E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	240
Number of Logic Elements/Cells	2160
Total RAM Bits	73728
Number of I/O	108
Number of Gates	100000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s100e-4tq144c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

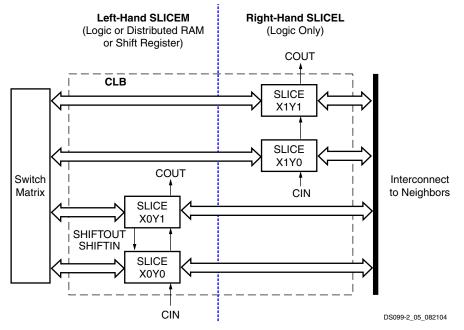
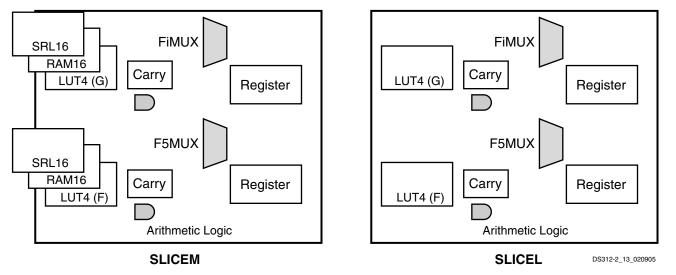
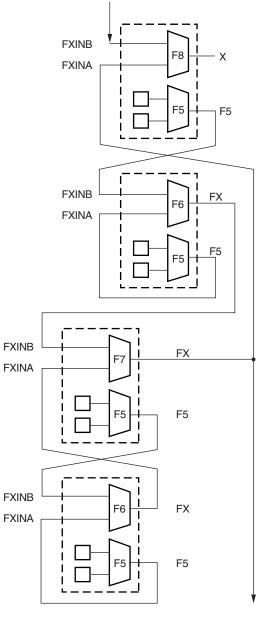


Figure 16: Arrangement of Slices within the CLB

Slice Location Designations


The Xilinx development software designates the location of a slice according to its X and Y coordinates, starting in the bottom left corner, as shown in Figure 14. The letter 'X' followed by a number identifies columns of slices, incrementing from the left side of the die to the right. The letter 'Y' followed by a number identifies the position of each slice in a pair as well as indicating the CLB row, incrementing from the bottom of the die. Figure 16 shows the CLB located in the lower left-hand corner of the die. The SLICEM always has an even 'X' number, and the SLICEL always has an odd 'X' number.

Slice Overview


A slice includes two LUT function generators and two storage elements, along with additional logic, as shown in Figure 17.

Both SLICEM and SLICEL have the following elements in common to provide logic, arithmetic, and ROM functions:

- Two 4-input LUT function generators, F and G
- Two storage elements
- Two wide-function multiplexers, F5MUX and FiMUX
- Carry and arithmetic logic

DS312-2_38_021305

Figure 20: MUXes and Dedicated Feedback in Spartan-3E CLB

Table 11: MUX Capabilities

			Tota	al Number of Inputs per Function			
MUX	Usage	Input Source	For Any Function	For MUX	For Limited Functions		
F5MUX	F5MUX	LUTs	5	6 (4:1 MUX)	9		
FiMUX	F6MUX	F5MUX	6	11 (8:1 MUX)	19		
	F7MUX	F6MUX	7	20 (16:1 MUX)	39		
	F8MUX	F7MUX	8	37 (32:1 MUX)	79		

www.xilinx.com

initialized distributed RAM contents are not disturbed during the configuration process.

The distributed RAM is useful for smaller amounts of memory. Larger memory requirements can use the dedicated 18Kbit RAM blocks (see Block RAM).

Shift Registers

For additional information, refer to the "Using Look-Up Tables as Shift Registers (SRL16)" chapter in UG331.

It is possible to program each SLICEM LUT as a 16-bit shift register (see Figure 28). Used in this way, each LUT can delay serial data anywhere from 1 to 16 clock cycles without using any of the dedicated flip-flops. The resulting programmable delays can be used to balance the timing of data pipelines.

The SLICEM LUTs cascade from the G-LUT to the F-LUT through the DIFMUX (see Figure 15). SHIFTIN and SHIFTOUT lines cascade a SLICEM to the SLICEM below to form larger shift registers. The four SLICEM LUTs of a single CLB can be combined to produce delays up to 64 clock cycles. It is also possible to combine shift registers across more than one CLB.

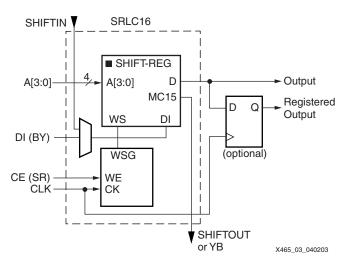
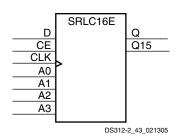



Figure 28: Logic Cell SRL16 Structure

Each shift register provides a shift output MC15 for the last bit in each LUT, in addition to providing addressable access to any bit in the shift register through the normal D output. The address inputs A[3:0] are the same as the distributed RAM address lines, which come from the LUT inputs F[4:1] or G[4:1]. At the end of the shift register, the CLB flip-flop can be used to provide one more shift delay for the addressable bit.

The shift register element is known as the SRL16 (Shift Register LUT 16-bit), with a 'C' added to signify a cascade ability (Q15 output) and 'E' to indicate a Clock Enable. See Figure 29 for an example of the SRLC16E component.

