

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	80
Number of Logic Elements/Cells	640
Total RAM Bits	32768
Number of I/O	10
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	16-XFBGA, WLCSP
Supplier Device Package	16-WLCSP (1.4x1.48)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40lp640-swg16tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. iCE40 Family Selection Guide (continued)	Table 1-1.	iCE40 Famil	y Selection	Guide	(continued)
---	------------	-------------	-------------	-------	-------------

84 QFN								
(7 mm x 7 mm, 0.5 mm)	QN84		67(7) ¹					
100 VQFP (14 mm x 14 mm, 0.5 mm)	VQ100					72(9) ¹		
121 ucBGA (5 mm x 5 mm, 0.4 mm)	CM121		95(12)	93(13)	93(13)			
121 csBGA (6 mm x 6 mm, 0.5 mm)	CB121		92(12)					
121 caBGA (9 mm x 9 mm, 0.8 mm)	BG121						93(13)	93(13)
132 csBGA (8 mm x 8 mm, 0.5 mm)	CB132					95(11)	95(12)	95(12)
144 TQFP (20 mm x 20 mm, 0.5 mm)	TQ144					96(12)	107(14)	
225 ucBGA (7 mm x 7 mm, 0.4 mm)	CM225			178(23)	178(23)			178(23)
256-ball caBGA (14 mm x 14 mm, 0.8 mm)	CT256							206(26)

- 1. No PLL available on the 16 WLCSP, 36 ucBGA, 81 csBGA, 84 QFN and 100 VQFP packages.
- 2. Only one PLL available on the 81 ucBGA package.
- 3. High Current I/Os only available on the 16 WLCSP package.

Introduction

The iCE40 family of ultra-low power, non-volatile FPGAs has five devices with densities ranging from 384 to 7680 Look-Up Tables (LUTs). In addition to LUT-based, low-cost programmable logic, these devices feature Embedded Block RAM (EBR), Non-volatile Configuration Memory (NVCM) and Phase Locked Loops (PLLs). These features allow the devices to be used in low-cost, high-volume consumer and system applications. Select packages offer High-Current drivers that are ideal to drive three white LEDs, or one RGB LED.

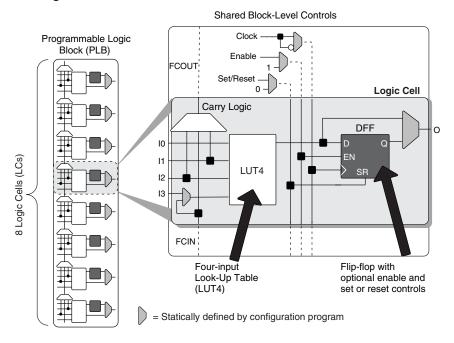
The iCE40 devices are fabricated on a 40 nm CMOS low power process. The device architecture has several features such as programmable low-swing differential I/Os and the ability to turn off on-chip PLLs dynamically. These features help manage static and dynamic power consumption, resulting in low static power for all members of the family. The iCE40 devices are available in two versions – ultra low power (LP) and high performance (HX) devices.

The iCE40 FPGAs are available in a broad range of advanced halogen-free packages ranging from the space saving 1.40x1.48 mm WLCSP to the PCB-friendly 20x20 mm TQFP. Table 1-1 shows the LUT densities, package and I/O options, along with other key parameters.

The iCE40 devices offer enhanced I/O features such as pull-up resistors. Pull-up features are controllable on a "per-pin" basis.

The iCE40 devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices can also configure themselves from external SPI Flash or be configured by an external master such as a CPU.

Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40 family of devices. Popular logic synthesis tools provide synthesis library support for iCE40. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the iCE40 device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.


Lattice provides many pre-engineered IP (Intellectual Property) modules, including a number of reference designs, licensed free of charge, optimized for the iCE40 FPGA family. By using these configurable soft core IP cores as standardized blocks, users are free to concentrate on the unique aspects of their design, increasing their productivity.

PLB Blocks

The core of the iCE40 device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register.

Figure 2-2. PLB Block Diagram

Logic Cells

Each Logic Cell includes three primary logic elements shown in Figure 2-2.

- A four-input Look-Up Table (LUT4) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT4 element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUT4s to create wider logic functions.
- A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration.
- Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtractors, comparators, binary counters and some wide, cascaded logic functions.

Table 2-1. Logic Cell Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	10, 11, 12, 13	Inputs to LUT4
Input	Control signal	Enable	Clock enable shared by all LCs in the PLB
Input	Control signal	Set/Reset ¹	Asynchronous or synchronous local set/reset shared by all LCs in the PLB.
Input	Control signal	Clock	Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB
Input	Inter-PLB signal	FCIN	Fast carry in
Output	Data signals	0	LUT4 or registered output
Output	Inter-PFU signal	FCOUT	Fast carry out

^{1.} If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration.

