AMD Xilinx - XC3S100E-4CP132C Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	240
Number of Logic Elements/Cells	2160
Total RAM Bits	73728
Number of I/O	83
Number of Gates	100000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	132-TFBGA, CSPBGA
Supplier Device Package	132-CSPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s100e-4cp132c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Spartan-3E FPGAs provide additional input flexibility by allowing I/O standards to be mixed in different banks. For a particular V_{CCO} voltage, Table 6 and Table 7 list all of the

IOSTANDARDs that can be combined and if the IOSTANDARD is supported as an input only or can be used for both inputs and outputs.

Table 6: Single-Ended IOSTANDARD Bank Compatibility

		v _{cco} s	Supply/Comp		Input Rec	quirements	
Single-Ended	1.2V	1.5V	1.8V	2.5V	3.3V	V _{REF}	Board Termination Voltage (V _{TT})
LVTTL	-	-	-	-	Input/ Output	N/R ⁽¹⁾	N/R
LVCMOS33	-	-	-	-	Input/ Output	N/R	N/R
LVCMOS25	-	-	-	Input/ Output	Input	N/R	N/R
LVCMOS18	-	-	Input/ Output	Input	Input	N/R	N/R
LVCMOS15	-	Input/ Output	Input	Input	Input	N/R	N/R
LVCMOS12	Input/ Output	Input	Input	Input	Input	N/R	N/R
PCI33_3	-	-	-	-	Input/ Output	N/R	N/R
PCI66_3	-	-	-	-	Input/ Output	N/R	N/R
HSTL_I_18	-	-	Input/ Output	Input	Input	0.9	0.9
HSTL_III_18	-	-	Input/ Output	Input	Input	1.1	1.8
SSTL18_I	-	-	Input/ Output	Input	Input	0.9	0.9
SSTL2_I	-	-	-	Input/ Output	Input	1.25	1.25

Notes:

1. N/R - Not required for input operation.

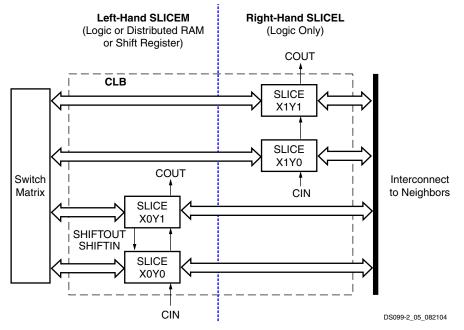
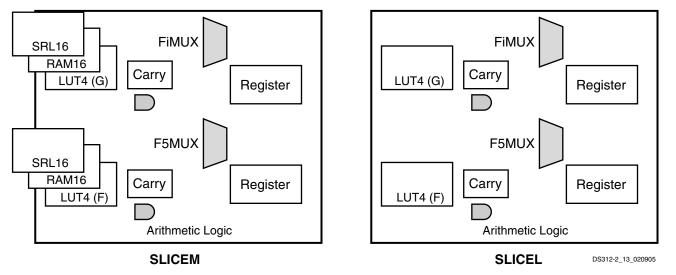


Figure 16: Arrangement of Slices within the CLB

Slice Location Designations


The Xilinx development software designates the location of a slice according to its X and Y coordinates, starting in the bottom left corner, as shown in Figure 14. The letter 'X' followed by a number identifies columns of slices, incrementing from the left side of the die to the right. The letter 'Y' followed by a number identifies the position of each slice in a pair as well as indicating the CLB row, incrementing from the bottom of the die. Figure 16 shows the CLB located in the lower left-hand corner of the die. The SLICEM always has an even 'X' number, and the SLICEL always has an odd 'X' number.

Slice Overview

A slice includes two LUT function generators and two storage elements, along with additional logic, as shown in Figure 17.

Both SLICEM and SLICEL have the following elements in common to provide logic, arithmetic, and ROM functions:

- Two 4-input LUT function generators, F and G
- Two storage elements
- Two wide-function multiplexers, F5MUX and FiMUX
- Carry and arithmetic logic

The wide multiplexers can be used by the automatic tools or instantiated in a design using a component such as the F5MUX. The symbol, signals, and function are described in Figure 21, Table 12, and Table 13. The description is similar for the F6MUX, F7MUX, and F8MUX. Each has versions with a general output, local output, or both.

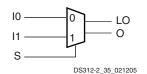


Figure 21: F5MUX with Local and General Outputs

Table 12: F5MUX Inputs and Outputs

Signal	Function
10	Input selected when S is Low
11	Input selected when S is High
S	Select input
LO	Local Output that connects to the F5 or FX CLB pins, which use local feedback to the FXIN inputs to the FiMUX for cascading
0	General Output that connects to the general-purpose combinatorial or registered outputs of the CLB