Figure 29: SRL16 Shift Register Component with Cascade and Clock Enable

The functionality of the shift register is shown in Table 20. The SRL16 shifts on the rising edge of the clock input when the Clock Enable control is High. This shift register cannot be initialized either during configuration or during operation except by shifting data into it. The clock enable and clock inputs are shared between the two LUTs in a SLICEM. The clock enable input is automatically kept active if unused.

Table	20:	SRL16	Shift	Register	Function
-------	-----	-------	-------	----------	----------

	Inp	uts		Outputs		
Am	CLK	CE	D	Q	Q15	
Am	Х	0	Х	Q[Am]	Q[15]	
Am	1	1	D	Q[Am-1]	Q[15]	

Notes:

1. m = 0, 1, 2, 3.

The BCIN and BCOUT ports have associated dedicated routing that connects adjacent multipliers within the same column. Via the cascade connection, the BCOUT port of one multiplier block drives the BCIN port of the multiplier block directly above it. There is no connection to the BCIN port of the bottom-most multiplier block in a column or a connection from the BCOUT port of the top-most block in a column. As an example, Figure 39 shows the multiplier cascade capability within the XC3S100E FPGA, which has a single column of multiplier, four blocks tall. For clarity, the figure omits the register control inputs.

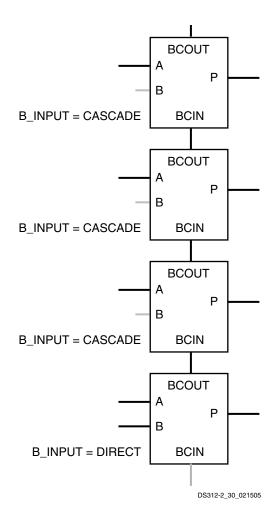


Figure 39: Multiplier Cascade Connection

When using the BREG register, the cascade connection forms a shift register structure typically used in DSP algorithms such as direct-form FIR filters. When the BREG register is omitted, the cascade structure essentially feeds the same input value to more than one multiplier. This parallel connection serves to create wide-input multipliers, implement transpose FIR filters, and is used in any application that requires that several multipliers have the same input value.

The CLKFX_DIVIDE is an integer ranging from 1 to 32, inclusive and forms the denominator in Equation 1. For example, if CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, the frequency of the output clock signal is 5/3 that of the input clock signal. These attributes and their acceptable ranges are described in Table 34.

Table 34: DFS Attributes

🗶 XILINX.

Attribute	Description	Values		
CLKFX_MULTIPLY	Frequency multiplier constant	Integer from 2 to 32, inclusive		
CLKFX_DIVIDE	Frequency divisor constant	Integer from 1 to 32, inclusive		

Any combination of integer values can be assigned to the CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, provided that two conditions are met:

- 1. The two values fall within their corresponding ranges, as specified in Table 34.
- The f_{CLKFX} output frequency calculated in Equation 1 falls within the DCM's operating frequency specifications (see Table 107 in Module 3).

DFS With or Without the DLL

Although the CLKIN input is shared with both units, the DFS unit functions with or separately from the DLL unit. Separate from the DLL, the DFS generates an output frequency from the CLKIN frequency according to the respective CLKFX_MULTIPLY and CLKFX_DIVIDE values. Frequency synthesis does not require a feedback loop. Furthermore, without the DLL, the DFS unit supports a broader operating frequency range.

With the DLL, the DFS unit operates as described above, only with the additional benefit of eliminating the clock distribution delay. In this case, a feedback loop from the CLK0 or CLK2X output to the CLKFB input must be present.

When operating with the DLL unit, the DFS's CLKFX and CLKFX180 outputs are phase-aligned with the CLKIN input every CLKFX_DIVIDE cycles of CLKIN and every CLKFX_MULTIPLY cycles of CLKFX. For example, when CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, the input and output clock edges coincide every three CLKIN input

periods, which is equivalent in time to five CLKFX output periods.

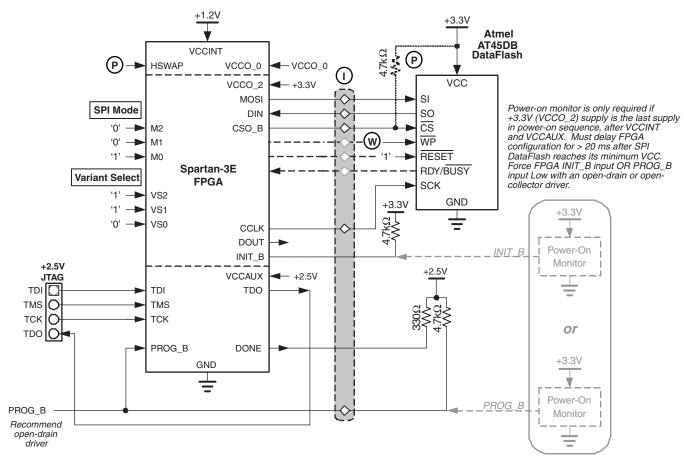
Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values result in faster lock times. Therefore, CLKFX_MULTIPLY and CLKFX_DIVIDE must be factored to reduce their values wherever possible. For example, given CLKFX_MULTIPLY = 9 and CLKFX_DIVIDE = 6, removing a factor of three yields CLKFX_MULTIPLY = 3 and CLKFX_DIVIDE = 2. While both value-pairs result in the multiplication of clock frequency by 3/2, the latter value-pair enables the DLL to lock more quickly.

