 12, 13	Inputs to LUT4
Input	Control signal	Enable	Clock enable shared by all LCs in the PLB
Input	Control signal	Set/Reset ¹	Asynchronous or synchronous local set/reset shared by all LCs in the PLB.
Input	Control signal	Clock	Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB
Input	Inter-PLB signal	FCIN	Fast carry in
Output	Data signals	0	LUT4 or registered output
Output	Inter-PFU signal	FCOUT	Fast carry out

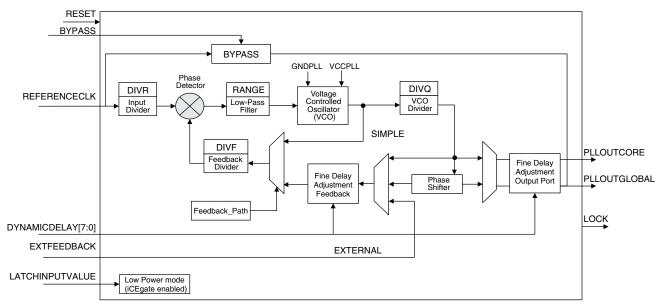
Table 2-1. Logic Cell Signal Descriptions

1. If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration.

Global Reset Control

The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application.

sysCLOCK Phase Locked Loops (PLLs)


The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 devices have one or more sys-CLOCK PLLs. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin or from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 6. The PLLOUT outputs can all be used to drive the iCE40 global clock network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3.

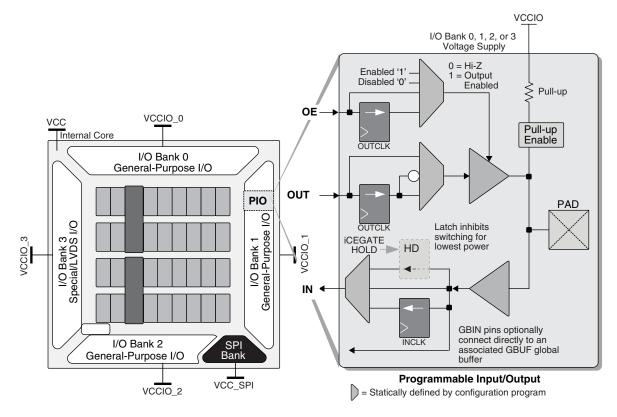
The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the t_{LOCK} parameter has been satisfied.

For more details on the PLL, see TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.

Figure 2-3. PLL Diagram

Table 2-3 provides signal descriptions of the PLL block.

syslO


Buffer Banks

iCE40 devices have up to four I/O banks with independent V_{CCIO} rails with an additional configuration bank V_{CC} SPI for the SPI I/Os.

Programmable I/O (PIO)

The programmable logic associated with an I/O is called a PIO. The individual PIO are connected to their respective sysIO buffers and pads. The PIOs are placed on all four sides of the device.

Figure 2-5. I/O Bank and Programmable I/O Cell

The PIO contains three blocks: an input register block, output register block iCEgate[™] and tri-state register block. To save power, the optional iCEgate[™] latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Note that the freeze signal is common to the bank. These blocks can operate in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface signals before they are passed to the device core. In Generic DDR mode, two registers are used to sample the data on the positive and negative edges of the system clock signal, creating two data streams.

Output Register Block

The output register block can optionally register signals from the core of the device before they are passed to the sysIO buffers. In Generic DDR mode, two registers are used to capture the data on the positive and negative edge of the system clock and then muxed creating one data stream.

Figure 2-6 shows the input/output register block for the PIOs.

fers. Bank 3 additionally supports differential LVDS25 input buffers. Each sysIO bank has its own dedicated power supply.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SP1} have reached the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins will maintain the pre-configuration state until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached levels, at which time the I/Os will take on the software user-configured settings only after a proper download/configuration. Unused IOs are automatically blocked and the pullup termination is disabled.

Supported Standards

The iCE40 sysIO buffer supports both single-ended and differential input standards. The single-ended standard supported is LVCMOS. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none). The High Current output buffer have individually configurable options for drive strength.

Table 2-7 and Table 2-8 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 devices.