Table 2-3. PLL Signal Descriptions

Signal Name	Direction	Description
REFERENCECLK	Input	Input reference clock
BYPASS Inpu		When FEEDBACK_PATH is set to SIMPLE, the BYPASS control selects which clock signal connects to the PLLOUT output.
BTFAGG	Input	0 = PLL generated signal 1 = REFERENCECLK
EXTFEEDBACK	Input	External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set to EXTERNAL.
DYNAMICDELAY[3:0]	Input	Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE is set to DYNAMIC.
LATCHINPUTVALUE	Input	When enabled, forces the PLL into low-power mode; PLL output is held static at the last input clock value. Set ENABLE ICEGATE_PORTA and PORTB to '1' to enable.
PLLOUTGLOBAL	Output	Output from the Phase-Locked Loop (PLL). Drives a global clock network on the FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5.
PLLOUTCORE	Output	Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.
LOCK	Output	When High, indicates that the PLL output is phase aligned or locked to the input reference clock.
RESET	Input	Active low reset.

sysMEM Embedded Block RAM Memory

Larger iCE40 device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each 4 kbit in size. This memory can be used for a wide variety of purposes including data buffering, and FIFO.

sysMEM Memory Block

The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources. Each block can be used in a variety of depths and widths as shown in Table 2-4.

Table 2-4. sysMEM Block Configurations¹

Block RAM Configuration	Block RAM Configuration and Size	WADDR Port Size (Bits)	WDATA Port Size (Bits)	RADDR Port Size (Bits)	RDATA Port Size (Bits)	MASK Port Size (Bits)
SB_RAM256x16 SB_RAM256x16NR SB_RAM256x16NW SB_RAM256x16NRNW	256x16 (4K)	8 [7:0]	16 [15:0]	8 [7:0]	16 [15:0]	16 [15:0]
SB_RAM512x8 SB_RAM512x8NR SB_RAM512x8NW SB_RAM512x8NRNW	512x8 (4K)	9 [8:0]	8 [7:0]	9 [8:0]	8 [7:0]	No Mask Port
SB_RAM1024x4 SB_RAM1024x4NR SB_RAM1024x4NW SB_RAM1024x4NRNW	1024x4 (4K)	10 [9:0]	4 [3:0]	10 [9:0]	4 [3:0]	No Mask Port
SB_RAM2048x2 SB_RAM2048x2NR SB_RAM2048x2NW SB_RAM2048x2NRNW	2048x2 (4K)	11 [10:0]	2 [1:0]	11 [10:0]	2 [1:0]	No Mask Port

^{1.} For iCE40 EBR primitives with a negative-edged Read or Write clock, the base primitive name is appended with a 'N' and a 'R' or 'W' depending on the clock that is affected.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration.

By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Note the sysMEM Embedded Block RAM Memory address 0 cannot be initialized.

Memory Cascading

Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks.

RAM4k Block

Figure 2-4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the input data and addresses for the ports are registered at the input of the memory array.

Figure 2-4. sysMEM Memory Primitives

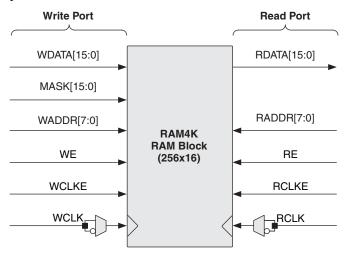


Table 2-5. EBR Signal Descriptions

Signal Name	Direction	Description
WDATA[15:0]	Input	Write Data input.
MASK[15:0]	Input	Masks write operations for individual data bit-lines. 0 = write bit; 1 = don't write bit
WADDR[7:0]	Input	Write Address input. Selects one of 256 possible RAM locations.
WE	Input	Write Enable input.
WCLKE	Input	Write Clock Enable input.
WCLK	Input	Write Clock input. Default rising-edge, but with falling-edge option.
RDATA[15:0]	Output	Read Data output.
RADDR[7:0]	Input	Read Address input. Selects one of 256 possible RAM locations.
RE	Input	Read Enable input.
RCLKE	Input	Read Clock Enable input.
RCLK	Input	Read Clock input. Default rising-edge, but with falling-edge option.

For further information on the sysMEM EBR block, please refer to TN1250, Memory Usage Guide for iCE40 Devices.

fers. Bank 3 additionally supports differential LVDS25 input buffers. Each sysIO bank has its own dedicated power supply.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , V_{CCIO_2} , V_{PP_2V5} , and V_{CC_SPI} have reached the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics section of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins will maintain the pre-configuration state until V_{CC} and V_{CCIO} (for I/O banks containing configuration I/Os) have reached levels, at which time the I/Os will take on the software user-configured settings only after a proper download/configuration. Unused IOs are automatically blocked and the pullup termination is disabled.