Phase Shifter (PS)

The DCM provides two approaches to controlling the phase of a DCM clock output signal relative to the CLKIN signal: First, eight of the nine DCM clock outputs – CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKFX, and CLKFX180 – provide either quadrant or half-period phase shifting of the input clock.

Second, the PS unit provides additional fine phase shift control of all nine DCM outputs. The PS unit accomplishes this by introducing a "fine phase shift" delay (T_{PS}) between the CLKFB and CLKIN signals inside the DLL unit. In FIXED phase shift mode, the fine phase shift is specified at design time with a resolution down to $1/_{256}$ th of a CLKIN cycle or one delay step (DCM_DELAY_STEP), whichever is greater. This fine phase shift value is relative to the coarser quadrant or half-period phase shift of the DCM clock output. When used, the PS unit shifts the phase of all nine DCM clock output signals.

Enabling Phase Shifting and Selecting an Operating Mode


The CLKOUT_PHASE_SHIFT attribute controls the PS unit for the specific DCM instantiation. As described in Table 35, this attribute has three possible values: NONE, FIXED, and VARIABLE. When CLKOUT_PHASE_SHIFT = NONE, the PS unit is disabled and the DCM output clocks are phase-aligned to the CLKIN input via the CLKFB feedback path. Figure 44a shows this case.

The PS unit is enabled when the CLKOUT_PHASE_SHIFT attribute is set to FIXED or VARIABLE modes. These two modes are described in the sections that follow.

Table 35: PS Attributes

Attribute	Description	Values
CLKOUT_PHASE_SHIFT	Disables the PS component or chooses between Fixed Phase and Variable Phase modes.	NONE, FIXED, VARIABLE
PHASE_SHIFT	Determines size and direction of initial fine phase shift.	Integers from -255 to +255

Figure 57, page 82 demonstrates how to configure multiple FPGAs with different configurations, all stored in a single SPI Flash. The diagram uses standard SPI Flash memories but the same general technique applies for Atmel DataFlash.

DS312-2_50a_082009

Figure 54: Atmel SPI-based DataFlash Configuration Interface

Table 59: Byte-Wide Peripheral Interface (BPI) Connections (Cont'd)

Pin Name	FPGA Direction	Description	During Configuration	After Configuration
HDC	Output	PROM Write Enable	Connect to PROM write-enable input (WE#). FPGA drives this signal High throughout configuration.	User I/O
LDC2	Output	PROM Byte Mode	This signal is not used for x8 PROMs. For PROMs with a x8/x16 data width control, connect to PROM byte-mode input (BYTE#). See Precautions Using x8/x16 Flash PROMs. FPGA drives this signal Low throughout configuration.	User I/O. Drive this pin High after configuration to use a x8/x16 PROM in x16 mode.
A[23:0]	Output	Address	Connect to PROM address inputs. High-order address lines may not be available in all packages and not all may be required. Number of address lines required depends on the size of the attached Flash PROM. FPGA address generation controlled by M0 mode pin. Addresses presented on falling CCLK edge. Only 20 address lines are available in TQ144 package.	User I/O
D[7:0]	Input	Data Input	FPGA receives byte-wide data on these pins in response the address presented on A[23:0]. Data captured by FPGA on rising edge of CCLK.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
CSO_B	Output	Chip Select Output. Active Low.	Not used in single FPGA applications. In a daisy-chain configuration, this pin connects to the CSI_B pin of the next FPGA in the chain. If HSWAP = 1 in a multi-FPGA daisy-chain application, connect this signal to a 4.7 k Ω pull-up resistor to VCCO_2. Actively drives Low when selecting a downstream device in the chain.	User I/O
BUSY	Output	Busy Indicator . Typically only used after configuration, if bitstream option <i>Persist=Yes</i> .	Not used during configuration but actively drives.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
CCLK	Output	Configuration Clock . Generated by FPGA internal oscillator. Frequency controlled by ConfigRate bitstream generator option. If CCLK PCB trace is long or has multiple connections, terminate this output to maintain signal integrity. See CCLK Design Considerations.	Not used in single FPGA applications but actively drives. In a daisy-chain configuration, drives the CCLK inputs of all other FPGAs in the daisy-chain.	User I/O. If bitstream option Persist=Yes , becomes part of SelectMap parallel peripheral interface.
INIT_B	Open-drain bidirectional I/O	Initialization Indicator . Active Low. Goes Low at start of configuration during the Initialization memory clearing process. Released at the end of memory clearing, when the mode select pins are sampled. In daisy-chain applications, this signal requires an external 4.7 k Ω pull-up resistor to VCCO_2.	Active during configuration. If CRC error detected during configuration, FPGA drives INIT_B Low.	User I/O. If unused in the application, drive INIT_B High.

Maximum Bitstream Size for Daisy-Chains

The maximum bitstream length supported by Spartan-3E FPGAs in serial daisy-chains is 4,294,967,264 bits (4 Gbits), roughly equivalent to a daisy-chain with 720 XC3S1600E FPGAs. This is a limit only for serial daisy-chains where configuration data is passed via the FPGA's DOUT pin. There is no such limit for JTAG chains.

Configuration Sequence

For additional information including I/O behavior before and during configuration, refer to the "Sequence of Events" chapter in <u>UG332</u>.

The Spartan-3E configuration process is three-stage process that begins after the FPGA powers on (a POR event) or after the PROG_B input is asserted. Power-On Reset (POR) occurs after the V_{CCINT} , V_{CCAUX} , and the V_{CCO} Bank 2 supplies reach their respective input threshold levels. After either a POR or PROG_B event, the three-stage configuration process begins.