Input Standard	V _{CCIO} (Typical)				
input Standard	3.3 V	2.5 V	1.8 V		
Single-Ended Interfaces		•			
LVCMOS33	Yes				
LVCMOS25		Yes			
LVCMOS18			Yes		
Differential Interfaces		•			
LVDS251		Yes			
subLVDS ¹			Yes		

Table 2-7. Supported Input Standards

1. Bank 3 only.

Table 2-8. Supported Output Standards

Output Standard	V _{CCIO} (Typical)
Single-Ended Interfaces	
LVCMOS33	3.3
LVCMOS25	2.5
LVCMOS18	1.8
Differential Interfaces	
LVDS25E1	2.5
subLVDSE ¹	1.8

1. These interfaces can be emulated with external resistors in all devices.

Non-Volatile Configuration Memory

All iCE40 devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device.

For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration Usage Guide.

Power On Reset

iCE40 devices have power-on reset circuitry to monitor V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} voltage levels during power-up and operation. At power-up, the POR circuitry monitors V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} (controls configuration) voltage levels. It then triggers download from the on-chip NVCM or external Flash memory after reaching the power-up levels specified in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. Before and during configuration, the I/Os are held in tri-state. I/Os are released to user functionality once the device has finished configuration.

Programming and Configuration

This section describes the programming and configuration of the iCE40 family.

Device Programming

The NVCM memory can be programmed through the SPI port.

Device Configuration

There are various ways to configure the Configuration RAM (CRAM) including:

- 1. Internal NVCM Download
- 2. From a SPI Flash (Master SPI mode)
- 3. System microprocessor to drive a Serial Slave SPI port (SSPI mode)

The image to configure the CRAM can be selected by the user on power up (Cold Boot) or once powered up (Warm Boot).

For more details on programming and configuration, see TN1248, iCE40 Programming and Configuration Usage Guide.

Power Saving Options

iCE40 devices are available in two options for maximum flexibility: LP and HX devices. The LP devices have ultra low static and dynamic power consumption. HX devices are designed to provide high performance. Both the LP and the HX devices operate at 1.2 V V_{CC} .

iCE40 devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. While these features are available in both device types, these features are mainly intended for use with iCE40 LP devices to manage power consumption.

Table 2-9. iCE40 Power Saving Features Description

Device Subsystem	Feature Description
	When LATCHINPUTVALUE is enabled, forces the PLL into low-power mode; PLL output held static at last input clock value.
	To save power, the optional iCEgate latch can selectively freeze the state of individual, non-regis- tered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control.

iCE40 LP/HX Family Data Sheet DC and Switching Characteristics

October 2015

Data Sheet DS1040

Absolute Maximum Ratings^{1, 2, 3, 4}

iCE40 LP/HX

Supply Voltage V _{CC}	/
Output Supply Voltage V _{CCIO} , V _{CC_SPI} 0.5 V to 3.60 V	/
NVCM Supply Voltage V _{PP_2V5}	/
PLL Supply Voltage V _{CCPLL} 0.5 V to 1.30 V	/
I/O Tri-state Voltage Applied	/
Dedicated Input Voltage Applied0.5 V to 3.60 V	/
Storage Temperature (Ambient)65 °C to 150 °C	С
Junction Temperature (T _J)55 °C to 125 °C	С

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

2. Compliance with the Lattice Thermal Management document is required.

3. All voltages referenced to GND.

 IOs can support a 200 mV Overshoot above the Recommend Operating Conditions V_{CCIO} (Max) and -200mV Undershoot below V_{IL} (Min). Overshoot and Undershoot is permitted for 25% duty cycle but must not exceed 1.6 ns.

Recommended Operating Conditions¹

Symbol	Param	neter	Min.	Max.	Units
V _{CC} ¹	Core Supply Voltage		1.14	1.26	V
		Slave SPI Configuration	1.71	3.46	V
V	V _{PP_2V5} NVCM Programming and Operating Supply Voltage	Master SPI Configuration	2.30	3.46	V
V _{PP_2V5}	Operating Supply Voltage	Configure from NVCM	2.30	3.46	V
		NVCM Programming	2.30	3.00	V
V _{PP_FAST} ⁴	Optional fast NVCM programming supply	Optional fast NVCM programming supply. Leave unconnected.		N/A	V
V _{CCPLL} ^{5, 6}	PLL Supply Voltage	PLL Supply Voltage		1.26	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	V _{CCIO0-3}	1.71	3.46	V
V CCIO	NO Driver Supply Voltage	V _{CC_SPI}	1.71	3.46	V
t _{JIND}	Junction Temperature Industrial Operation	nction Temperature Industrial Operation		100	°C
t _{PROG}	Junction Temperature NVCM Programm	ing	10	30	°C

1. Like power supplies must be tied together. For example, if V_{CCIO} and V_{CC_SPI} are both the same voltage, they must also be the same supply.