Table 13: F5MUX Function

Inputs			Outputs		
S	10	l1	0	LO	
0	1	Х	1	1	
0	0	Х	0	0	
1	Х	1	1	1	
1	Х	0	0	0	

Table 23: Block RAM Port Signals

Signal Description	Port A Signal Name	Port B Signal Name	Direction	Function	
Address Bus	ADDRA	ADDRB	Input	The Address Bus selects a memory location for read or write operations. The width (w) of the port's associated data path determines the number of available address lines (r), as per Table 22.	
				Whenever a port is enabled (ENA or ENB = High), address transitions must meet the data sheet setup and hold times with respect to the port clock (CLKA or CLKB), as shown in Table 103, page 138. This requirement must be met even if the RAM read output is of no interest.	
Data Input Bus	DIA	DIB	Input	Data at the DI input bus is written to the RAM location specified by the address input bus (ADDR) during the active edge of the CLK input, when the clock enable (EN) and write enable (WE) inputs are active.	
				It is possible to configure a port's DI input bus width (w-p) based on Table 22. This selection applies to both the DI and DO paths of a given port.	
Parity Data Input(s)	DIPA	DIPB	Input	Parity inputs represent additional bits included in the data input path. Although referred to herein as "parity" bits, the parity inputs and outputs have no special functionality for generating or checking parity and can be used as additional data bits. The number of parity bits 'p' included in the DI (same as for the DO bus) depends on a port's total data path width (w). See Table 22.	
Data Output Bus	DOA	DOB	Output	Data is written to the DO output bus from the RAM location specified by the address input bus, ADDR. See the DI signal description for DO port width configurations.	
				Basic data access occurs on the active edge of the CLK when WE is inactive and EN is active. The DO outputs mirror the data stored in the address ADDR memory location. Data access with WE active if the WRITE_MODE attribute is set to the value: WRITE_FIRST, which accesses data after the write takes place. READ_FIRST accesses data before the write occurs. A third attribute, NO_CHANGE, latches the DO outputs upon the assertion of WE. See Block RAM Data Operations for details on the WRITE_MODE attribute.	
Parity Data Output(s)	DOPA	DOPB	Output	Parity outputs represent additional bits included in the data input path. The number of parity bits 'p' included in the DI bus (same as for the DO bus) depends on a port's total data path width (w). See the DIP signal description for configuration details.	
Write Enable	WEA	WEB	Input	When asserted together with EN, this input enables the writing of data to the RAM. When WE is inactive with EN asserted, read operations are still possible. In this case, a latch passes data from the addressed memory location to the DO outputs.	
Clock Enable	ENA	ENB	Input	When asserted, this input enables the CLK signal to perform read and w operations to the block RAM. When inactive, the block RAM does not perform any read or write operations.	
Set/Reset	SSRA	SSRB	Input	When asserted, this pin forces the DO output latch to the value of the SRVAL attribute. It is synchronized to the CLK signal.	
Clock	CLKA	CLKB	Input	This input accepts the clock signal to which read and write operations are synchronized. All associated port inputs are required to meet setup times with respect to the clock signal's active edge. The data output bus responds after a clock-to-out delay referenced to the clock signal's active edge.	

cancel out the clock skew. When the DLL phase-aligns the CLK0 signal with the CLKIN signal, it asserts the LOCKED output, indicating a lock on to the CLKIN signal.

DLL Attributes and Related Functions

The DLL unit has a variety of associated attributes as described in Table 29. Each attribute is described in detail in the sections that follow.

Table 29: DLL Attributes

EXILINX

Attribute	Description	Values		
CLK_FEEDBACK	Chooses either the CLK0 or CLK2X output to drive the CLKFB input	NONE, <u>1X</u> , 2X		
CLKIN_DIVIDE_BY_2	Halves the frequency of the CLKIN signal just as it enters the DCM	<i>FALSE</i> , TRUE		
CLKDV_DIVIDE	Selects the constant used to divide the CLKIN input frequency to generate the CLKDV output frequency	1.5, <u>2</u> , 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16		
CLKIN_PERIOD	Additional information that allows the DLL to operate with the most efficient lock time and the best jitter tolerance	Floating-point value representing the CLKIN period in nanoseconds		

DLL Clock Input Connections

For best results, an external clock source enters the FPGA via a Global Clock Input (GCLK). Each specific DCM has four possible direct, optimal GCLK inputs that feed the DCM's CLKIN input, as shown in Table 30. Table 30 also provides the specific pin numbers by package for each GCLK input. The two additional DCM's on the XC3S1200E and XC3S1600E have similar optimal connections from the left-edge LHCLK and the right-edge RHCLK inputs, as described in Table 31 and Table 32.

 The DCM supports differential clock inputs (for example, LVDS, LVPECL_25) via a pair of GCLK inputs that feed an internal single-ended signal to the DCM's CLKIN input.

Design Note

Avoid using global clock input GCLK1 as it is always shared with the M2 mode select pin. Global clock inputs GCLK0, GCLK2, GCLK3, GCLK12, GCLK13, GCLK14, and GCLK15 have shared functionality in some configuration modes.

Interconnect

For additional information, refer to the "Using Interconnect" chapter in <u>UG331</u>.

Interconnect is the programmable network of signal pathways between the inputs and outputs of functional elements within the FPGA, such as IOBs, CLBs, DCMs, and block RAM.

Overview

Interconnect, also called routing, is segmented for optimal connectivity. Functionally, interconnect resources are identical to that of the Spartan-3 architecture. There are four kinds of interconnects: long lines, hex lines, double lines, and direct lines. The Xilinx Place and Route (PAR) software exploits the rich interconnect array to deliver optimal system performance and the fastest compile times.

Switch Matrix

The switch matrix connects to the different kinds of interconnects across the device. An interconnect tile, shown in Figure 48, is defined as a single switch matrix connected to a functional element, such as a CLB, IOB, or DCM. If a functional element spans across multiple switch matrices such as the block RAM or multipliers, then an interconnect tile is defined by the number of switch matrices connected to that functional element. A Spartan-3E device can be represented as an array of interconnect tiles where interconnect resources are for the channel between any two adjacent interconnect tile rows or columns as shown in Figure 49.

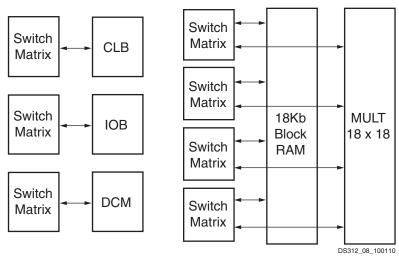


Figure 48: Four Types of Interconnect Tiles (CLBs, IOBs, DCMs, and Block RAM/Multiplier)

Switch	Switch	Switch	Switch	Switch			
Matrix	Matrix	Matrix	Matrix	Matrix			
Switch	Switch	Switch	Switch	Switch			
Matrix IOB	Matrix CLB	Matrix CLB	Matrix CLB	Matrix			
Switch	Switch	Switch	Switch	Switch			
Matrix IOB	Matrix CLB	Matrix CLB	Matrix CLB	Matrix			
Switch	Switch	Switch	Switch	Switch			
Matrix IOB	Matrix CLB	Matrix CLB	Matrix CLB	Matrix			
Switch	Switch	Switch	Switch	Switch			
Matrix IOB	Matrix CLB	Matrix CLB	Matrix CLB	Matrix			
Fig	Figure 49: Array of Interconnect Tiles in Spartan-3E FPGA						

This addressing flexibility allows the FPGA to share the parallel Flash PROM with an external or embedded processor. Depending on the specific processor architecture, the processor boots either from the top or bottom of memory. The FPGA is flexible and boots from the opposite end of memory from the processor. Only the processor or the FPGA can boot at any given time. The FPGA can configure first, holding the processor in reset or the processor can boot first, asserting the FPGA's PROG_B pin.