- 1. The FPGA clears (initializes) the internal configuration memory.
- 2. Configuration data is loaded into the internal memory.
- 3. The user-application is activated by a start-up process.

Figure 66 is a generalized block diagram of the Spartan-3E configuration logic, showing the interaction of different device inputs and Bitstream Generator (BitGen) options. A flow diagram for the configuration sequence of the Serial and Parallel modes appears in Figure 66. Figure 67 shows the Boundary-Scan or JTAG configuration sequence.

Initialization

Configuration automatically begins after power-on or after asserting the FPGA PROG_B pin, unless delayed using the FPGA's INIT_B pin. The FPGA holds the open-drain INIT_B signal Low while it clears its internal configuration memory. Externally holding the INIT_B pin Low forces the configuration sequencer to wait until INIT_B again goes High.

The FPGA signals when the memory-clearing phase is complete by releasing the open-drain INIT_B pin, allowing the pin to go High via the external pull-up resistor to VCCO_2.

Loading Configuration Data

After initialization, configuration data is written to the FPGA's internal memory. The FPGA holds the Global Set/Reset (GSR) signal active throughout configuration, holding all FPGA flip-flops in a reset state. The FPGA signals when the entire configuration process completes by releasing the DONE pin, allowing it to go High. The FPGA configuration sequence can also be initiated by asserting PROG_B. Once released, the FPGA begins clearing its internal configuration memory, and progresses through the remainder of the configuration process.

Single-Ended I/O Standards

Table 80: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

IOSTANDARD	V _{CCO} for Drivers ⁽²⁾				V _{REF}			V _{IH} ⁽³⁾
Attribute	Min (V)	Nom (V)	Max (V)	Min (V)	Nom (V)	Max (V)	Max (V)	Min (V)
LVTTL	3.0	3.3	3.465				0.8	2.0
LVCMOS33 ⁽⁴⁾	3.0	3.3	3.465				0.8	2.0
LVCMOS25 ^(4,5)	2.3	2.5	2.7				0.7	1.7
LVCMOS18	1.65	1.8	1.95	V _R	_{FF} is not used	d for	0.4	0.8
LVCMOS15	1.4	1.5	1.6	these I/O standards			0.4	0.8
LVCMOS12	1.1	1.2	1.3				0.4	0.7
PCI33_3 ⁽⁶⁾	3.0	3.3	3.465				0.3 • V _{CCO}	0.5 • V _{CCO}
PCI66_3 ⁽⁶⁾	3.0	3.3	3.465				0.3 • V _{CCO}	0.5 • V _{CCO}
HSTL_I_18	1.7	1.8	1.9	0.8	0.9	1.1	V _{REF} - 0.1	V _{REF} + 0.1
HSTL_III_18	1.7	1.8	1.9	-	1.1	-	V _{REF} - 0.1	V _{REF} + 0.1
SSTL18_I	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} - 0.125	V _{REF} + 0.125
SSTL2_I	2.3	2.5	2.7	1.15	1.25	1.35	V _{REF} - 0.125	V _{REF} + 0.125

Notes:

- Descriptions of the symbols used in this table are as follows: 1.

 - $\begin{array}{l} V_{CCO} \mbox{the symbols dised in this table are as follows.} \\ V_{CCO} \mbox{the supply voltage for output drivers} \\ V_{REF} \mbox{the reference voltage for setting the input switching threshold} \\ V_{IL} \mbox{the input voltage that indicates a Low logic level} \\ V_{IH} \mbox{the input voltage that indicates a High logic level} \end{array}$
- The V_{CCO} rails supply only output drivers, not input circuits. 2.
- For device operation, the maximum signal voltage (V_{IH} max) may be as high as V_{IN} max. See Table 73. З.
- There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. 4.
- All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the V_{CCAUX} rail (2.5V). The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a standard 2.5V 5. configuration interface, apply 2.5V to the V_{CCO} lines of Banks 0, 1, and 2 at power-on as well as throughout configuration.
- For information on PCI IP solutions, see www.xilinx.com/pci. The PCIX IOSTANDARD is available and has equivalent characteristics but no 6. PCI-X IP is supported.

I/O Timing

Table 86: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

				Speed Grade		
Symbol	Description	Conditions	Device	-5	-4	Units
				Max ⁽²⁾	Max ⁽²⁾	
Clock-to-Outp	out Times					
T _{ICKOFDCM}	When reading from the Output Flip-Flop	LVCMOS25 ⁽³⁾ , 12 mA	XC3S100E	2.66	2.79	ns
		output drive, Fast slew rate, with DCM ⁽⁴⁾	XC3S250E	3.00	3.45	ns
			XC3S500E	3.01	3.46	ns
			XC3S1200E	3.01	3.46	ns
			XC3S1600E	3.00	3.45	ns
T _{ICKOF}	When reading from OFF, the time from the	LVCMOS25 ⁽³⁾ , 12 mA	XC3S100E	5.60	5.92	ns
	active transition on the Global Clock pin to data appearing at the Output pin. The DCM is not used.	output drive, Fast slew rate, without DCM	XC3S250E	4.91	5.43	ns
			XC3S500E	4.98	5.51	ns
			XC3S1200E	5.36	5.94	ns
			XC3S1600E	5.45	6.05	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in Table 77 and Table 80.

- 2. For minimums, use the values reported by the Xilinx timing analyzer.
- 3. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, *add* the appropriate Input adjustment from Table 91. If the latter is true, *add* the appropriate Output adjustment from Table 94.
- 4. DCM output jitter is included in all measurements.