2. See recommended voltages by I/O standard in subsequent table.

3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.

V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

5. No PLL available on the iCE40LP384 and iCE40LP640 device.

6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

^{© 2015} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

DC Electrical Characteristics

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL,} I _{IH} ^{1, 3, 4, 5, 6, 7}	Input or I/O Leakage	$0V < V_{IN} < V_{CCIO} + 0.2 V$	—	_	+/—10	μA
C ₁ ^{6, 7}	I/O Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 to V_{CCIO} + 0.2 V$	_	6	_	pf
C ₂ ^{6, 7}	Global Input Buffer Capacitance ²	$V_{CCIO} = 3.3 V, 2.5 V, 1.8 V$ $V_{CC} = Typ., V_{IO} = 0 to V_{CCIO} + 0.2 V$	_	6	_	pf
V _{HYST}	Input Hysteresis	V _{CCIO} = 1.8 V, 2.5 V, 3.3 V	—	200		mV
I _{PU} ^{6, 7}	Internal PIO Pull-up	$V_{CCIO} = 1.8 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-3		-31	μΑ
	Current	$V_{CCIO} = 2.5 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-8	—	-72	μA
		$V_{CCIO} = 3.3 \text{ V}, 0 = < V_{IN} < = 0.65 \text{ V}_{CCIO}$	-11	—	-128	μA

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Internal pull-up resistors are disabled.

2. T_J 25°C, f = 1.0 MHz.

3. Please refer to VIL and VIH in the sysIO Single-Ended DC Electrical Characteristics table of this document.

4. Only applies to IOs in the SPI bank following configuration.

5. Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO}}.$

6. High current IOs has three sysIO buffers connected together.

7. The iCE40LP640 and iCE40LP1K SWG16 package has CDONE and a sysIO buffer are connected together.

Static Supply Current – LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
		iCE40LP384	21	μA
		iCE40LP640	100	μA
I _{CC}	Core Power Supply	iCE40LP1K	100	μA
		iCE40LP4K	250	μA
		iCE40LP8K	250	μA
I _{CCPLL} ^{5, 6}	PLL Power Supply	All devices	0.5	μA
I _{PP_2V5}	NVCM Power Supply	All devices	1.0	μA
ICCIO, ICC_SPI	Bank Power Supply⁴ V _{CCIO} = 2.5 V	All devices	3.5	μΑ

1. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

2. Frequency = 0 MHz.

3. $T_J = 25$ °C, power supplies at nominal voltage.

4. Does not include pull-up.

5. No PLL available on the iCE40LP384 and iCE40LP640 device.

6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

Programming NVCM Supply Current – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40HX1K	278	μΑ
I _{CC}	Core Power Supply	iCE40HX4K	1174	μΑ
		iCE40HX8K	1174	μA
I _{CCPLL} ⁶	PLL Power Supply	All devices	0.5	μA
I _{PP_2V5}	NVCM Power Supply	All devices	2.5	mA
I _{CCIO⁷, I_{CC_SPI}}	Bank Power Supply⁵	All devices	3.5	mA

1. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.

2. Typical user pattern.

3. SPI programming is at 8 MHz.

4. $T_J = 25$ °C, power supplies at nominal voltage.