The mode select pins, M[2:0], are sampled when the FPGA's INIT_B output goes High and must be at defined logic levels during this time. After configuration, when the FPGA's DONE output goes High, the mode pins are available as full-featured user-I/O pins.

P Similarly, the FPGA's HSWAP pin must be Low to enable pull-up resistors on all user-I/O pins or High to disable the pull-up resistors. The HSWAP control must remain at a constant logic level throughout FPGA configuration. After configuration, when the FPGA's DONE output goes High, the HSWAP pin is available as full-featured user-I/O pin and is powered by the VCCO_0 supply.

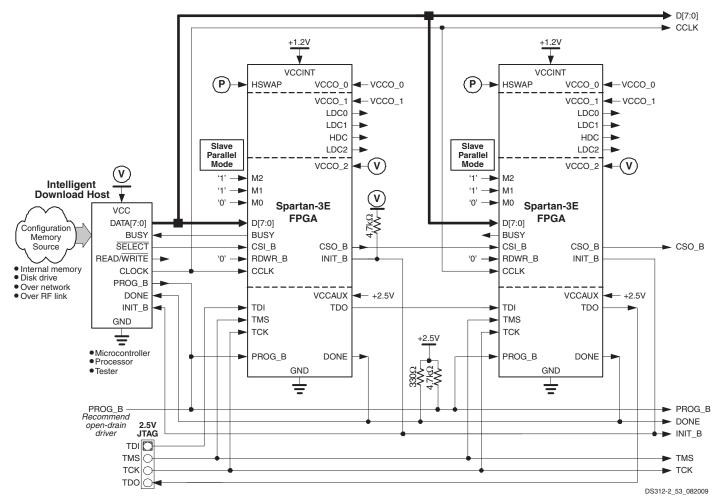
The RDWR_B and CSI_B must be Low throughout the configuration process. After configuration, these pins also become user I/O.

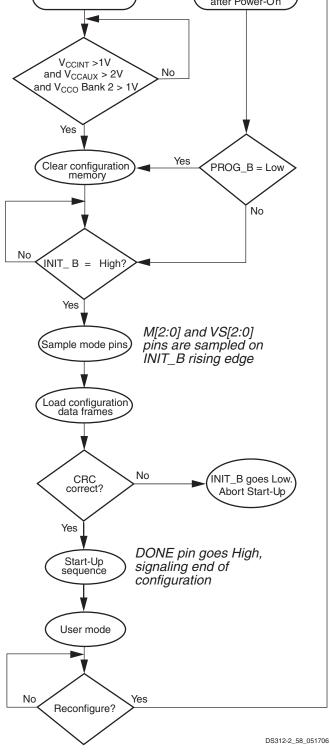
In a single-FPGA application, the FPGA's CSO_B and CCLK pins are not used but are actively driving during the configuration process. The BUSY pin is not used but also actively drives during configuration and is available as a user I/O after configuration.

After configuration, all of the interface pins except DONE and PROG_B are available as user I/Os. Furthermore, the bidirectional SelectMAP configuration peripheral interface (see Slave Parallel Mode) is available after configuration. To continue using SelectMAP mode, set the *Persist* bitstream generator option to **Yes**. An external host can then read and verify configuration data.

The Persist option will maintain A20-A23 as configuration pins although they are not used in SelectMAP mode.

Pin Name	FPGA Direction	Description	During Configuration	After Configuration
HSWAP P	Input	User I/O Pull-Up Control . When Low during configuration, enables pull-up resistors in all I/O pins to respective I/O bank V _{CCO} input. 0: Pull-ups during configuration 1: No pull-ups	Drive at valid logic level throughout configuration.	User I/O
M[2:0]	Input	Mode Select. Selects the FPGA configuration mode. See Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins.	M2 = 0, M1 = 1. Set M0 = 0 to start at address 0, increment addresses. Set M0 = 1 to start at address 0xFFFFF and decrement addresses. Sampled when INIT_B goes High.	User I/O
CSI_B	Input	Chip Select Input. Active Low.	Must be Low throughout configuration.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
RDWR_B	Input	Read/Write Control . Active Low write enable. Read functionality typically only used after configuration, if bitstream option <i>Persist=Yes</i> .	Must be Low throughout configuration.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
LDC0	Output PROM Chip Enable		Connect to PROM chip-select input (CE#). FPGA drives this signal Low throughout configuration.	User I/O. If the FPGA does not access the PROM after configuration, drive this pin High to deselect the PROM. A[23:0], D[7:0], LDC[2:1], and HDC then become available as user I/O.
LDC1	Output	PROM Output Enable	Connect to the PROM output-enable input (OE#). The FPGA drives this signal Low throughout configuration.	User I/O




Figure 62: Daisy-Chaining using Slave Parallel Mode

Slave Serial Mode

For additional information, refer to the "Slave Serial Mode" chapter in UG332.

In Slave Serial mode (M[2:0] = <1:1:1>), an external host such as a microprocessor or microcontroller writes serial configuration data into the FPGA, using the synchronous serial interface shown in Figure 63. The serial configuration data is presented on the FPGA's DIN input pin with sufficient setup time before each rising edge of the externally generated CCLK clock input. The intelligent host starts the configuration process by pulsing PROG_B and monitoring that the INIT_B pin goes High, indicating that the FPGA is ready to receive its first data. The host then continues supplying data and clock signals until either the DONE pin goes High, indicating a successful configuration, or until the INIT_B pin goes Low, indicating a configuration error. The configuration process requires more clock cycles than indicated from the configuration file size. Additional clocks are required during the FPGA's start-up sequence, especially if the FPGA is programmed to wait for selected Digital Clock Managers (DCMs) to lock to their respective clock inputs (see Start-Up, page 105).