			IFD		Speed	Grade	
Symbol	Description	Conditions	DELAY_	Device	-5	-4	Units
			VALUE=		Min	Min	
Setup Tim	ies						
T _{PSDCM}	When writing to the Input	LVCMOS25 ⁽²⁾ ,	0	XC3S100E	2.65	2.98	ns
	Flip-Flop (IFF), the time from the setup of data at the Input pin to	IFD_DELAY_VALUE = 0, with DCM ⁽³⁾		XC3S250E	2.25	2.59	ns
	the active transition at a Global			XC3S500E	2.25	2.59	ns
	Clock pin. The DCM is used. No Input Delay is programmed.			XC3S1200E	2.25	2.58	ns
				XC3S1600E	2.25	2.59	ns
T _{PSFD}	When writing to IFF, the time	LVCMOS25 ⁽²⁾ ,	2	XC3S100E	3.16	3.58	ns
from the setup of data at the Input pin to an active transition at the Global Clock pin. The DCM is	IFD_DELAY_VALUE = default software setting	3	XC3S250E	3.44	3.91	ns	
	the Global Clock pin. The DCM is not used. The Input Delay is		3	XC3S500E	4.00	4.73	ns
	programmed.		3	XC3S1200E	2.60	3.31	ns
			3	XC3S1600E	3.33	3.77	ns
Hold Time	es						
T _{PHDCM}	When writing to IFF, the time	LVCMOS25 ⁽⁴⁾ ,	0	XC3S100E	-0.54	-0.52	ns
	from the active transition at the Global Clock pin to the point	IFD_DELAY_VALUE = 0, with $DCM^{(3)}$		XC3S250E	0.06	0.14	ns
	when data must be held at the Input pin. The DCM is used. No			XC3S500E	0.07	0.14	ns
	Input Delay is programmed.			XC3S1200E	0.07	0.15	ns
				XC3S1600E	0.06	0.14	ns
T _{PHFD}	When writing to IFF, the time	LVCMOS25 ⁽⁴⁾ ,	2	XC3S100E	-0.31	-0.24	ns
	from the active transition at the Global Clock pin to the point	IFD_DELAY_VALUE = default software setting	3	XC3S250E	-0.32	-0.32	ns
	when data must be held at the Input pin. The DCM is not used.	3	3	XC3S500E	-0.77	-0.77	ns
	The Input Delay is programmed.		3	XC3S1200E	0.13	0.16	ns
			3	XC3S1600E	-0.05	-0.03	ns

Table 87: Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)

Notes:

1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in Table 77 and Table 80.

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Table 91. If this is true of the data Input, add the appropriate Input adjustment from the same table.

3. DCM output jitter is included in all measurements.

4. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Table 91. If this is true of the data Input, subtract the appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock's active edge.

Block RAM Timing

Table 103: Block RAM Timing

Symbol	Description		-5	-4		Units
		Min	Max	Min	Мах	
Clock-to-O	utput Times					
Т _{ВСКО}	When reading from block RAM, the delay from the active transition at the CLK input to data appearing at the DOUT output	-	2.45	-	2.82	ns
Setup Time	es l					-
T _{BACK}	Setup time for the ADDR inputs before the active transition at the CLK input of the block RAM	0.33	-	0.38	-	ns
T _{BDCK}	Setup time for data at the DIN inputs before the active transition at the CLK input of the block RAM	0.23	-	0.23	-	ns
T _{BECK}	Setup time for the EN input before the active transition at the CLK input of the block RAM	0.67	-	0.77	-	ns
T _{BWCK}	Setup time for the WE input before the active transition at the CLK input of the block RAM	1.09	-	1.26	-	ns
Hold Times	; ;		1			
T _{BCKA}	Hold time on the ADDR inputs after the active transition at the CLK input	0.12	-	0.14	-	ns
T _{BCKD}	Hold time on the DIN inputs after the active transition at the CLK input	0.12	-	0.13	-	ns
T _{BCKE}	Hold time on the EN input after the active transition at the CLK input	0	-	0	-	ns
T _{BCKW}	Hold time on the WE input after the active transition at the \ensuremath{CLK} input	0	-	0	-	ns
Clock Timi	ng					-
T _{BPWH}	High pulse width of the CLK signal	1.39	-	1.59	-	ns
T _{BPWL}	Low pulse width of the CLK signal	1.39	-	1.59	-	ns
Clock Freq	uency					
F _{BRAM}	Block RAM clock frequency. RAM read output value written back into RAM, for shift-registers and circular buffers. Write-only or read-only performance is faster.	0	270	0	230	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 77.

www.xilinx.com

Spartan-3 FPGA Family: Pinout Descriptions

DS312 (4.0) October 29, 2012

Product Specification

Introduction

This section describes the various pins on a Spartan®-3E FPGA and how they connect within the supported component packages.

Pin Types

Most pins on a Spartan-3E FPGA are general-purpose, user-defined I/O pins. There are, however, up to 11 different functional types of pins on Spartan-3E packages, as outlined in Table 124. In the package footprint drawings that follow, the individual pins are color-coded according to pin type as in the table.