5. Per bank. V_{CCIO} = 2.5 V. Does not include pull-up.

6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

7. V_{PP FAST}, used only for fast production programming, must be left floating or unconnected in applications.

Peak Startup Supply Current – LP Devices

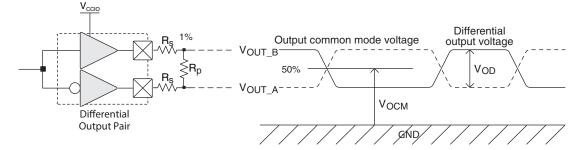
Symbol	Parameter	Device	Max	Units
		iCE40LP384	7.7	mA
		iCELP640	6.4	mA
I _{CCPEAK}	Core Power Supply	iCE40LP1K	6.4	mA
		iCE40LP4K	15.7	mA
		iCE40LP8K	15.7	mA
		iCE40LP1K	1.5	mA
1, 2, 4	PLL Power Supply	iCELP640	1.5	mA
I _{CCPLLPEAK} ^{1, 2, 4}		iCE40LP4K	8.0	mA
		iCE40LP8K	8.0	mA
		iCE40LP384	3.0	mA
		iCELP640	7.7	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40LP1K	7.7	mA
		iCE40LP4K	4.2	mA
		iCE40LP8K	4.2	mA
		iCE40LP384	5.7	mA
IPP_FASTPEAK ³	NVCM Programming Supply	iCELP640	8.1	mA
		iCE40LP1K	8.1	mA
		iCE40LP384	8.4	mA
		iCELP640	3.3	mA
I _{CCIOPEAK} ⁵ , I _{CC_SPIPEAK}	Bank Power Supply	iCE40LP1K	3.3	mA
		iCE40LP4K	8.2	mA
		iCE40LP8K	8.2	mA

1. No PLL available on the iCE40LP384 and iCE40LP640 device.

2. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.

3. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

4. While no PLL is available in the iCE40-LP640 the I_{CCPLLPEAK} is additive to I_{CCPEAK}.


5. iCE40LP384 requires V_{CC} to be greater than 0.7 V when V_{CCIO} and V_{CC_SPI} are above GND.

LVDS25E Emulation

iCE40 devices can support LVDSE outputs via emulation on all banks. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS25E standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS25E Using External Resistors

Table 3-1. LVDS25E DC Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	150	Ohms
R _P	Driver parallel resistor	140	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.30	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

Over Recommended Operating Conditions

Typical Building Block Function Performance – LP Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	11.0	ns
4:1 MUX	12.0	ns
16:1 MUX	13.0	ns

Register-to-Register Performance

Function	Timing	Units			
Basic Functions	· · ·				
16:1 MUX	190	MHz			
16-bit adder	160	MHz			
16-bit counter	175	MHz			
64-bit counter	65	MHz			
Embedded Memory Functions					
256x16 Pseudo-Dual Port RAM	240	MHz			

1. The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

Typical Building Block Function Performance – HX Devices^{1, 2}

Pin-to-Pin Performance (LVCMOS25)

Function	Timing	Units
Basic Functions		
16-bit decoder	10.0	ns
4:1 MUX	9.0	ns
16:1 MUX	9.5	ns

Register-to-Register Performance

Function	Timing	Units				
Basic Functions						
16:1 MUX	305	MHz				
16-bit adder	220	MHz				
16-bit counter	255	MHz				
64-bit counter	105	MHz				
Embedded Memory Functions						
256x16 Pseudo-Dual Port RAM	403	MHz				

1. The above timing numbers are generated using the iCECube2 design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.

2. Using a V_{CC} of 1.14 V at Junction Temp 85 °C.

Derating Logic Timing

Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a particular temperature and voltage.

Maximum sysIO Buffer Performance²

I/O Standard	Max. Speed	Units			
Inputs					
LVDS251	400	MHz			
subLVDS18 ¹	400	MHz			
LVCMOS33	250	MHz			
LVCMOS25	250	MHz			
LVCMOS18	250	MHz			
	Outputs				
LVDS25E	250	MHz			
subLVDS18E	155	MHz			
LVCMOS33	250	MHz			
LVCMOS25	250	MHz			
LVCMOS18	155	MHz			

1. Supported in Bank 3 only.

2. Measured with a toggling pattern

iCE40 Family Timing Adders

Over Recommended Commercial Operating Conditions - LP Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units
Input Adjusters	I		
LVDS25	LVDS, $V_{CCIO} = 2.5 V$	-0.18	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	0.82	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.18	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.19	ns
Output Adjusters	· · ·		
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.32	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	-0.12	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.32	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

Over Recommended Commercial Operating Conditions - HX Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units
Input Adjusters	I		
LVDS25	LVDS, $V_{CCIO} = 2.5 V$	0.13	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	1.03	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.16	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.23	ns
Output Adjusters	· · ·		
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.76	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.17	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.76	ns

1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.