EXILINX.

Date	Version	Revision
03/16/07	3.5	Added information about new Spartan-3 Generation user guides (Design Documentation Available). Added cross-references to <u>UG331</u> : Spartan-3 Generation FPGA User Guide and to <u>UG332</u> : Spartan-3 Generation Configuration User Guide. Added note about possible JTAG configuration issues when the FPGA mode pins are set for Master mode and using software prior to ISE 9.1.01i (JTAG Mode). Removed a few lingering references to "weak" pull-up resistors, including in Figure 12. Removed vestigial references regarding the LDC[2:0] and HDC pins during Slave Parallel Mode configuration. These pins are not used in this configuration mode.
05/29/07	3.6	Added information about HSWAP and PCI differences between steppings to Table 71. Removed "Performance Differences between Global Buffers" to match improved specs in Module 3. Updated PROG_B pulse width descriptions to match specification in Module 3.
04/18/08	3.7	Corrected Figure 6 to show six taps and updated associated text. Added note for recommended pull-up on DONE in Table 55 and elsewhere. Added a caution regarding Persist of pins A20-A23. Updated Stepping description in Table 71 to note that only Stepping 1 is in production today. Updated links.
08/26/09	3.8	Added a frequency limitation to Equation 6. Added a new Equation 7 with a frequency limitation. Added a Spread Spectrum, page 56 paragraph. Added Table 42, page 60. Updated a Flash vendor name in Table 61, page 88. Removed the < symbol from the flash read access times in Table 62, page 88. Revised the first paragraph in Configuration Sequence, page 101. Revised the first paragraph in Power-On Behavior, page 110. Revised the second paragraph in Production Stepping, page 111. Revised the first paragraph in Ordering a Later Stepping, page 111.
10/29/12	4.0	Added Notice of Disclaimer. This product is not recommended for new designs. Updated the design note section in VARIABLE Phase Shift Mode. Added the VQ100 to the Quadrant Clock Routing section.

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

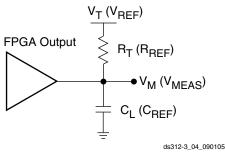
General Recommended Operating Conditions

Table 77: General Recommended Operating Conditions

Symbol	Description				Nominal	Max	Units
ТJ	Junction temperature	ture Commercial		0	-	85	°C
		Industrial	-40	-	100	°C	
V _{CCINT}	Internal supply voltage		1.140	1.200	1.260	V	
V _{CCO} ⁽¹⁾	Output driver supply voltage	Output driver supply voltage				3.465	V
V _{CCAUX}	Auxiliary supply voltage			2.375	2.500	2.625	V
V _{IN} ^(2,3)	Input voltage extremes to avoid	I/O, Input-only, and	IP or IO_#	-0.5	-	V _{CCO} + 0.5	V
	turning on I/O protection diodes	Dual-Purpose pins (4)	IO_Lxxy_# ⁽⁵⁾	-0.5	-	V _{CCO} + 0.5	V
		Dedicated pins ⁽⁶⁾	-	-0.5	_	$V_{CCAUX} + 0.5$	V
T _{IN}	Input signal transition time ⁽⁷⁾			-	_	500	ns

Notes:

- 1. This V_{CCO} range spans the lowest and highest operating voltages for all supported I/O standards. Table 80 lists the recommended V_{CCO} range specific to each of the single-ended I/O standards, and Table 82 lists that specific to the differential standards.
- Input voltages outside the recommended range require the I_{IK} input clamp diode rating is met and no more than 100 pins exceed the range simultaneously. Refer to Table 73.
- 3. See XAPP459: Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3 Families.
- 4. Each of the User I/O and Dual-Purpose pins is associated with one of the four banks' V_{CCO} rails. Meeting the V_{IN} limit ensures that the internal diode junctions that exist between these pins and their associated V_{CCO} and GND rails do not turn on. The absolute maximum rating is provided in Table 73.
- 5. For single-ended signals that are placed on a differential-capable I/O, V_{IN} of –0.2V to –0.5V is supported but can cause increased leakage between the two pins. See *Parasitic Leakage* in <u>UG331</u>, *Spartan-3 Generation FPGA User Guide*.
- All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail (2.5V). Meeting the V_{IN} max limit ensures that the internal diode junctions that exist between each of these pins and the V_{CCAUX} and GND rails do not turn on.
- 7. Measured between 10% and 90% V_{CCO}. Follow Signal Integrity recommendations.


Timing Measurement Methodology

When measuring timing parameters at the programmable I/Os, different signal standards call for different test conditions. Table 95 lists the conditions to use for each standard.

The method for measuring Input timing is as follows: A signal that swings between a Low logic level of V_L and a High logic level of V_H is applied to the Input under test. Some standards also require the application of a bias voltage to the V_{REF} pins of a given bank to properly set the input-switching threshold. The measurement point of the Input signal (V_M) is commonly located halfway between V_L and V_H.

The Output test setup is shown in Figure 72. A termination voltage V_T is applied to the termination resistor R_T, the other end of which is connected to the Output. For each standard, R_T and V_T generally take on the standard values recommended for minimizing signal reflections. If the standard does not ordinarily use terminations (e.g.,

LVCMOS, LVTTL), then R_T is set to $1M\Omega$ to indicate an open connection, and V_T is set to zero. The same measurement point (V_M) that was used at the Input is also used at the Output.