Type / Color Code	Description	Pin Name(s) in Type ⁽¹⁾
I/O	Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form differential I/Os.	IO IO_Lxxy_#
INPUT	Unrestricted, general-purpose input-only pin. This pin does not have an output structure, differential termination resistor, or PCI clamp diode.	IP IP_Lxxy_#
DUAL	Dual-purpose pin used in some configuration modes during the configuration process and then usually available as a user I/O after configuration. If the pin is not used during configuration, this pin behaves as an I/O-type pin. Some of the dual-purpose pins are also shared with bottom-edge global (GCLK) or right-half (RHCLK) clock inputs. See the Configuration section in Module 2 for additional information on these signals.	M[2:0] HSWAP CCLK MOSI/CSI_B D[7:1] D0/DIN CSO_B RDWR_B BUSY/DOUT INIT_B A[23:20] A19/VS2 A18/VS1 A17/VS0 A[16:0] LDC[2:0] HDC
VREF	Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other VREF pins in the same bank, provides a reference voltage input for certain I/O standards. If used for a reference voltage within a bank, all VREF pins within the bank must be connected.	IP/VREF_# IP_Lxxy_#/VREF_# IO/VREF_# IO_Lxxy_#/VREF_#
CLK	Either a user-I/O pin or Input-only pin, or an input to a specific clock buffer driver. Every package has 16 global clock inputs that optionally clock the entire device. The RHCLK inputs optionally clock the right-half of the device. The LHCLK inputs optionally clock the left-half of the device. Some of the clock pins are shared with the dual-purpose configuration pins and are considered DUAL-type. See the Clocking Infrastructure section in Module 2 for additional information on these signals.	IO_Lxxy_#/GCLK[15:10, 7:2] IP_Lxxy_#/GCLK[9:8, 1:0] IO_Lxxy_#/LHCLK[7:0] IO_Lxxy_#/RHCLK[7:0]
CONFIG	Dedicated configuration pin. Not available as a user-I/O pin. Every package has two dedicated configuration pins. These pins are powered by VCCAUX. See the Configuration section in Module 2 for details.	DONE, PROG_B
JTAG	Dedicated JTAG pin. Not available as a user-I/O pin. Every package has four dedicated JTAG pins. These pins are powered by VCCAUX.	TDI, TMS, TCK, TDO
GND	Dedicated ground pin. The number of GND pins depends on the package used. All must be connected.	GND

Table 124: Types of Pins on Spartan-3E FPGAs

© Copyright 2005–2012 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

www.xilinx.com

Table 124: Types of Pins on Spartan-3E FPGAs (Cont'd)

Type / Color Code	Description	Pin Name(s) in Type ⁽¹⁾			
VCCAUX	Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package used. All must be connected to +2.5V. See the Powering Spartan-3E FPGAs section in Module 2 for details.	VCCAUX			
VCCINT	Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the package used. All must be connected to +1.2V. See the Powering Spartan-3E FPGAs section in Module 2 for details.	VCCINT			
VCCO	Along with all the other VCCO pins in the same bank, this pin supplies power to the output buffers within the I/O bank and sets the input threshold voltage for some I/O standards. See the Powering Spartan-3E FPGAs section in Module 2 for details.	VCCO_#			
N.C.	This package pin is not connected in this specific device/package combination but may be connected in larger devices in the same package.	N.C.			

Notes:

- 1. # = I/O bank number, an integer between 0 and 3.
- 2. IRDY/TRDY designations are for PCI designs; refer to PCI documentation for details.

Differential Pair Labeling

I/Os with Lxxy_# are part of a differential pair. 'L' indicates differential capability. The 'xx' field is a two-digit integer, unique to each bank that identifies a differential pin-pair. The 'y' field is either 'P' for the true signal or 'N' for the inverted signal in the differential pair. The '#' field is the I/O bank number.

The pin name suffix has the following significance. Figure 79 provides a specific example showing a differential input to and a differential output from Bank 1. 'L' indicates that the pin is part of a differential pair.

'xx' is a two-digit integer, unique for each bank, that identifies a differential pin-pair.

'y' is replaced by 'P' for the true signal or 'N' for the inverted. These two pins form one differential pin-pair.

'#' is an integer, 0 through 3, indicating the associated $\ensuremath{\mathsf{I/O}}$ bank.

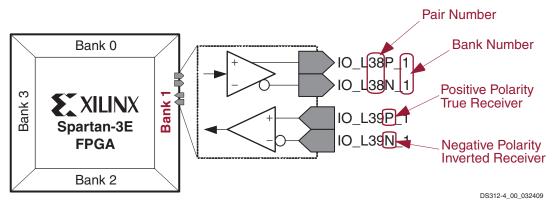


Figure 79: Differential Pair Labeling

Mechanical Drawings

Material Declaration Data Sheets (MDDS) are also available on the <u>Xilinx web site</u> for each package.

Detailed mechanical drawings for each package type are available from the Xilinx® web site at the specified location in Table 127.

Package	Package Drawing	MDDS
VQ100	Package Drawing	PK173_VQ100
VQG100		PK130_VQG100
CP132	Package Drawing	PK147_CP132
CPG132		PK101_CPG132
TQ144	Package Drawing	PK169_TQ144
TQG144		PK126_TQG144
PQ208	Package Drawing	PK166_PQ208
PQG208		PK123_PQG208
FT256	Package Drawing	PK158_FT256
FTG256		PK115_FTG256
FG320	Package Drawing	PK152_FG320
FGG320		PK106_FGG320
FG400	Package Drawing	PK182_FG400
FGG400		PK108_FGG400
FG484	Package Drawing	PK183_FG484
FGG484		PK110_FGG484

Package Pins by Type

Each package has three separate voltage supply inputs—VCCINT, VCCAUX, and VCCO—and a common ground return, GND. The numbers of pins dedicated to these functions vary by package, as shown in Table 128.

