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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Storage Element Functions 

There are three pairs of storage elements in each IOB, one 
pair for each of the three paths. It is possible to configure 
each of these storage elements as an edge-triggered 
D-type flip-flop (FD) or a level-sensitive latch (LD). 

The storage-element pair on either the Output path or the 
Three-State path can be used together with a special 
multiplexer to produce Double-Data-Rate (DDR) 
transmission. This is accomplished by taking data 

synchronized to the clock signal’s rising edge and 
converting it to bits synchronized on both the rising and the 
falling edge. The combination of two registers and a 
multiplexer is referred to as a Double-Data-Rate D-type 
flip-flop (ODDR2). 

Table 4 describes the signal paths associated with the 
storage element. 

As shown in Figure 5, the upper registers in both the output 
and three-state paths share a common clock. The OTCLK1 
clock signal drives the CK clock inputs of the upper registers 
on the output and three-state paths. Similarly, OTCLK2 
drives the CK inputs for the lower registers on the output 
and three-state paths. The upper and lower registers on the 
input path have independent clock lines: ICLK1 and ICLK2. 

The OCE enable line controls the CE inputs of the upper 
and lower registers on the output path. Similarly, TCE 

controls the CE inputs for the register pair on the three-state 
path and ICE does the same for the register pair on the 
input path.

The Set/Reset (SR) line entering the IOB controls all six 
registers, as is the Reverse (REV) line.

In addition to the signal polarity controls described in IOB 
Overview, each storage element additionally supports the 
controls described in Table 5.

Table  4: Storage Element Signal Description

Storage 
Element 
Signal 

Description Function 

D Data input Data at this input is stored on the active edge of CK and enabled by CE. For latch operation when 
the input is enabled, data passes directly to the output Q. 

Q Data output The data on this output reflects the state of the storage element. For operation as a latch in 
transparent mode, Q mirrors the data at D. 

CK Clock input Data is loaded into the storage element on this input’s active edge with CE asserted.

CE Clock Enable input When asserted, this input enables CK. If not connected, CE defaults to the asserted state. 

SR Set/Reset input This input forces the storage element into the state specified by the SRHIGH/SRLOW attributes. 
The SYNC/ASYNC attribute setting determines if the SR input is synchronized to the clock or not. 
If both SR and REV are active at the same time, the storage element gets a value of 0.

REV Reverse input This input is used together with SR. It forces the storage element into the state opposite from what 
SR does. The SYNC/ASYNC attribute setting determines whether the REV input is synchronized 
to the clock or not. If both SR and REV are active at the same time, the storage element gets a 
value of 0.

Table  5: Storage Element Options

Option Switch Function Specificity

FF/Latch Chooses between an edge-triggered flip-flop or a 
level-sensitive latch 

Independent for each storage element

SYNC/ASYNC Determines whether the SR set/reset control is 
synchronous or asynchronous 

Independent for each storage element

SRHIGH/SRLOW Determines whether SR acts as a Set, which forces 
the storage element to a logic 1 (SRHIGH) or a 
Reset, which forces a logic 0 (SRLOW)

Independent for each storage element, except when using 
ODDR2. In the latter case, the selection for the upper 
element will apply to both elements. 

INIT1/INIT0 When Global Set/Reset (GSR) is asserted or after 
configuration this option specifies the initial state of 
the storage element, either set (INIT1) or reset 
(INIT0). By default, choosing SRLOW also selects 
INIT0; choosing SRHIGH also selects INIT1.

Independent for each storage element, except when using 
ODDR2, which uses two IOBs. In the ODDR2 case, 
selecting INIT0 for one IOBs applies to both elements 
within the IOB, although INIT1 could be selected for the 
elements in the other IOB. 

http://www.xilinx.com
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Spartan-3E FPGAs provide additional input flexibility by 
allowing I/O standards to be mixed in different banks. For a 
particular VCCO voltage, Table 6 and Table 7 list all of the 

IOSTANDARDs that can be combined and if the 
IOSTANDARD is supported as an input only or can be used 
for both inputs and outputs.