Notes:

1. The names shown in parentheses are used in the IBIS file.

Figure 72: Output Test Setup

Signal Standard (IOSTANDARD)			Inputs			puts	Inputs and Outputs
		V _{REF} (V)	V _L (V)	V _H (V)	R_T (Ω)	V _T (V)	V _M (V)
Single-End	ed						
LVTTL		-	0	3.3	1M	0	1.4
LVCMOS33		-	0	3.3	1M	0	1.65
LVCMOS25		-	0	2.5	1M	0	1.25
LVCMOS18		-	0	1.8	1M	0	0.9
LVCMOS15		-	0	1.5	1M	0	0.75
LVCMOS12		-	0	1.2	1M	0	0.6
PCI33_3	Rising	-	Note 3	Note 3	25	0	0.94
	Falling				25	3.3	2.03
PCI66_3	Rising	-	Note 3	Note 3	25	0	0.94
	Falling				25	3.3	2.03
HSTL_I_18		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
HSTL_III_18	}	1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}
SSTL18_I		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
SSTL2_I		1.25	V _{REF} – 0.75	V _{REF} + 0.75	50	1.25	V _{REF}
Differential				++			+
LVDS_25		-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
BLVDS_25		-	V _{ICM} – 0.125	V _{ICM} + 0.125	1M	0	V _{ICM}
MINI_LVDS_25		-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
LVPECL_25		-	V _{ICM} – 0.3	V _{ICM} + 0.3	1M	0	V _{ICM}
RSDS_25		-	V _{ICM} – 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}

Table 95: Test Methods for Timing Measurement at I/Os

Digital Clock Manager (DCM) Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 104 and Table 105) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 106 through Table 109) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 104 and Table 105.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value. Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See <u>XAPP469</u>, *Spread-Spectrum Clocking Reception for Displays* for details.

Delay-Locked Loop (DLL)

Table 104: Recommended Operating Conditions for the DLL

						Speed	Grade		
Symbol		De	scription		-5 -4		-4	Units	
					Min Max Min		Min	Max	-
Input F	requency Ranges								
F _{CLKIN}	CLKIN_FREQ_DLL	Frequency of the CLKIN clock input	Stepping 0	XC3S100E XC3S250E XC3S500E XC3S1600E	N/A	N/A	5 ⁽²⁾	90 ⁽³⁾	MHz
				XC3S1200E ⁽³⁾				200 ⁽³⁾	MHz
			Stepping 1	All	5 ⁽²⁾	275 <mark>(3)</mark>		240 ⁽³⁾	MHz
Input P	ulse Requirements	1			1			l	
CLKIN_	PULSE	CLKIN pulse width as a	F _{CLKIN} ≤	150 MHz	40%	60%	40%	60%	-
		percentage of the CLKIN period	F _{CLKIN} > 150 MHz		45%	55%	45%	55%	-
Input C	lock Jitter Tolerance	and Delay Path Variation	(4)						
CLKIN_	_CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the	F _{CLKIN} ≤	150 MHz	-	±300	-	±300	ps
CLKIN_CYC_JITT_DLL_HF		CLKIN input	F _{CLKIN} >	150 MHz	-	±150	-	±150	ps
CLKIN_PER_JITT_DLL Period jitter at the CLK		Period jitter at the CLKIN i	input		-	±1	-	±1	ns
CLKFB	_DELAY_VAR_EXT	Allowable variation of off-cl output to the CLKFB input		ay from the DCM	-	±1	-	±1	ns

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 106.

3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.

4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

Table 105: Switching Characteristics for the DLL (Cont'd)

				Speed Grade				
Symbol	Description	ו	Device		-5		-4	Units
				Min	Min Max		Max	1
Phase Alignment ⁽⁴⁾								
CLKIN_CLKFB_PHASE	Phase offset between the CLK inputs	IN and CLKFB	All	-	±200	-	±200	ps
CLKOUT_PHASE_DLL	Phase offset between DLL outputs	CLK0 to CLK2X (not CLK2X180)		-	±[1% of CLKIN period + 100]	-	±[1% of CLKIN period + 100]	ps
	All others		-	±[1% of CLKIN period + 200]	-	±[1% of CLKIN period + 200]	ps	
Lock Time								
LOCK_DLL ⁽³⁾	When using the DLL alone: The time from deassertion at	$\begin{array}{l} 5 \text{ MHz} \leq F_{CLKIN} \\ \leq 15 \text{ MHz} \end{array}$	All	-	5	-	5	ms
	the DCM's Reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase	LOCKED output. When the DCM is locked, the CLKIN and		-	600	-	600	μs
Delay Lines								÷
DCM_DELAY_STEP	Finest delay resolution		All	20	40	20	40	ps

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 77 and Table 104.

2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.

3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.

4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. Example: The data sheet specifies a maximum jitter of ±[1% of CLKIN period + 150]. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250 ps.

Digital Frequency Synthesizer (DFS)

Table 106: Recommended Operating Conditions for the DFS

Symbol				Speed Grade				
		Description	า	-5 -4		4	Units	
				Min	Max	Min	Max	
Input Fre	Input Frequency Ranges ⁽²⁾							
F _{CLKIN}	CLKIN_FREQ_FX	Frequency for the CLKIN input		0.200	333 <mark>(4)</mark>	0.200	333 <mark>(4)</mark>	MHz
Input Clo	ck Jitter Tolerance ⁽³⁾							
CLKIN input based on CLKEX			$F_{CLKFX} \le 150 \text{ MHz}$	-	±300	-	±300	ps
		F _{CLKFX} > 150 MHz	-	±150	-	±150	ps	
CLKIN_P	ER_JITT_FX	Period jitter at the CLKIN input		-	±1	-	±1	ns

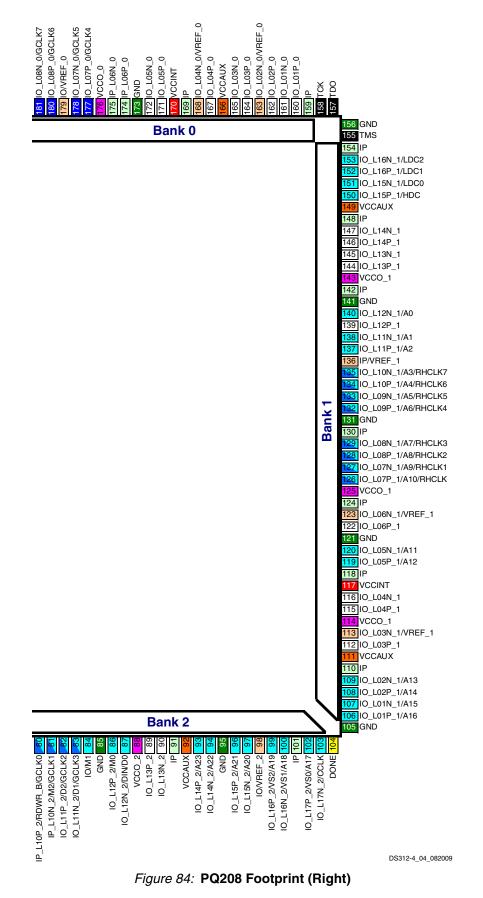
Notes:

1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.