2. LVCMOS timing measured with the load specified in Switching Test Condition table.

3. All other standards tested according to the appropriate specifications.

4. Commercial timing numbers are shown.

5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

iCE40 External Switching Characteristics – LP Devices ^{1, 2}

Over Recommended Operating Conditions

Parameter	Description	Device	Min.	Max.	Units
Clocks					
Global Clocks					
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All iCE40LP devices	—	275	MHz
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All iCE40LP devices	0.92		ns
		iCE40LP384	-	370	ps
		iCE40LP640	-	230	ps
t _{SKEW_GBUF}	Global Buffer Clock Skew Within a Device	iCE40LP1K	_	230	ps
		iCE40LP4K	-	340	ps
		iCE40LP8K	-	340	ps
Pin-LUT-Pin Propa	agation Delay			1	1
t _{PD}	Best case propagation delay through one LUT-4	All iCE40LP devices	—	9.36	ns
General I/O Pin Pa	rameters (Using Global Buffer Clock withou	ut PLL) ³			
		iCE40LP384	—	300	ps
t _{SKEW_IO}		iCE40LP640	— —	200	ps
	Data bus skew across a bank of IOs	iCE40LP1K		200	ps
		iCE40LP4K		280	ps
		iCE40LP8K		280	ps
		iCE40LP384		6.33	ns
		iCE40LP640		5.91	ns
t _{co}	Clock to Output - PIO Output Register	iCE40LP1K		5.91	ns
		iCE40LP4K		6.58	ns
		iCE40LP8K		6.58	ns
		iCE40LP384	-0.08		ns
		iCE40LP640	-0.33		ns
t _{SU}	Clock to Data Setup - PIO Input Register	iCE40LP1K	-0.33		ns
		iCE40LP4K	-0.63		ns
		iCE40LP8K	-0.63		ns
		iCE40LP384	1.99		ns
		iCE40LP640	2.81		ns
t _H	Clock to Data Hold - PIO Input Register	iCE40LP1K	2.81		ns
		iCE40LP4K	3.48		ns
		iCE40LP8K	3.48		ns
General I/O Pin Pa	Irameters (Using Global Buffer Clock with P	LL) ³	I	I	1
		iCE40LP1K		2.20	ns
t _{COPLL}	Clock to Output - PIO Output Register	iCE40LP4K		2.30	ns
		iCE40LP8K		2.30	ns
		iCE40LP1K	5.23		ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	iCE40LP4K	6.13		ns
		iCE40LP8K	6.13		ns

sysCONFIG Port Timing Specifications¹

Symbol	Parameter		Min.	Тур.	Max.	Units
All Configuration	on Modes	11		1	I	1
t _{CRESET_B}	Minimum CRESET_B Low pulse width required to restart configu- ration, from falling edge to rising edge		200	—	_	ns
t _{DONE_IO}	Number of configuration clock cycles after CDONE goes High before the PIO pins are activated		49	_	_	Clock Cycles
Slave SPI				•	•	
	Minimum time from a rising edge	iCE40LP384	600	-	—	us
t _{CR_SCK}	on CRESET_B until the first SPI write operation, first SPI_SCK. During this time, the iCE40	iCE40LP640, iCE40LP/HX1K	800	-	—	us
	device is clearing its internal con-	iCE40LP/HX4K	1200	-	—	us
	figuration memory	iCE40LP/HX8K	1200	-	—	us
	CCLK clock frequency	Write	1	-	25	MHz
		Read iCE40LP384 ²	-	15	-	MHz
f _{MAX} 1		Read iCE40LP640, iCE40LP/HX1K ²	-	15	-	MHz
·MAX		Read iCE40LP/ HX4K ²	-	15	-	MHz
		Read iCE40LP/ HX8K ²	-	15	-	MHz
t _{CCLKH}	CCLK clock pulse width high		20	—	—	ns
t _{CCLKL}	CCLK clock pulse width low		20	—	—	ns
t _{STSU}	CCLK setup time		12		—	ns
t _{STH}	CCLK hold time		12		—	ns
t _{STCO}	CCLK falling edge to valid output		13		—	ns
Master SPI		·				
		Off		0		MHz
f _{MCLK}	MCLK clock frequency	Low Frequency (Default)	_	7.5	_	MHz
		Medium Frequency ³		24	—	MHz
		High Frequency ³	_	40	_	MHz

sysCONFIG Port Timing Specifications¹ (Continued)