Table  6: Single-Ended IOSTANDARD Bank Compatibility

Single-Ended 
IOSTANDARD

VCCO Supply/Compatibility Input Requirements

1.2V 1.5V 1.8V 2.5V 3.3V VREF

Board 
Termination 
Voltage (VTT)

LVTTL - - - - Input/
Output N/R(1) N/R

LVCMOS33 - - - - Input/
Output N/R N/R

LVCMOS25 - - - Input/
Output Input N/R N/R

LVCMOS18 - - Input/
Output Input Input N/R N/R

LVCMOS15 - Input/
Output Input Input Input N/R N/R

LVCMOS12 Input/
Output Input Input Input Input N/R N/R

PCI33_3 - - - - Input/
Output N/R N/R

PCI66_3 - - - - Input/
Output N/R N/R

HSTL_I_18 - - Input/
Output Input Input 0.9 0.9

HSTL_III_18 - - Input/
Output Input Input 1.1 1.8

SSTL18_I - - Input/
Output Input Input 0.9 0.9

SSTL2_I - - - Input/
Output Input 1.25 1.25

Notes: 
1. N/R - Not required for input operation.

http://www.xilinx.com
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The MULT_AND is useful for small multipliers. Larger 
multipliers can be built using the dedicated 18x18 multiplier 
blocks (see Dedicated Multipliers).

Storage Elements

The storage element, which is programmable as either a 
D-type flip-flop or a level-sensitive transparent latch, 
provides a means for synchronizing data to a clock signal, 
among other uses. The storage elements in the top and 
bottom portions of the slice are called FFY and FFX, 
respectively. FFY has a fixed multiplexer on the D input 
selecting either the combinatorial output Y or the bypass 
signal BY. FFX selects between the combinatorial output X 
or the bypass signal BX.

The functionality of a slice storage element is identical to 
that described earlier for the I/O storage elements. All 
signals have programmable polarity; the default active-High 
function is described.

The control inputs R, S, CE, and C are all shared between 
the two flip-flops in a slice.

X-Ref Target - Figure 24

Figure 24: Using the MULT_AND for Multiplication in 
Carry Logic
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Table  15: Storage Element Signals

Signal Description

D Input. For a flip-flop data on the D input is loaded when R and S (or CLR and PRE) are Low and CE is High during the 
Low-to-High clock transition. For a latch, Q reflects the D input while the gate (G) input and gate enable (GE) are High and R 
and S (or CLR and PRE) are Low. The data on the D input during the High-to-Low gate transition is stored in the latch. The 
data on the Q output of the latch remains unchanged as long as G or GE remains Low.

Q Output. Toggles after the Low-to-High clock transition for a flip-flop and immediately for a latch.

C Clock for edge-triggered flip-flops.

G Gate for level-sensitive latches.

CE Clock Enable for flip-flops.

GE Gate Enable for latches.

S Synchronous Set (Q = High). When the S input is High and R is Low, the flip-flop is set, output High, during the Low-to-High 
clock (C) transition. A latch output is immediately set, output High.

R Synchronous Reset (Q = Low); has precedence over Set. 

PRE Asynchronous Preset (Q = High). When the PRE input is High and CLR is Low, the flip-flop is set, output High, during the 
Low-to-High clock (C) transition. A latch output is immediately set, output High.

CLR Asynchronous Clear (Q = Low); has precedence over Preset to reset Q output Low

SR CLB input for R, S, CLR, or PRE

REV CLB input for opposite of SR. Must be asynchronous or synchronous to match SR.

X-Ref Target - Figure 25

Figure 25: FD Flip-Flop Component with Synchronous 
Reset, Set, and Clock Enable
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Table  16: FD Flip-Flop Functionality with Synchronous 
Reset, Set, and Clock Enable

Inputs Outputs

R S CE D C Q

1 X X X ↑ 0

0 1 X X ↑ 1

0 0 0 X X No Change

0 0 1 1 ↑ 1

0 0 1 0 ↑ 0

http://www.xilinx.com
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 Cascading Multipliers

The MULT18X18SIO primitive has two additional ports 
called BCIN and BCOUT to cascade or share the 
multiplier’s ‘B’ input among several multiplier bocks. The 
18-bit BCIN “cascade” input port offers an alternate input 
source from the more typical ‘B’ input. The B_INPUT 
attribute specifies whether the specific implementation uses 
the BCIN or ‘B’ input path. Setting B_INPUT to DIRECT 
chooses the ‘B’ input. Setting B_INPUT to CASCADE 
selects the alternate BCIN input. The BREG register then 
optionally holds the selected input value, if required.