Supported Standards

The iCE40 sysIO buffer supports both single-ended and differential input standards. The single-ended standard supported is LVCMOS. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none). The High Current output buffer have individually configurable options for drive strength.

Table 2-7 and Table 2-8 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 devices.

Table 2-7. Supported Input Standards

Input Standard		V _{CCIO} (Typical)	
input Standard	3.3 V	2.5 V	1.8 V
Single-Ended Interfaces	<u> </u>		
LVCMOS33	Yes		
LVCMOS25		Yes	
LVCMOS18			Yes
Differential Interfaces	<u> </u>		
LVDS25 ¹		Yes	
subLVDS ¹			Yes

^{1.} Bank 3 only.

Table 2-8. Supported Output Standards

Output Standard	V _{CCIO} (Typical)		
Single-Ended Interfaces			
LVCMOS33	3.3		
LVCMOS25	2.5		
LVCMOS18	1.8		
Differential Interfaces			
LVDS25E ¹	2.5		
subLVDSE ¹	1.8		

^{1.} These interfaces can be emulated with external resistors in all devices.

Non-Volatile Configuration Memory

All iCE40 devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure the device.

For more information on the NVCM, please refer to TN1248, iCE40 Programming and Configuration Usage Guide.

Static Supply Current – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁴	Units
		iCE40HX1K	296	μΑ
I _{CC}	Core Power Supply	iCE40HX4K	1140	μΑ
		iCE40HX8K	1140	μΑ
I _{CCPLL} ⁵	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	1.0	μΑ
Iccio, Icc_spi	Bank Power Supply ⁴ V _{CCIO} = 2.5 V	All devices	3.5	μΑ

Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and held at V_{CCIO} or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified with master SPI configuration mode. Other modes may be up to 25% higher.

- 2. Frequency = 0 MHz.
- 3. $T_J = 25$ °C, power supplies at nominal voltage.
- 4. Does not include pull-up.
- 5. $V_{\mbox{\footnotesize CCPLL}}$ is tied to $V_{\mbox{\footnotesize CC}}$ internally in packages without PLLs pins.

Programming NVCM Supply Current – LP Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40LP384	60	μΑ
		iCE40LP640	120	μΑ
I _{CC}	Core Power Supply	iCE40LP1K	120	μΑ
		iCE40LP4K	350	μΑ
		iCE40LP8K	350	μΑ
I _{CCPLL} ^{6, 7}	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	2.5	mA
I _{CCIO⁸, I_{CC_SPI}}	Bank Power Supply⁵	All devices	3.5	mA

- 1. Assumes all inputs are held at $V_{\mbox{\scriptsize CCIO}}$ or GND and all outputs are tri-stated.
- 2. Typical user pattern.
- 3. SPI programming is at 8 MHz.
- 4. $T_{.1} = 25$ °C, power supplies at nominal voltage.
- 5. Per bank. $V_{CCIO} = 2.5 \text{ V}$. Does not include pull-up.
- 6. No PLL available on the iCE40-LP384 and iCE40-LP640 device.
- 7. $V_{\mbox{\footnotesize CCPLL}}$ is tied to $V_{\mbox{\footnotesize CC}}$ internally in packages without PLLs pins.
- 8. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.

Programming NVCM Supply Current – HX Devices^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ. V _{CC} ⁵	Units
		iCE40HX1K	278	μΑ
I _{CC}	Core Power Supply	iCE40HX4K	1174	μΑ
		iCE40HX8K	1174	μΑ
I _{CCPLL} ⁶	PLL Power Supply	All devices	0.5	μΑ
I _{PP_2V5}	NVCM Power Supply	All devices	2.5	mA
Iccio ⁷ , Icc spi	Bank Power Supply⁵	All devices	3.5	mA

- 1. Assumes all inputs are held at V_{CCIO} or GND and all outputs are tri-stated.
- 2. Typical user pattern.
- 3. SPI programming is at 8 MHz.
- 4. $T_{J} = 25$ °C, power supplies at nominal voltage.
- 5. Per bank. V_{CCIO} = 2.5 V. Does not include pull-up.
- 6. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.
- 7. V_{PP FAST}, used only for fast production programming, must be left floating or unconnected in applications.