Symbol	Parameter		Min.	Тур.	Max.	Units
		iCE40LP384 - Low Frequency (Default)	600	_	—	us
		iCE40LP384 - Medium Frequency	600	_	—	us
		iCE40LP384 - High Frequency	600	_	—	us
		iCE40LP640, iCE40LP/HX1K - Low Frequency (Default)	800	_	_	us
		iCE40LP640, iCE40LP/HX1K - Medium Frequency	800	_	_	us
		iCE40LP640, iCE40LP/HX1K - High Frequency	800		_	us
	CRESET_B high to first MCLK	iCE40LP/HX1K-Low Frequency (Default)	800	_	—	us
^I MCLK	edge	iCE40LP/HX1K - Medium Frequency	800	_	—	us
		iCE40LP/HX1K - High Frequency	800	_	—	us
		iCE40LP/HX4K - Low Frequency (Default)	1200		—	us
		iCE40LP/HX4K - Medium Frequency	1200	_	—	us
		iCE40LP/HX4K - high frequency	1200	_	—	US
		iCE40LP/HX8K - Low Frequency (Default)	1200	_	—	us
		iCE40LP/HX8K - Medium Frequency	1200		—	us
		iCE40LP/HX8K - High Frequency	1200			us

Does not apply for NVCM.
 Supported only with 1.2 V V_{CC} and at 25 °C.
 Extended range f_{MAX} Write operations support up to 53 MHz only with 1.2 V V_{CC} and at 25 °C.

Pin Information Summary (Continued)

		iCE40HX4K		iCE40HX8K			
	BG121	CB132	TQ144	BG121	CB132	CM225	CT256
General Purpose I/O per Bank							
Bank 0	23	24	27	23	24	46	52
Bank 1	21	25	29	21	25	42	52
Bank 2	19	18	19	19	18	40	46
Bank 3	26	24	28	26	24	46	52
Configuration	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	93	95	107	93	95	178	206
High Current Outputs per Bank		•	•		•		
Bank 0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0
Total Differential Inputs	0	0	0	0	0	0	0
Differential Inputs per Bank	•	•			•	•	
Bank 0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0
Bank 3	13	12	14	13	12	23	26
Total Differential Inputs	13	12	14	13	12	23	26
Dedicated Inputs per Bank		•	•		•		
Bank 0	0	0	0	0	0	0	0
Bank 1	0	1	1	0	1	1	1
Bank 2	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0
Total Dedicated Inputs	2	3	3	2	3	3	3
Vccio Pins	•		•	•	•		•
Bank 0	1	2	2	1	2	3	4
Bank 1	1	2	2	1	2	3	4
Bank 2	1	2	2	1	2	3	4
Bank 3	2	3	2	2	3	4	4
VCC	4	5	4	4	5	8	6
VCC_SPI	1	1	1	1	1	1	1
VPP_2V5	1	1	1	1	1	1	1
VPP_FAST ¹	1	1	1	1	1	1	1
VCCPLL	2	2	2	2	2	2	2
GND	12	15	11	12	15	18	20
NC	0	0	6	0	0	0	0
Total Count of Bonded Pins	121	132	144	121	132	225	256

1. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.