BCOUT is an 18-bit output port that always reflects the 
value that is applied to the multiplier’s second input, which is 
either the ‘B’ input, the cascaded value from the BCIN input, 
or the output of the BREG if it is inserted. 

Figure 38 illustrates the four possible configurations using 
different settings for the B_INPUT attribute and the BREG 
attribute.

 

X-Ref Target - Figure 37

Figure 37: MULT18X18SIO Primitive
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X-Ref Target - Figure 38

Figure 38: Four Configurations of the B Input
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The BCIN and BCOUT ports have associated dedicated 
routing that connects adjacent multipliers within the same 
column. Via the cascade connection, the BCOUT port of 
one multiplier block drives the BCIN port of the multiplier 
block directly above it. There is no connection to the BCIN 
port of the bottom-most multiplier block in a column or a 
connection from the BCOUT port of the top-most block in a 
column. As an example, Figure 39 shows the multiplier 
cascade capability within the XC3S100E FPGA, which has 
a single column of multiplier, four blocks tall. For clarity, the 
figure omits the register control inputs.
 

When using the BREG register, the cascade connection 
forms a shift register structure typically used in DSP 
algorithms such as direct-form FIR filters. When the BREG 
register is omitted, the cascade structure essentially feeds 
the same input value to more than one multiplier. This 
parallel connection serves to create wide-input multipliers, 
implement transpose FIR filters, and is used in any 
application that requires that several multipliers have the 
same input value.

X-Ref Target - Figure 39

Figure 39: Multiplier Cascade Connection
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cancel out the clock skew. When the DLL phase-aligns the 
CLK0 signal with the CLKIN signal, it asserts the LOCKED 
output, indicating a lock on to the CLKIN signal. 

DLL Attributes and Related Functions 

The DLL unit has a variety of associated attributes as 
described in Table 29. Each attribute is described in detail in 
the sections that follow.

 

DLL Clock Input Connections

For best results, an external clock source enters the FPGA 
via a Global Clock Input (GCLK). Each specific DCM has 
four possible direct, optimal GCLK inputs that feed the 
DCM’s CLKIN input, as shown in Table 30. Table 30 also 
provides the specific pin numbers by package for each 
GCLK input. The two additional DCM’s on the XC3S1200E 
and XC3S1600E have similar optimal connections from the 
left-edge LHCLK and the right-edge RHCLK inputs, as 
described in Table 31 and Table 32.

• The DCM supports differential clock inputs (for 
example, LVDS, LVPECL_25) via a pair of GCLK inputs 
that feed an internal single-ended signal to the DCM’s 
CLKIN input.

Design Note

Avoid using global clock input GCLK1 as it is always shared 
with the M2 mode select pin. Global clock inputs GCLK0, 
GCLK2, GCLK3, GCLK12, GCLK13, GCLK14, and 
GCLK15 have shared functionality in some configuration 
modes.

Table  29: DLL Attributes

Attribute Description Values

CLK_FEEDBACK Chooses either the CLK0 or CLK2X output to drive 
the CLKFB input 

NONE, 1X, 2X 

CLKIN_DIVIDE_BY_2 Halves the frequency of the CLKIN signal just as it 
enters the DCM 

FALSE, TRUE

CLKDV_DIVIDE Selects the constant used to divide the CLKIN input 
frequency to generate the CLKDV output frequency 

1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.0, 6.5, 7.0, 
7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16

CLKIN_PERIOD Additional information that allows the DLL to 
operate with the most efficient lock time and the 
best jitter tolerance

Floating-point value representing the 
CLKIN period in nanoseconds

http://www.xilinx.com
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Table  30: Direct Clock Input Connections and Optional External Feedback to Associated DCMs

Package

Differential Pair Differential Pair Differential Pair Differential Pair

N P N P N P N P

Pin Number for Single-Ended Input Pin Number for Single-Ended Input

VQ100 P91 P90 P89 P88 P86 P85 P84 P83

CP132 B7 A7 C8 B8 A9 B9 C9 A10

TQ144 P131 P130 P129 P128 P126 P125 P123 P122

PQ208 P186 P185 P184 P183 P181 P180 P178 P177

FT256 D8 C8 B8 A8 A9 A10 F9 E9

FG320 D9 C9 B9 B8 A10 B10 E10 D10

FG400 A9 A10 G10 H10 E10 E11 G11 F11

FG484 B11 C11 H11 H12 C12 B12 E12 F12

    Associated Global Buffers    
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11 GCLK7 GCLK6 GCLK5 GCLK4