2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 104.

3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.

4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM.


Table 133: CP132 Package Pinout (Cont'd)

Bank	XC3S100E Pin Name	XC3S250E XC3S500E Pin Name	CP132 Ball	Туре
2	N.C. (♠)	IO_L08P_2/A23	N9	100E: N.C. Others: DUAL
2	N.C. (�)	IO_L09N_2/A20	M10	100E: N.C. Others: DUAL
2	N.C. (�)	IO_L09P_2/A21	N10	100E: N.C. Others: DUAL
2	IO_L10N_2/VS1/A18	IO_L10N_2/VS1/A18	M11	DUAL
2	IO_L10P_2/VS2/A19	IO_L10P_2/VS2/A19	N11	DUAL
2	IO_L11N_2/CCLK	IO_L11N_2/CCLK	N12	DUAL
2	IO_L11P_2/VS0/A17	IO_L11P_2/VS0/A17	P12	DUAL
2	IP/VREF_2	IP/VREF_2	N3	VREF
2	IP_L05N_2/M2/GCLK1	IP_L05N_2/M2/GCLK1	N6	DUAL/GCLK
2	IP_L05P_2/RDWR_B/GCLK0	IP_L05P_2/RDWR_B/GCLK0	M6	DUAL/GCLK
2	VCCO_2	VCCO_2	M8	VCCO
2	VCCO_2	VCCO_2	P3	VCCO
3	IO	IO	J3	I/O
3	IP/VREF_3	IO/VREF_3	K3	100E: VREF(INPUT) Others: VREF(I/O)
3	IO_L01N_3	IO_L01N_3	B1	I/O
3	IO_L01P_3	IO_L01P_3	B2	I/O
3	IO_L02N_3	IO_L02N_3	C2	I/O
3	IO_L02P_3	IO_L02P_3	C3	I/O
3	N.C. (♠)	IO_L03N_3	D1	100E: N.C. Others: I/O
3	IO	IO_L03P_3	D2	I/O
3	IO_L04N_3/LHCLK1	IO_L04N_3/LHCLK1	F2	LHCLK
3	IO_L04P_3/LHCLK0	IO_L04P_3/LHCLK0	F3	LHCLK
3	IO_L05N_3/LHCLK3/IRDY2	IO_L05N_3/LHCLK3/IRDY2	G1	LHCLK
3	IO_L05P_3/LHCLK2	IO_L05P_3/LHCLK2	F1	LHCLK
3	IO_L06N_3/LHCLK5	IO_L06N_3/LHCLK5	H1	LHCLK
3	IO_L06P_3/LHCLK4/TRDY2	IO_L06P_3/LHCLK4/TRDY2	G3	LHCLK
3	IO_L07N_3/LHCLK7	IO_L07N_3/LHCLK7	H3	LHCLK
3	IO_L07P_3/LHCLK6	IO_L07P_3/LHCLK6	H2	LHCLK
3	IO_L08N_3	IO_L08N_3	L2	I/O
3	IO_L08P_3	IO_L08P_3	L1	I/O
3	IO_L09N_3	IO_L09N_3	M1	I/O
3	IO_L09P_3	IO_L09P_3	L3	I/O
3	IP/VREF_3	IP/VREF_3	E2	VREF
3	VCCO_3	VCCO_3	E1	VCCO
3	VCCO_3	VCCO_3	J2	VCCO
GND	N.C. (GND)	GND	A4	GND
GND	GND	GND	A8	GND
GND	N.C. (GND)	GND	C1	GND
GND	GND	GND	C7	GND

Table 137: TQ144 Package Pinout (Cont'd)