Peak Startup Supply Current – LP Devices

Symbol	Parameter	Device	Max	Units
		iCE40LP384	7.7	mA
		iCELP640	6.4	mA
I _{CCPEAK}	Core Power Supply	iCE40LP1K	6.4	mA
		iCE40LP4K	15.7	mA
		iCE40LP8K	15.7	mA
		iCE40LP1K	1.5	mA
1, 2, 4	PLL Power Supply	iCELP640	1.5	mA
CCPLLPEAK	FLL Fower Supply	iCE40LP4K	8.0	mA
		iCE40LP8K	8.0	mA
		iCE40LP384	3.0	mA
		iCELP640	7.7	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40LP1K	7.7	mA
		iCE40LP4K	4.2	mA
		iCE40LP8K	4.2	mA
		iCE40LP384	5.7	mA
I _{PP_FASTPEAK} ³	NVCM Programming Supply	iCELP640	8.1	mA
		iCE40LP1K	8.1	mA
		iCE40LP384	8.4	mA
		iCELP640	3.3	mA
ICCIOPEAK ⁵ , ICC_SPIPEAK	Bank Power Supply	iCE40LP1K	3.3	mA
		iCE40LP4K	8.2	mA
P_FASTPEAK ³		iCE40LP8K	8.2	mA

- 1. No PLL available on the iCE40LP384 and iCE40LP640 device.
- 2. V_{CCPLL} is tied to V_{CC} internally in packages without PLLs pins.
- 3. V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications, except CM36 and CM49 packages MUST have the V_{PP_FAST} ball connected to V_{CCIO_0} ball externally.
- 4. While no PLL is available in the iCE40-LP640 the $I_{CCPLLPEAK}$ is additive to I_{CCPEAK} .
- 5. iCE40LP384 requires V_{CC} to be greater than 0.7 V when V_{CCIO} and V_{CC_SPI} are above GND.

Peak Startup Supply Current – HX Devices

Symbol	Parameter	Device	Max	Units
		iCE40HX1K	6.9	mA
I _{CCPEAK}	Core Power Supply	iCE40HX4K	22.3	mA
		iCE40HX8K	22.3	mA
		iCE40HX1K	1.8	mA
I _{CCPLLPEAK} ¹	PLL Power Supply	iCE40HX4K	6.4	mA
		iCE40HX8K	6.4	mA
		iCE40HX1K	2.8	mA
I _{PP_2V5PEAK}	NVCM Power Supply	iCE40HX4K	4.1	mA
		iCE40HX8K	4.1	mA
		iCE40HX1K	6.8	mA
ICCIOPEAK, ICC_SPIPEAK	Bank Power Supply	iCE40HX4K	6.8	mA
		iCE40HX8K	6.8	mA

^{1.} $\rm V_{CCPLL}$ is tied to $\rm V_{CC}$ internally in packages without PLLs pins.

sysIO Recommended Operating Conditions

		V _{CCIO} (V)					
Standard	Min.	Тур.	Max.				
LVCMOS 3.3	3.14	3.3	3.46				
LVCMOS 2.5	2.37	2.5	2.62				
LVCMOS 1.8	1.71	1.8	1.89				
LVDS25E ^{1, 2}	2.37	2.5	2.62				
subLVDSE ^{1, 2}	1.71	1.8	1.89				

^{1.} Inputs on-chip. Outputs are implemented with the addition of external resistors.

sysIO Single-Ended DC Electrical Characteristics

Input/	V	IL	,	V _{IH} 1		\/ B#1		
Output Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Max. (V)	V _{OH} Min. (V)	I _{OL} Max. (mA)	I _{OH} Max. (mA)
LVCMOS 3.3	-0.3	0.8	2.0	V _{CCIO} + 0.2 V	0.4	V _{CCIO} - 0.4	8, 16 ² , 24 ²	$-8, -16^2, -24^2$
LV OIVIOU 3.5	0.0	0.0	2.0	V _{CCIO} + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 2.5	-0.3	0.7	1.7	V _{CCIO} + 0.2 V	0.4	V _{CCIO} - 0.4	6, 12 ² , 18 ²	$-6, -12^2, -18^2$
LV CIVIOS 2.5	-0.3	0.7	1.7	VCCIO + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	V 0.2.V	0.4	V _{CCIO} - 0.4	4, 8 ² , 12 ²	$-4, -8^2, -12^2$
LVCIVIOS 1.8	-0.5	0.33 V CCIO	0.03 V CCIO	V _{CCIO} + 0.2 V	0.2	V _{CCIO} - 0.2	0.1	-0.1

^{1.} Some products are clamped to a diode when V_{IN} is larger than $V_{\text{CCIO.}}$

^{2.} Does not apply to Configuration Bank V_{CC SPI}.

^{2.} Only for High Drive LED outputs.

sysIO Differential Electrical Characteristics

The LVDS25E/subLVDSE differential output buffers are available on all banks but the LVDS/subLVDS input buffers are only available on Bank 3 of iCE40 devices.