Top Left DCM
XC3S100: N/A

XC3S250E, XC3S500E: DCM_X0Y1
XC3S1200E, XC3S1600E: DCM_X1Y3

Top Right DCM
XC3S100: DCM_X0Y1

XC3S250E, XC3S500E: DCM_X1Y1
XC3S1200E, XC3S1600E: DCM_X2Y3

   

H G F E
Clock Line (see Table 41)

D C B A
   

Bottom Left DCM
XC3S100: N/A

XC3S250E, XC3S500E: DCM_X0Y0

XC3S1200E, XC3S1600E: DCM_X1Y0
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1 Bottom Right DCM

XC3S100: DCM_X0Y0
XC3S250E, XC3S500E: DCM_X1Y0

XC3S1200E, XC3S1600E: DCM_X2Y0

GCLK12 GCLK13 GCLK14 GCLK15 GCLK0 GCLK1 GCLK2 GCLK3

    Associated Global Buffers    

Package

Differential Pair Differential Pair Differential Pair Differential Pair

P N P N P N P N

Pin Number for Single-Ended Input Pin Number for Single-Ended Input

VQ100 P32 P33 P35 P36 P38 P39 P40 P41

CP132 M4 N4 M5 N5 M6 N6 P6 P7

TQ144 P50 P51 P53 P54 P56 P57 P58 P59

PQ208 P74 P75 P77 P78 P80 P81 P82 P83

FT256 M8 L8 N8 P8 T9 R9 P9 N9

FG320 N9 M9 U9 V9 U10 T10 R10 P10

FG400 W9 W10 R10 P10 P11 P12 V10 V11

FG484 V11 U11 R11 T11 R12 P12 Y12 W12
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The CLKFX_DIVIDE is an integer ranging from 1 to 32, 
inclusive and forms the denominator in Equation 1. For 
example, if CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, 
the frequency of the output clock signal is 5/3 that of the 
input clock signal. These attributes and their acceptable 
ranges are described in Table 34.
 

Any combination of integer values can be assigned to the 
CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, 
provided that two conditions are met: 

1. The two values fall within their corresponding ranges, 
as specified in Table 34. 

2. The fCLKFX output frequency calculated in Equation 1 
falls within the DCM’s operating frequency 
specifications (see Table 107 in Module 3).

DFS With or Without the DLL

Although the CLKIN input is shared with both units, the DFS 
unit functions with or separately from the DLL unit. Separate 
from the DLL, the DFS generates an output frequency from 
the CLKIN frequency according to the respective 
CLKFX_MULTIPLY and CLKFX_DIVIDE values. Frequency 
synthesis does not require a feedback loop. Furthermore, 
without the DLL, the DFS unit supports a broader operating 
frequency range.

With the DLL, the DFS unit operates as described above, 
only with the additional benefit of eliminating the clock 
distribution delay. In this case, a feedback loop from the 
CLK0 or CLK2X output to the CLKFB input must be present. 

When operating with the DLL unit, the DFS’s CLKFX and 
CLKFX180 outputs are phase-aligned with the CLKIN input 
every CLKFX_DIVIDE cycles of CLKIN and every 
CLKFX_MULTIPLY cycles of CLKFX. For example, when 
CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, the input 
and output clock edges coincide every three CLKIN input 

periods, which is equivalent in time to five CLKFX output 
periods. 

Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values 
result in faster lock times. Therefore, CLKFX_MULTIPLY 
and CLKFX_DIVIDE must be factored to reduce their values 
wherever possible. For example, given CLKFX_MULTIPLY 
= 9 and CLKFX_DIVIDE = 6, removing a factor of three 
yields CLKFX_MULTIPLY = 3 and CLKFX_DIVIDE = 2. 
While both value-pairs result in the multiplication of clock 
frequency by 3/2, the latter value-pair enables the DLL to 
lock more quickly.

Phase Shifter (PS) 

The DCM provides two approaches to controlling the phase 
of a DCM clock output signal relative to the CLKIN signal: 
First, eight of the nine DCM clock outputs – CLK0, CLK90, 
CLK180, CLK270, CLK2X, CLK2X180, CLKFX, and 
CLKFX180 – provide either quadrant or half-period phase 
shifting of the input clock.