Bank	XC3S100E Pin Name	XC3S250E Pin Name	TQ144 Pin	Туре
1	IO_L02P_1/A14	IO_L02P_1/A14	P76	DUAL
1	IO_L03N_1/A11	IO_L03N_1/A11	P82	DUAL
1	IO_L03P_1/A12	IO_L03P_1/A12	P81	DUAL
1	IO_L04N_1/A9/RHCLK1	IO_L04N_1/A9/RHCLK1	P86	RHCLK/DUAL
1	IO_L04P_1/A10/RHCLK0	IO_L04P_1/A10/RHCLK0	P85	RHCLK/DUAL
1	IO_L05N_1/A7/RHCLK3/TRDY1	IO_L05N_1/A7/RHCLK3	P88	RHCLK/DUAL
1	IO_L05P_1/A8/RHCLK2	IO_L05P_1/A8/RHCLK2	P87	RHCLK/DUAL
1	IO_L06N_1/A5/RHCLK5	IO_L06N_1/A5/RHCLK5	P92	RHCLK/DUAL
1	IO_L06P_1/A6/RHCLK4/IRDY1	IO_L06P_1/A6/RHCLK4	P91	RHCLK/DUAL
1	IO_L07N_1/A3/RHCLK7	IO_L07N_1/A3/RHCLK7	P94	RHCLK/DUAL
1	IO_L07P_1/A4/RHCLK6	IO_L07P_1/A4/RHCLK6	P93	RHCLK/DUAL
1	IO_L08N_1/A1	IO_L08N_1/A1	P97	DUAL
1	IO_L08P_1/A2	IO_L08P_1/A2	P96	DUAL
1	IO_L09N_1/LDC0	IO_L09N_1/LDC0	P104	DUAL
1	IO_L09P_1/HDC	IO_L09P_1/HDC	P103	DUAL
1	IO_L10N_1/LDC2	IO_L10N_1/LDC2	P106	DUAL
1	IO_L10P_1/LDC1	IO_L10P_1/LDC1	P105	DUAL
1	IP	IP	P78	INPUT
1	IP	IP	P84	INPUT
1	IP	IP	P89	INPUT
1	IP	IP	P101	INPUT
1	IP	IP	P107	INPUT
1	IP/VREF_1	IP/VREF_1	P95	VREF
1	VCCO_1	VCCO_1	P79	VCCO
1	VCCO_1	VCCO_1	P100	VCCO
2	IO/D5	IO/D5	P52	DUAL
2	IO/M1	IO/M1	P60	DUAL
2	IP/VREF_2	IO/VREF_2	P66	100E: VREF(INPUT)
				250E: VREF(I/O)
2	IO_L01N_2/INIT_B	IO_L01N_2/INIT_B	P40	DUAL
2	IO_L01P_2/CSO_B	IO_L01P_2/CSO_B	P39	DUAL
2	IO_L02N_2/MOSI/CSI_B	IO_L02N_2/MOSI/CSI_B	P44	DUAL
2	IO_L02P_2/DOUT/BUSY	IO_L02P_2/DOUT/BUSY	P43	DUAL
2	IO_L04N_2/D6/GCLK13	IO_L04N_2/D6/GCLK13	P51	DUAL/GCLK
2	IO_L04P_2/D7/GCLK12	IO_L04P_2/D7/GCLK12	P50	DUAL/GCLK
2	IO_L05N_2/D3/GCLK15	IO_L05N_2/D3/GCLK15	P54	DUAL/GCLK
2	IO_L05P_2/D4/GCLK14	IO_L05P_2/D4/GCLK14	P53	DUAL/GCLK
2	IO_L07N_2/D1/GCLK3	IO_L07N_2/D1/GCLK3	P59	DUAL/GCLK
2	IO_L07P_2/D2/GCLK2	IO_L07P_2/D2/GCLK2	P58	DUAL/GCLK
2	IO_L08N_2/DIN/D0	IO_L08N_2/DIN/D0	P63	DUAL
2	IO_L08P_2/M0	IO_L08P_2/M0	P62	DUAL
2	IO_L09N_2/VS1/A18	IO_L09N_2/VS1/A18	P68	DUAL
2	IO_L09P_2/VS2/A19	IO_L09P_2/VS2/A19	P67	DUAL
2	IO_L10N_2/CCLK	IO_L10N_2/CCLK	P71	DUAL
2	IO_L10P_2/VS0/A17	IO_L10P_2/VS0/A17	P70	DUAL

PQ208 Footprint (Right)

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S500E Pin Name	XC3S1200E Pin Name	FT256 Ball	Туре
VCCAUX	VCCAUX	VCCAUX	VCCAUX	A11	VCCAUX
VCCAUX	VCCAUX	VCCAUX	VCCAUX	F1	VCCAUX
VCCAUX	VCCAUX	VCCAUX	VCCAUX	F16	VCCAUX
VCCAUX	VCCAUX	VCCAUX	VCCAUX	L1	VCCAUX
VCCAUX	VCCAUX	VCCAUX	VCCAUX	L16	VCCAUX
VCCAUX	VCCAUX	VCCAUX	VCCAUX	T6	VCCAUX
VCCAUX	VCCAUX	VCCAUX	VCCAUX	T11	VCCAUX
VCCINT	VCCINT	VCCINT	VCCINT	D4	VCCINT
VCCINT	VCCINT	VCCINT	VCCINT	D13	VCCINT
VCCINT	VCCINT	VCCINT	VCCINT	E5	VCCINT
VCCINT	VCCINT	VCCINT	VCCINT	E12	VCCINT
VCCINT	VCCINT	VCCINT	VCCINT	M5	VCCINT
VCCINT	VCCINT	VCCINT	VCCINT	M12	VCCINT
VCCINT	VCCINT	VCCINT	VCCINT	N4	VCCINT
VCCINT	VCCINT	VCCINT	VCCINT	N13	VCCINT

Table 148: FG320 Package Pinout (Cont'd)