iCE40 LP/HX Family Data Sheet Revision History

March 2017

Data Sheet DS1040

Date	Version	Section	Change Summary		
March 2017 3.3	3.3	Introduction	Updated Features section. Added 121-ball caBGA package for ICE40 HX4K/8K to Table 1-1, iCE40 Family Selection Guide.		
		Architecture	Updated PLB Blocks section. Changed "subtracters" to "subtractors" in the Carry Logic description.		
			Updated Clock/Control Distribution Network section. Switched the "Clock Enable" and the "Reset" headings in Table 2-2, Global Buffer (GBUF) Connections to Programmable Logic Blocks.		
		Pinout Information	Updated Pin Information Summary section. Added BG121information under iCE40HX4K and iCE40HX8K.		
		Ordering Information	Updated iCE40 Part Number Description section. Added Shipping Method and BG121 package under High Performance (HX) Devices.		
			Updated Ordering Information section. Added part numbers for BG121 under High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging.		
		Supplemental Information	Corrected reference to "Package Diagrams Data Sheet".		
October 2015 3.	3.2	Introduction	Updated Features section. Added footnote to 16 WLCSP Programma- ble I/O: Max Inputs (LVDS25) in Table 1-1, iCE40 Family Selection Guide.		
		DC and Switching Characteristics	Updated sysCLOCK PLL Timing section. Changed t _{DT} conditions.		
			Updated Programming NVCM Supply Current – LP Devices section. Changed $I_{PP_{2V5}}$ and I_{CCIO} , $I_{CC_{SPI}}$ units.		
March 2015	3.1	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics section. Changed LVCMOS 3.3 and LVCMOS 2. 5 V _{OH} Min. (V) from 0.5 to 0.4.		
July 2014	3.0	DC and Switching Characteristics	Revised and/or added Typ. V _{CC} data in the following sections. — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices In each section table, the footnote indicating Advanced device status was removed.		
		Pinout Information	Updated Pin Information Summary section. Added footnote 1 to CM49 under iCE40LP1K.		
April 2014	02.9	Ordering Information	Changed "i" to "I" in part number description and ordering part numbers.		
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.		

^{© 2017} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Date	Version	Section	Change Summary		
February 2014 02.8	02.8	Introduction	Updated Features section. — Corrected standby power units. — Included High Current LED Drivers		
		Updated Table 1-1, iCE40 Family Selection Guide. — Removed LP384 Programmable I/O for 81 ucBGA package.			
		Architecture	Updated Supported Standards section. Added information on High rent LED drivers.		
		DC and Switching Characteristics	Corrected typos.		
			Added footnote to the Peak Startup Supply Current – LP Devices table.		
		Ordering Information	Updated part number description in the Ultra Low Power (LP) Devices section.		
			Added part numbers to the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.		
October 2013	02.7	Introduction	Updated Features list and iCE40 Family Selection Guide table.		
		Architecture	Revised iCE40-1K device to iCE40LP/HX1K device.		
		DC and Switching Characteristics	Added iCE40LP640 device information.		
		Pinout Information	Added iCE40LP640 and iCE40LP1K information.		
		Ordering Information	Added iCE40LP640 and iCE40LP1K information.		
September 2013	02.6	DC and Switching Characteristics	Updated Absolute Maximum Ratings section.		
			Updated sysCLOCK PLL Timing – Preliminary table.		
		Pinout Information	Updated Pin Information Summary table.		
August 2013	02.5	Introduction	Updated the iCE40 Family Selection Guide table.		
		DC and Switching Characteristics	Updated the following tables: — Absolute Maximum Ratings — Power-On-Reset Voltage Levels — Static Supply Current – LP Devices — Static Supply Current – HX Devices — Programming NVCM Supply Current – LP Devices — Programming NVCM Supply Current – HX Devices — Peak Startup Supply Current – LP Devices — sysIO Recommended Operating Conditions — Typical Building Block Function Performance – HX Devices — iCE40 External Switching Characteristics – HX Devices — sysCLOCK PLL Timing – Preliminary — SPI Master or NVCM Configuration Time		
		Pinout Information	Updated the Pin Information Summary table.		
July 2013	02.4	Introduction	Updated the iCE40 Family Selection Guide table.		
		DC and Switching Characteristics	Updated the sysCONFIG Port Timing Specifications table.		
			Updated footnote in DC Electrical Characteristics table.		
			GDDR tables removed. Support to be provided in a technical note.		
		Pinout Information	Updated the Pin Information Summary table.		
		Ordering Information	Updated the top-side markings figure.		
			Updated the Ultra Low Power Industrial Grade Devices, Halogen Free (RoHS) Packaging table.		
May 2013	02.3	DC and Switching Characteristics	Added new data from Characterization.		