LVDS25

Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V_{INP} , V_{INM}	Input Voltage	$V_{\text{CCIO}}^{1} = 2.5$	0		2.5	V
V_{THD}	Differential Input Threshold		250	350	450	mV
V_{CM}	Input Common Mode Voltage	$V_{CCIO}^{1} = 2.5$	(V _{CCIO} /2) - 0.3	V _{CCIO} /2	$(V_{CCIO}/2) + 0.3$	V
I _{IN}	Input Current	Power on		1	±10	μΑ

^{1.} Typical.

subLVDS

Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage	$V_{\text{CCIO}}^{1} = 1.8$	0	_	1.8	V
V_{THD}	Differential Input Threshold		100	150	200	mV
V _{CM}	Input Common Mode Voltage	$V_{\text{CCIO}}^{1} = 1.8$	(V _{CCIO} /2) - 0.25	V _{CCIO} /2	$(V_{CCIO}/2) + 0.25$	V
I _{IN}	Input Current	Power on	_	_	±10	μΑ

^{1.} Typical.

LVDS25E Emulation

iCE40 devices can support LVDSE outputs via emulation on all banks. The output is emulated using complementary LVCMOS outputs in conjunction with resistors across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS25E standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS25E Using External Resistors

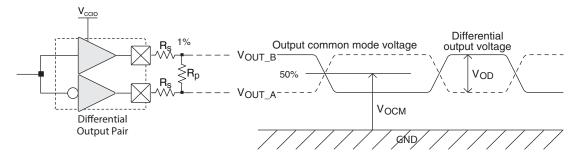


Table 3-1. LVDS25E DC Conditions

Over Recommended Operating Conditions

Parameter	Description	Тур.	Units
Z _{OUT}	Output impedance	20	Ohms
R _S	Driver series resistor	150	Ohms
R _P	Driver parallel resistor	140	Ohms
R _T	Receiver termination	100	Ohms
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.30	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100.5	Ohms
I _{DC}	DC output current	6.03	mA

Over Recommended Commercial Operating Conditions - HX Devices^{1, 2, 3, 4, 5}

Buffer Type	Description	Timing	Units
Input Adjusters			
LVDS25	LVDS, V _{CCIO} = 2.5 V	0.13	ns
subLVDS	subLVDS, V _{CCIO} = 1.8 V	1.03	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.16	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	0.23	ns
Output Adjusters			
LVDS25E	LVDS, Emulated, V _{CCIO} = 2.5 V	0.00	ns
subLVDSE	subLVDS, Emulated, V _{CCIO} = 1.8 V	1.76	ns
LVCMOS33	LVCMOS, V _{CCIO} = 3.3 V	0.17	ns
LVCMOS25	LVCMOS, V _{CCIO} = 2.5 V	0.00	ns
LVCMOS18	LVCMOS, V _{CCIO} = 1.8 V	1.76	ns

- 1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.
- 2. LVCMOS timing measured with the load specified in Switching Test Condition table.
- 3. All other standards tested according to the appropriate specifications.
- 4. Commercial timing numbers are shown.
- 5. Not all I/O standards are supported for all banks. See the Architecture section of this data sheet for details.

iCE40 External Switching Characteristics – HX Devices 1,2

Over Recommended Operating Conditions

Parameter	Description	Device	Min.	Max.	Units
Clocks	,	l		l	
Primary Clocks					
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All iCE40HX devices	_	275	MHz
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All iCE40HX devices	0.88	_	ns
		iCE40HX1K	_	727	ps
t _{SKEW_GBUF}	Global Buffer Clock Skew Within a Device	iCE40HX4K	_	300	ps
		iCE40HX8K	_	300	ps
Pin-LUT-Pin Prop	pagation Delay		'	•	
t _{PD}	Best case propagation delay through one LUT-4	All iCE40 HX devices	_	7.30	ns
General I/O Pin I	Parameters (Using Global Buffer Clock witho	ut PLL)		•	•
		iCE40HX1K	_	696	ps
t _{SKEW_IO}	Data bus skew across a bank of IOs	iCE40HX4K	_	290	ps
		iCE40HX8K	_	290	ps
		iCE40HX1K	_	5.00	ns
t _{CO}	Clock to Output - PIO Output Register	iCE40HX4K	_	5.41	ns
		iCE40HX8K	_	5.41	ns
		iCE40HX1K	-0.23	_	ns
t _{SU}	Clock to Data Setup - PIO Input Register	iCE40HX4K	-0.43	_	ns
		iCE40HX8K	-0.43	_	ns
		iCE40HX1K	1.92	_	ns
t _H	Clock to Data Hold - PIO Input Register	iCE40HX4K	2.38	_	ns
		iCE40HX8K	2.38	_	ns
General I/O Pin I	Parameters (Using Global Buffer Clock with F	PLL) ³	'	•	
		iCE40HX1K	_	2.96	ns
t _{COPLL}	Clock to Output - PIO Output Register	iCE40HX4K	_	2.51	ns
		iCE40HX8K	_	2.51	ns
		iCE40HX1K	3.10	_	ns
t _{SUPLL}	Clock to Data Setup - PIO Input Register	iCE40HX4K	4.16	_	ns
		iCE40HX8K	4.16	_	ns
		iCE40HX1K	-0.60	_	ns
t _{HPLL}	Clock to Data Hold - PIO Input Register	iCE40HX4K	-0.53	_	ns
ı		iCE40HX8K	-0.53	<u> </u>	ns