Second, the PS unit provides additional fine phase shift 
control of all nine DCM outputs. The PS unit accomplishes 
this by introducing a “fine phase shift” delay (TPS) between 
the CLKFB and CLKIN signals inside the DLL unit. In FIXED 
phase shift mode, the fine phase shift is specified at design 
time with a resolution down to 1/256

th of a CLKIN cycle or 
one delay step (DCM_DELAY_STEP), whichever is greater. 
This fine phase shift value is relative to the coarser quadrant 
or half-period phase shift of the DCM clock output. When 
used, the PS unit shifts the phase of all nine DCM clock 
output signals.

Enabling Phase Shifting and Selecting an Operat-
ing Mode

The CLKOUT_PHASE_SHIFT attribute controls the PS unit 
for the specific DCM instantiation. As described in Table 35, 
this attribute has three possible values: NONE, FIXED, and 
VARIABLE. When CLKOUT_PHASE_SHIFT = NONE, the 
PS unit is disabled and the DCM output clocks are 
phase-aligned to the CLKIN input via the CLKFB feedback 
path. Figure 44a shows this case.

The PS unit is enabled when the CLKOUT_PHASE_SHIFT 
attribute is set to FIXED or VARIABLE modes. These two 
modes are described in the sections that follow. 

Table  34: DFS Attributes

Attribute Description Values

CLKFX_MULTIPLY Frequency multiplier 
constant 

Integer from 2 
to 32, inclusive

CLKFX_DIVIDE Frequency divisor 
constant 

Integer from 1 
to 32, inclusive

Table  35: PS Attributes

Attribute Description Values 

CLKOUT_PHASE_SHIFT Disables the PS component or chooses between Fixed 
Phase and Variable Phase modes. 

NONE, FIXED, VARIABLE 

PHASE_SHIFT Determines size and direction of initial fine phase shift. Integers from –255 to +255

http://www.xilinx.com
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FIXED Phase Shift Mode 

The FIXED phase shift mode shifts the DCM outputs by a 
fixed amount (TPS), controlled by the user-specified 
PHASE_SHIFT attribute. The PHASE_SHIFT value (shown 
as P in Figure 44) must be an integer ranging from –255 to 
+255. PHASE_SHIFT specifies a phase shift delay as a 
fraction of the TCLKIN. The phase shift behavior is different 
between ISE 8.1, Service Pack 3 and prior software 
versions, as described below.

Design Note

Prior to ISE 8.1i, Service Pack 3, the FIXED phase shift 
feature operated differently than the Spartan-3 DCM design 
primitive and simulation model. Designs using software 
prior to ISE 8.1i, Service Pack 3 require recompilation using 
the latest ISE software release. The following Answer 
Record contains additional information:

http://www.xilinx.com/support/answers/23153.htm.

FIXED Phase Shift using ISE 8.1i, Service Pack 3 and 
later: See Equation 2. The value corresponds to a phase 
shift range of –360° to +360°, which matches behavior of 
the Spartan-3 DCM design primitive and simulation model.

Eq 2

FIXED Phase Shift prior to ISE 8.1i, Service Pack 3: See 
Equation 3. The value corresponds to a phase shift range of 
–180° to +180° degrees, which is different from the 
Spartan-3 DCM design primitive and simulation model. 
Designs created prior to ISE 8.1i, Service Pack 3 must be 
recompiled using the most recent ISE development 
software.

Eq 3

When the PHASE_SHIFT value is zero, CLKFB and CLKIN 
are in phase, the same as when the PS unit is disabled. 
When the PHASE_SHIFT value is positive, the DCM 
outputs are shifted later in time with respect to CLKIN input. 
When the attribute value is negative, the DCM outputs are 
shifted earlier in time with respect to CLKIN. 

Figure 44b illustrates the relationship between CLKFB and 
CLKIN in the Fixed Phase mode. In the Fixed Phase mode, 
the PSEN, PSCLK, and PSINCDEC inputs are not used 
and must be tied to GND.