Bank	XC3S500E Pin Name	XC3S1200E Pin Name	XC3S1600E Pin Name	FG320 Ball	Туре
0	VCCO_0	VCCO_0	VCCO_0	A9	VCCO
0	VCCO_0	VCCO_0	VCCO_0	C6	VCCO
0	VCCO_0	VCCO_0	VCCO_0	C13	VCCO
0	VCCO_0	VCCO_0	VCCO_0	G8	VCCO
0	VCCO_0	VCCO_0	VCCO_0	G11	VCCO
1	N.C. (�)	IO	IO	P16	500E: N.C. 1200E: I/O 1600E: I/O
1	IO_L01N_1/A15	IO_L01N_1/A15	IO_L01N_1/A15	T17	DUAL
1	IO_L01P_1/A16	IO_L01P_1/A16	IO_L01P_1/A16	U18	DUAL
1	IO_L02N_1/A13	IO_L02N_1/A13	IO_L02N_1/A13	T18	DUAL
1	IO_L02P_1/A14	IO_L02P_1/A14	IO_L02P_1/A14	R18	DUAL
1	IO_L03N_1/VREF_1	IO_L03N_1/VREF_1	IO_L03N_1/VREF_1	R16	VREF
1	IO_L03P_1	IO_L03P_1	IO_L03P_1	R15	I/O
1	N.C. (�)	IO_L04N_1	IO_L04N_1	N14	500E: N.C. 1200E: I/O 1600E: I/O
1	N.C. (�)	IO_L04P_1	IO_L04P_1	N15	500E: N.C. 1200E: I/O 1600E: I/O
1	IO_L05N_1/VREF_1	IO_L05N_1/VREF_1	IO_L05N_1/VREF_1	M13	VREF
1	IO_L05P_1	IO_L05P_1	IO_L05P_1	M14	I/O
1	IO_L06N_1	IO_L06N_1	IO_L06N_1	P18	I/O
1	IO_L06P_1	IO_L06P_1	IO_L06P_1	P17	I/O
1	IO_L07N_1	IO_L07N_1	IO_L07N_1	M16	I/O
1	IO_L07P_1	IO_L07P_1	IO_L07P_1	M15	I/O
1	IO_L08N_1	IO_L08N_1	IO_L08N_1	M18	I/O
1	IO_L08P_1	IO_L08P_1	IO_L08P_1	N18	I/O
1	IO_L09N_1/A11	IO_L09N_1/A11	IO_L09N_1/A11	L15	DUAL
1	IO_L09P_1/A12	IO_L09P_1/A12	IO_L09P_1/A12	L16	DUAL
1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	L17	VREF
1	IO_L10P_1	IO_L10P_1	IO_L10P_1	L18	I/O
1	IO_L11N_1/A9/RHCLK1	IO_L11N_1/A9/RHCLK1	IO_L11N_1/A9/RHCLK1	K12	RHCLK/DUAL
1	IO_L11P_1/A10/RHCLK0	IO_L11P_1/A10/RHCLK0	IO_L11P_1/A10/RHCLK0	K13	RHCLK/DUAL
1	IO_L12N_1/A7/RHCLK3/ TRDY1	IO_L12N_1/A7/RHCLK3/ TRDY1	IO_L12N_1/A7/RHCLK3/ TRDY1	K14	RHCLK/DUAL
1	IO_L12P_1/A8/RHCLK2	IO_L12P_1/A8/RHCLK2	IO_L12P_1/A8/RHCLK2	K15	RHCLK/DUAL
1	IO_L13N_1/A5/RHCLK5	IO_L13N_1/A5/RHCLK5	IO_L13N_1/A5/RHCLK5	J16	RHCLK/DUAL
1	IO_L13P_1/A6/RHCLK4/ IRDY1	IO_L13P_1/A6/RHCLK4/ IRDY1	IO_L13P_1/A6/RHCLK4/ IRDY1	J17	RHCLK/DUAL
1	IO_L14N_1/A3/RHCLK7	IO_L14N_1/A3/RHCLK7	IO_L14N_1/A3/RHCLK7	J14	RHCLK/DUAL
1	IO_L14P_1/A4/RHCLK6	IO_L14P_1/A4/RHCLK6	IO_L14P_1/A4/RHCLK6	J15	RHCLK/DUAL
1	IO_L15N_1/A1	IO_L15N_1/A1	IO_L15N_1/A1	J13	DUAL
1	IO_L15P_1/A2	IO_L15P_1/A2	IO_L15P_1/A2	J12	DUAL
1	IO_L16N_1/A0	IO_L16N_1/A0	IO_L16N_1/A0	H17	DUAL
1	IO_L16P_1	IO_L16P_1	IO_L16P_1	H16	I/O

Table 154: FG484 Package Pinout (Cont'd)

Bank	XC3S1600E Pin Name	FG484 Ball	Туре
GND	GND	E10	GND
GND	GND	E13	GND
GND	GND	F6	GND
GND	GND	F17	GND
GND	GND	G2	GND
GND	GND	G21	GND
GND	GND	J4	GND
GND	GND	J9	GND
GND	GND	J12	GND
GND	GND	J14	GND
GND	GND	J19	GND
GND	GND	K10	GND
GND	GND	K12	GND
GND	GND	L2	GND
GND	GND	L6	GND
GND	GND	L9	GND
GND	GND	L13	GND
GND	GND	M10	GND
GND	GND	M14	GND
GND	GND	M17	GND
GND	GND	M21	GND
GND	GND	N11	GND
GND	GND	N13	GND
GND	GND	P4	GND
GND	GND	P9	GND
GND	GND	P11	GND
GND	GND	P14	GND
GND	GND	P19	GND
GND	GND	T2	GND
GND	GND	T21	GND
GND	GND	U6	GND
GND	GND	U17	GND
GND	GND	V10	GND
GND	GND	V13	GND
GND	GND	Y3	GND
GND	GND	Y20	GND
GND	GND	AA7	GND
GND	GND	AA16	GND

Table 154: FG484 Package Pinout (Cont'd)

Bank	XC3S1600E Pin Name	FG484 Ball	Туре
GND	GND	AB1	GND
GND	GND	AB12	GND
GND	GND	AB22	GND
VCCAUX	DONE	AA21	CONFIG
VCCAUX	PROG_B	B1	CONFIG
VCCAUX	TCK	E17	JTAG
VCCAUX	TDI	B2	JTAG
VCCAUX	TDO	B20	JTAG
VCCAUX	TMS	D19	JTAG
VCCAUX	VCCAUX	D12	VCCAUX
VCCAUX	VCCAUX	E5	VCCAUX
VCCAUX	VCCAUX	E18	VCCAUX
VCCAUX	VCCAUX	K14	VCCAUX
VCCAUX	VCCAUX	L4	VCCAUX
VCCAUX	VCCAUX	M19	VCCAUX
VCCAUX	VCCAUX	N9	VCCAUX
VCCAUX	VCCAUX	V5	VCCAUX
VCCAUX	VCCAUX	V18	VCCAUX
VCCAUX	VCCAUX	W11	VCCAUX
VCCINT	VCCINT	J10	VCCINT
VCCINT	VCCINT	K9	VCCINT
VCCINT	VCCINT	K11	VCCINT
VCCINT	VCCINT	K13	VCCINT
VCCINT	VCCINT	L10	VCCINT
VCCINT	VCCINT	L11	VCCINT
VCCINT	VCCINT	L12	VCCINT
VCCINT	VCCINT	L14	VCCINT
VCCINT	VCCINT	M9	VCCINT
VCCINT	VCCINT	M11	VCCINT
VCCINT	VCCINT	M12	VCCINT
VCCINT	VCCINT	M13	VCCINT
VCCINT	VCCINT	N10	VCCINT
VCCINT	VCCINT	N12	VCCINT
VCCINT	VCCINT	N14	VCCINT
VCCINT	VCCINT	P13	VCCINT

User I/Os by Bank

Table 155 indicates how the 304 available user-I/O pins are distributed between the four I/O banks on the FG484 package.