^{1.} Exact performance may vary with device and design implementation. Commercial timing numbers are shown at 85 °C and 1.14 V. Other operating conditions, including industrial, can be extracted from the iCECube2 software.

^{2.} General I/O timing numbers based on LVCMOS 2.5, 0pf load.

^{3.} Supported on devices with a PLL.

SPI Master or NVCM Configuration Time^{1, 2}

Symbol	Parameter	Conditions	Тур.	Units
		iCE40LP384 - Low Frequency (Default)	25	ms
		iCE40LP384 - Medium Frequency	15	ms
		iCE40LP384 - High Frequency	11	ms
		iCE40LP640 - Low Frequency (Default)	53	ms
		iCE40LP640 - Medium Frequency	25	ms
		iCE40LP640 - High Frequency	13	ms
	DOD/ODEOET D	iCE40LP/HX1K - Low Frequency (Default)	53	ms
t _{CONFIG}	POR/CRESET_B to Device I/O Active	iCE40LP/HX1K - Medium Frequency	25	ms
		iCE40LP/HX1K - High Frequency	13	ms
		iCE40LP/HX4K - Low Frequency (Default)	230	ms
		iCE40LP/HX4K - Medium Frequency	110	ms
		iCE40LP/HX4K - High Frequency	70	ms
		iCE40LP/HX8K - Low Frequency (Default)	230	ms
		iCE40LP/HX8K - Medium Frequency	110	ms
		iCE40LP/HX8K - High Frequency	70	ms

^{1.} Assumes sysMEM Block is initialized to an all zero pattern if they are used.

^{2.} The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.

sysCONFIG Port Timing Specifications¹

Symbol	Parameter		Min.	Тур.	Max.	Units
All Configuration	on Modes				l .	·I
^t CRESET_B	Minimum CRESET_B Low pulse width required to restart configuration, from falling edge to rising edge		200	_	_	ns
t _{DONE_IO}	Number of configuration clock cycles after CDONE goes High before the PIO pins are activated		49	_	_	Clock Cycles
Slave SPI	•				•	•
	Minimum time from a rising edge	iCE40LP384	600	-	_	us
t _{CR_SCK}	on CRESET_B until the first SPI write operation, first SPI_SCK. During this time, the iCE40	iCE40LP640, iCE40LP/HX1K	800	-	_	us
	device is clearing its internal con-	iCE40LP/HX4K	1200	-	_	us
	figuration memory	iCE40LP/HX8K	1200	-	_	us
	CCLK clock frequency	Write	1	-	25	MHz
		Read iCE40LP384 ²	-	15	-	MHz
f _{MAX} ¹		Read iCE40LP640, iCE40LP/HX1K ²	-	15	-	MHz
'MAX		Read iCE40LP/ HX4K ²	-	15	-	MHz
		Read iCE40LP/ HX8K ²	-	15	-	MHz
t _{CCLKH}	CCLK clock pulse width high		20	_	_	ns
t _{CCLKL}	CCLK clock pulse width low		20	_	_	ns
t _{STSU}	CCLK setup time		12		_	ns
t _{STH}	CCLK hold time		12		_	ns
t _{STCO}	CCLK falling edge to valid output		13		_	ns
Master SPI	·					
		Off	_	0	_	MHz
f _{MCLK}	MCLK clock frequency	Low Frequency (Default)	_	7.5	_	MHz
		Medium Frequency ³	_	24		MHz
		High Frequency ³	_	40	_	MHz

sysCONFIG Port Timing Specifications¹ (Continued)

Symbol	Parameter		Min.	Тур.	Max.	Units
		iCE40LP384 - Low Frequency (Default)	600	_	_	us
		iCE40LP384 - Medium Frequency	600	_	_	us
		iCE40LP384 - High Frequency	600	_	_	us
		iCE40LP640, iCE40LP/HX1K - Low Frequency (Default)	800	_	_	us
		iCE40LP640, iCE40LP/HX1K - Medium Frequency	800	_	_	us
		iCE40LP640, iCE40LP/HX1K - High Frequency	800	_	_	us
	CRESET_B high to first MCLK	iCE40LP/HX1K -Low Frequency (Default)	800	_	_	us
MCLK	edge	iCE40LP/HX1K - Medium Frequency	800	_	_	us
		iCE40LP/HX1K - High Frequency	800	_	_	us
		iCE40LP/HX4K - Low Frequency (Default)	1200	_	_	us
		iCE40LP/HX4K - Medium Frequency	1200	_	_	us
		iCE40LP/HX4K - high frequency	1200	_	_	us
		iCE40LP/HX8K - Low Frequency (Default)	1200	_	_	us
		iCE40LP/HX8K - Medium Frequency	1200	_	_	us
		iCE40LP/HX8K - High Frequency	1200	_	_	us