Package	VCCINT	VCCAUX	VCCO	GND			
VQ100	4	4	8	12			
CP132	6	4	8	16			
TQ144	4	4	9	13			
PQ208	4	8	12	20			
FT256	8	8	16	28			
FG320	8	8	20	28			
FG400	16	8	24	42			
FG484	16	10	28	48			

A majority of package pins are user-defined I/O or input pins. However, the numbers and characteristics of these I/O depend on the device type and the package in which it is available, as shown in Table 129. The table shows the maximum number of single-ended I/O pins available, assuming that all I/O-, INPUT-, DUAL-, VREF-, and CLK-type pins are used as general-purpose I/O. Likewise, the table shows the maximum number of differential pin-pairs available on the package. Finally, the table shows how the total maximum user-I/Os are distributed by pin type, including the number of unconnected—i.e., N.C.—pins on the device.

Table 137: TQ144 Package Pinout (Cont'd)

Bank	XC3S100E Pin Name	XC3S250E Pin Name	TQ144 Pin	Туре
GND	GND	GND	P27	GND
GND	GND	GND	P37	GND
GND	GND	GND	P46	GND
GND	GND	GND	P55	GND
GND	GND	GND	P61	GND
GND	GND	GND	P73	GND
GND	GND	GND	P90	GND
GND	GND	GND	P99	GND
GND	GND	GND	P118	GND
GND	GND	GND	P127	GND
GND	GND	GND	P133	GND
VCCAUX	DONE	DONE	P72	CONFIG
VCCAUX	PROG_B	PROG_B	P1	CONFIG
VCCAUX	ТСК	ТСК	P110	JTAG
VCCAUX	TDI	TDI	P144	JTAG
VCCAUX	TDO	TDO	P109	JTAG
VCCAUX	TMS	TMS	P108	JTAG
VCCAUX	VCCAUX	VCCAUX	P30	VCCAUX
VCCAUX	VCCAUX	VCCAUX	P65	VCCAUX
VCCAUX	VCCAUX	VCCAUX	P102	VCCAUX
VCCAUX	VCCAUX	VCCAUX	P137	VCCAUX
VCCINT	VCCINT	VCCINT	P9	VCCINT
VCCINT	VCCINT	VCCINT	P45	VCCINT
VCCINT	VCCINT	VCCINT	P80	VCCINT
VCCINT	VCCINT	VCCINT	P115	VCCINT

Table 148: FG320 Package Pinout (Cont'd)

Bank	XC3S500E Pin Name	XC3S1200E Pin Name	XC3S1600E Pin Name	FG320 Ball	Туре
1	IO_L17N_1	IO_L17N_1	IO_L17N_1	H15	I/O
1	IO_L17P_1	IO_L17P_1	IO_L17P_1	H14	I/O
1	IO_L18N_1	IO_L18N_1	IO_L18N_1	G16	I/O
1	IO_L18P_1	IO_L18P_1	IO_L18P_1	G15	I/O
1	IO_L19N_1	IO_L19N_1	IO_L19N_1	F17	I/O
1	IO_L19P_1	IO_L19P_1	IO_L19P_1	F18	I/O
1	IO_L20N_1	IO_L20N_1	IO_L20N_1	G13	I/O
1	IO_L20P_1	IO_L20P_1	IO_L20P_1	G14	I/O
1	IO_L21N_1	IO_L21N_1	IO_L21N_1	F14	I/O
1	IO_L21P_1	IO_L21P_1	IO_L21P_1	F15	I/O
1	N.C. (♦)	IO_L22N_1	IO_L22N_1	E16	500E: N.C. 1200E: I/O 1600E: I/O
1	N.C. (�)	IO_L22P_1	IO_L22P_1	E15	500E: N.C. 1200E: I/O 1600E: I/O
1	IO_L23N_1/LDC0	IO_L23N_1/LDC0	IO_L23N_1/LDC0	D16	DUAL
1	IO_L23P_1/HDC	IO_L23P_1/HDC	IO_L23P_1/HDC	D17	DUAL
1	IO_L24N_1/LDC2	IO_L24N_1/LDC2	IO_L24N_1/LDC2	C17	DUAL
1	IO_L24P_1/LDC1	IO_L24P_1/LDC1	IO_L24P_1/LDC1	C18	DUAL
1	IP	IP	IP	B18	INPUT
1	Ю	IP	IP	E17	500E: I/O 1200E: INPUT 1600E: INPUT
1	IP	IP	IP	E18	INPUT
1	IP	IP	IP	G18	INPUT
1	IP	IP	IP	H13	INPUT
1	IP	IP	IP	K17	INPUT
1	IP	IP	IP	K18	INPUT
1	IP	IP	IP	L13	INPUT
1	IP	IP	IP	L14	INPUT
1	IP	IP	IP	N17	INPUT
1	Ю	IP	IP	P15	500E: I/O 1200E: INPUT 1600E: INPUT
1	IP	IP	IP	R17	INPUT
1	IP/VREF_1	IP/VREF_1	IP/VREF_1	D18	VREF
1	IP/VREF_1	IP/VREF_1	IP/VREF_1	H18	VREF
1	VCCO_1	VCCO_1	VCCO_1	F16	VCCO
1	VCCO_1	VCCO_1	VCCO_1	H12	VCCO
1	VCCO_1	VCCO_1	VCCO_1	J18	VCCO
1	VCCO_1	VCCO_1	VCCO_1	L12	VCCO
1	VCCO_1	VCCO_1	VCCO_1	N16	VCCO
2	IO	Ю	IO	P9	I/O
2	10	10	IO	R11	I/O