Does not apply for NVCM.
 Supported only with 1.2 V V_{CC} and at 25 °C.
 Extended range f_{MAX} Write operations support up to 53 MHz only with 1.2 V V_{CC} and at 25 °C.

Switching Test Conditions

Figure 3-3 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-3.

Figure 3-3. Output Test Load, LVCMOS Standards

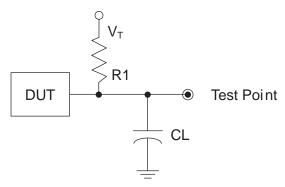


Table 3-3. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Reference	V _T		
LVCMOS settings (L -> H, H -> L)			LVCMOS 3.3 = 1.5 V	_		
	∞	0 pF	LVCMOS 2.5 = V _{CCIO} /2	_		
			LVCMOS 1.8 = V _{CCIO} /2	_		
LVCMOS 3.3 (Z -> H)			1.5	V _{OL}		
LVCMOS 3.3 (Z -> L)			1.5	V _{OH}		
Other LVCMOS (Z -> H)	188	0 pF	V _{CCIO} /2	V _{OL}		
Other LVCMOS (Z -> L)	100	Орг	V _{CCIO} /2	V _{OH}		
LVCMOS (H -> Z)			V _{OH} - 0.15	V _{OL}		
LVCMOS (L -> Z)			V _{OL} - 0.15	V _{OH}		

Note: Output test conditions for all other interfaces are determined by the respective standards.

iCE40 LP/HX Family Data Sheet Pinout Information

March 2017 Data Sheet DS1040

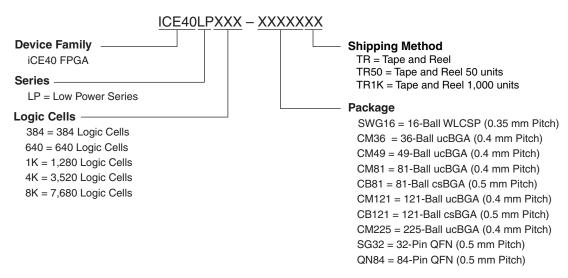
Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose	·	
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device.
IO[Bank]_[Row/Column Number][A/B]	I/O	[Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number on the device. [A/B] indicates the differential I/O. 'A' = negative input. 'B' = positive input.
HCIO[Bank]_[Number]	I/O	High Current IO. [Bank] indicates the bank of the device on which the pad is located. [Number] indicates IO number.
NC	_	No connect
GND	_	GND – Ground. Dedicated pins. It is recommended that all GNDs are tied together.
VCC	_	VCC – The power supply pins for core logic. Dedicated pins. It is recommended that all VCCs are tied to the same supply.
VCCIO_x	_	VCCIO – The power supply pins for I/O Bank x. Dedicated pins. All VCCIOs located in the same bank are tied to the same supply.
PLL and Global Functions	(Used as ι	ser-programmable I/O pins when not used for PLL or clock pins)
VCCPLLx	_	PLL VCC – Power. Dedicated pins. The PLL requires a separate power and ground that is quiet and stable to reduce the output clock jitter of the PLL.
GNDPLLx	_	PLL GND – Ground. Dedicated pins. The sysCLOCK PLL has the DC ground connection made on the FPGA, so the external PLL ground connection (GNDPLL) must NOT be connected to the board's ground.
GBINx	_	Global pads. Two per side.
Programming and Configu	ration	
CBSEL[0:1]	I/O	Dual function pins. I/Os when not used as CBSEL. Optional ColdBoot configuration SELect input, if ColdBoot mode is enabled.
CRESET_B	I	Configuration Reset, active Low. Dedicated input. No internal pull-up resistor. Either actively drive externally or connect a 10 KOhm pull-up resistor to VCCIO_2.
CDONE	I/O	Configuration Done. Includes a permanent weak pull-up resistor to VCCIO_2. If driving external devices with CDONE output, an external pull-up resistor to VCCIO_2 may be required. Refer to the TN1248, iCE40 Programming and Configuration for more details. Following device configuration the iCE40LP640 and iCE40LP1K in the SWG16 package CDONE pin can be used as a user output.
VCC_SPI	_	SPI interface voltage supply input. Must have a valid voltage even if configuring from NVCM.
SPI_SCK	I/O	Input Configuration Clock for configuring an FPGA in Slave SPI mode. Output Configuration Clock for configuring an FPGA configuration modes.
SPI_SS_B	I/O	SPI Slave Select. Active Low. Includes an internal weak pull-up resistor to VCC_SPI during configuration. During configuration, the logic level sampled on this pin determines the configuration mode used by the iCE40 device. An input when sampled at the start of configuration. An input when in SPI Peripheral configuration mode (SPI_SS_B = Low). An output when in Master SPI Flash configuration mode.
SPI_SI	I/O	Slave SPI serial data input and master SPI serial data output
SPI_SO	I/O	Slave SPI serial data output and master SPI serial data input