	Bank 0									
11	12	13	14	15	16	17	18	19	20	1
GND	I/O	I/O L09N_0 VREF_0	I/O L09P_0	I/O L06N_0	I/O L04P_0	I/O L04N_0	I/O L03N_0 VREF_0	I/O L03P_0	GND	Α
INPUT L14N_0	INPUT L14P_0	I/O L10N_0	GND	I/O L06P_0	VCCO_0	I/O L01N_0	INPUT	TDO	INPUT	В
I/O VREF_0	I/O L12N_0	I/O L10P_0	I/O L07N_0	INPUT L05P_0	INPUT L02N_0	I/O L01P_0	GND	I/O L30N_1 LDC2	I/O L30P_1 LDC1	с
VCCAUX	I/O L12P_0	VCCO_0	I/O L07P_0	INPUT L05N_0	INPUT L02P_0	тск	I/O L29N_1 LDC0	VCCO_1	I/O L28N_1	D
I/O L16P_0 GCLK6	I/O L13N_0	I/O	INPUT L08N_0	INPUT L08P_0	I/O	TMS	I/O L29P_1 HDC	INPUT VREF_1	I/O L28P_1	E
I/O L15P_0 GCLK4	I/O L13P_0	I/O	I/O	GND	I/O L25P_1	I/O L27P_1	I/O L27N_1	I/O L26N_1	I/O L26P_1	F
I/O L15N_0 GCLK5	GND	INPUT L11P_0	INPUT L11N_0	INPUT	I/O L25N_1	VCCO_1	INPUT	GND	I/O L24P_1	G
VCCINT	VCCAUX	VCCINT	INPUT	I/O L22N_1	I/O L22P_1	I/O L23P_1	I/O L23N_1	I/O L21N_1	I/O L24N_1 VREF_1	н
GND	VCCINT	I/O L19N_1 A0	I/O L19P_1	INPUT	I/O L18P_1 A2	I/O L20N_1	I/O L20P_1	I/O L21P_1	I/O L17N_1 A3 RHCLK7	J
VCCINT	GND	L16P_1 A6 RHCLK4	I/O L16N_1 A5 RHCLK5	VCCO_1	I/O L18N_1 A1	GND	INPUT VREF_1	VCCO_1	I/O L17P_1 A4 RHCLK6	K F
GND	VCCINT	GND	I/O L15N_1 A7 RHCLK3 TRDY1	I/O L15P_1 A8 RHCLK2	I/O L14N_1 A9 RHCLK1	VCCAUX	INPUT	I/O L13N_1 VREF_1	GND	л Bank
VCCINT	GND	VCCINT	VCCAUX	I/O L11P_1	I/O L14P_1 A10 RHCLK0	I/O L12P_1 A12	I/O L12N_1 A11	I/O L13P_1	INPUT	М
I/O D5	VCCINT	GND	INPUT	I/O L11N_1	I/O L09P_1	VCCO_1	I/O L10P_1	I/O L10N_1	INPUT	N
INPUT L17P_2 RDWR_B GCLK0	INPUT L17N_2 M2 GCLK1	I/O	I/O L25N_2	INPUT	I/O L09N_1	I/O L07P_1	I/O L07N_1	GND	I/O L08N_1 VREF_1	Ρ
VCCO_2	INPUT L20P_2	1/0	I/O L25P_2	GND	INPUT	I/O L05P_1	I/O L05N_1	INPUT	I/O L08P_1	R
I/O M1	INPUT L20N_2	INPUT L23N_2 VREF_2	INPUT L23P_2	I/O L28N_2	INPUT	I/O L02P_1 A14	I/O L02N_1 A13	VCCO_1	I/O L06N_1	т
GND	I/O L21N_2	I/O L24N_2	VCCO_2	I/O L28P_2	I/O L30P_2 A21	I/O L01P_1 A16	I/O L01N_1 A15	I/O L03P_1	I/O L06P_1	U
I/O L18N_2 D1 GCLK3	I/O L21P_2	I/O L24P_2	INPUT L26N_2	INPUT L26P_2	I/O L30N_2 A20	DONE	GND	I/O L03N_1 VREF_1	I/O L04P_1	v
VCCO_2	I/O L22N_2 VREF_2	I/O L22P_2	GND	I/O	INPUT L29N_2	VCCO_2	I/O L31P_2 VS2 A19	I/O L32N_2 CCLK	I/O L04N_1	w
I/O L19P_2 M0	I/O L19N_2 DIN D0	1/0	I/O L27N_2 A22	I/O L27P_2 A23	INPUT L29P_2	I/O VREF_2	I/O L31N_2 VS1 A18	I/O L32P_2 VS0 A17	GND	Y
	Bank 2								DS31	2-4_09_101905

FG400 Footprint

Right Half of Package (top view)

www.xilinx.com

Table 155: User I/Os Per Bank for the XC3S1600E in the FG484 Package

Package	1/O Bank	Maximum I/O		All Po	ssible I/O Pins b	у Туре	
Edge	I/O Bank	Maximum I/O	I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾
Тор	0	94	56	22	1	7	8
Right	1	94	50	16	21	7	0(2)
Bottom	2	94	45	18	24	7	0 ⁽²⁾
Left	3	94	63	16	0	7	8
TOTAL		376	214	72	46	28	16

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Footprint Migration Differences

The XC3S1600E FPGA is the only Spartan-3E device offered in the FG484 package.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.