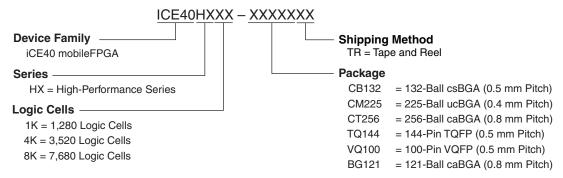
Pin Information Summary (Continued)

	iCE40HX4K			iCE40HX8K			
	BG121	CB132	TQ144	BG121	CB132	CM225	CT256
General Purpose I/O per Bank						1	I
Bank 0	23	24	27	23	24	46	52
Bank 1	21	25	29	21	25	42	52
Bank 2	19	18	19	19	18	40	46
Bank 3	26	24	28	26	24	46	52
Configuration	4	4	4	4	4	4	4
Total General Purpose Single Ended I/O	93	95	107	93	95	178	206
High Current Outputs per Bank	4	•			•	•	l .
Bank 0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0
Bank 3	0	0	0	0	0	0	0
Total Differential Inputs	0	0	0	0	0	0	0
Differential Inputs per Bank	II.	1				1	I
Bank 0	0	0	0	0	0	0	0
Bank 1	0	0	0	0	0	0	0
Bank 2	0	0	0	0	0	0	0
Bank 3	13	12	14	13	12	23	26
Total Differential Inputs	13	12	14	13	12	23	26
Dedicated Inputs per Bank	4	•			•	•	l .
Bank 0	0	0	0	0	0	0	0
Bank 1	0	1	1	0	1	1	1
Bank 2	2	2	2	2	2	2	2
Bank 3	0	0	0	0	0	0	0
Configuration	0	0	0	0	0	0	0
Total Dedicated Inputs	2	3	3	2	3	3	3
Vccio Pins	•	•			•	•	•
Bank 0	1	2	2	1	2	3	4
Bank 1	1	2	2	1	2	3	4
Bank 2	1	2	2	1	2	3	4
Bank 3	2	3	2	2	3	4	4
VCC	4	5	4	4	5	8	6
VCC_SPI	1	1	1	1	1	1	1
VPP_2V5	1	1	1	1	1	1	1
VPP_FAST ¹	1	1	1	1	1	1	1
VCCPLL	2	2	2	2	2	2	2
GND	12	15	11	12	15	18	20
NC	0	0	6	0	0	0	0
Total Count of Bonded Pins	121	132	144	121	132	225	256

^{1.} V_{PP_FAST}, used only for fast production programming, must be left floating or unconnected in applications.



iCE40 LP/HX Family Data Sheet Ordering Information


March 2017 Data Sheet DS1040

iCE40 Part Number Description

Ultra Low Power (LP) Devices

High Performance (HX) Devices

All parts shipped in trays unless noted.

Ordering Information

iCE40 devices have top-side markings as shown below:

Industrial

Note: Markings are abbreviated for small packages.

© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40LP8K-CM121TR1K	7680	1.2 V	Halogen-Free ucBGA	121	IND
ICE40LP8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND

High-Performance Industrial Grade Devices, Halogen Free (RoHS) Packaging

Part Number	LUTs	Supply Voltage	Package	Leads	Temp.
ICE40HX1K-CB132	1280	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX1K-VQ100	1280	1.2 V	Halogen-Free VQFP	100	IND
ICE40HX1K-TQ144	1280	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX4K-BG121	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-BG121TR	3520	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX4K-CB132	3520	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX4K-TQ144	3520	1.2 V	Halogen-Free TQFP	144	IND
ICE40HX8K-BG121	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-BG121TR	7680	1.2 V	Halogen-Free caBGA	121	IND
ICE40HX8K-CB132	7680	1.2 V	Halogen-Free csBGA	132	IND
ICE40HX8K-CM225	7680	1.2 V	Halogen-Free ucBGA	225	IND
ICE40HX8K-CT256	7680	1.2 V	Halogen-Free caBGA	256	IND