Equation 2 or Equation 3 applies only to FIXED phase shift 
mode. The VARIABLE phase shift mode operates 
differently.

tPS
PHASESHIFT

256
---------------------------------------- 
  TCLKIN•=

tPS
PHASESHIFT

512
---------------------------------------- 
  TCLKIN•=

X-Ref Target - Figure 44

Figure 44: NONE and FIXED Phase Shifter Waveforms (ISE 8.1i, Service Pack 3 and later)

DS312-2_61_021606

CLKIN

CLKFB

* TCLKIN
P

256

b. CLKOUT_PHASE_SHIFT = FIXED

Shift Range over all P Values: –255 +2550

CLKIN

CLKFB

a. CLKOUT_PHASE_SHIFT = NONE

(via CLK0 or CLK2X feedback)

(via CLK0 or CLK2X feedback)

http://www.xilinx.com
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X-Ref Target - Figure 45

Figure 45: Spartan-3E Internal Quadrant-Based Clock Network (Electrical Connectivity View)
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Notes: 
1. The diagram presents electrical connectivity. The diagram locations do not necessarily match the physical location on the 

device, although the coordinate locations shown are correct.
2. Number of DCMs and locations of these DCM varies for different device densities. The left and right DCMs are only in the 

XC3S1200E and XC3S1600E. The XC3S100E has only two DCMs, one on the top right and one on the bottom right of the die.
3. See Figure 47a, which shows how the eight clock lines are multiplexed on the left-hand side of the device.
4. See Figure 47b, which shows how the eight clock lines are multiplexed on the right-hand side of the device.
5. For best direct clock inputs to a particular clock buffer, not a DCM, see Table 41.
6. For best direct clock inputs to a particular DCM, not a BUFGMUX, see Table 30, Table 31, and Table 32. Direct pin inputs to a 

DCM are shown in gray.
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 Similarly, the FPGA’s HSWAP pin must be Low to 
enable pull-up resistors on all user-I/O pins during 
configuration or High to disable the pull-up resistors. The 
HSWAP control must remain at a constant logic level 
throughout FPGA configuration. After configuration, when 
the FPGA’s DONE output goes High, the HSWAP pin is 

available as full-featured user-I/O pin and is powered by the 
VCCO_0 supply.

The FPGA's DOUT pin is used in daisy-chain applications, 
described later. In a single-FPGA application, the FPGA’s 
DOUT pin is not used but is actively driving during the 
configuration process.

P

Table  50: Serial Master Mode Connections

Pin Name FPGA 
Direction Description During Configuration After Configuration

HSWAP Input User I/O Pull-Up Control. When Low during 
configuration, enables pull-up resistors in all 
I/O pins to respective I/O bank VCCO input.
0: Pull-ups during configuration

1: No pull-ups

Drive at valid logic level 
throughout configuration.

User I/O

M[2:0] Input Mode Select. Selects the FPGA configuration 
mode. See Design Considerations for the 
HSWAP, M[2:0], and VS[2:0] Pins.

M2 = 0, M1 = 0, M0 = 0. Sampled 
when INIT_B goes High.

User I/O

DIN Input Serial Data Input. Receives serial data from PROM’s 
D0 output.

User I/O

CCLK Output Configuration Clock. Generated by FPGA 
internal oscillator. Frequency controlled by 
ConfigRate bitstream generator option. If 
CCLK PCB trace is long or has multiple 
connections, terminate this output to maintain 
signal integrity. See CCLK Design 
Considerations.

Drives PROM’s CLK clock input. User I/O

DOUT Output Serial Data Output. Actively drives. Not used in 
single-FPGA designs. In a 
daisy-chain configuration, this pin 
connects to DIN input of the next 
FPGA in the chain.

User I/O

INIT_B Open-drain 
bidirectional 

I/O

Initialization Indicator. Active Low. Goes 
Low at start of configuration during 
Initialization memory clearing process. 
Released at end of memory clearing, when 
mode select pins are sampled. Requires 
external 4.7 kΩ pull-up resistor to VCCO_2.

Connects to PROM’s OE/RESET 
input. FPGA clears PROM’s 
address counter at start of 
configuration, enables outputs 
during configuration. PROM also 
holds FPGA in Initialization state 
until PROM reaches Power-On 
Reset (POR) state. If CRC error 
detected during configuration, 
FPGA drives INIT_B Low.

User I/O. If unused in 
the application, drive 
INIT_B High.

DONE Open-drain 
bidirectional 

I/O

FPGA Configuration Done. Low during 
configuration. Goes High when FPGA 
successfully completes configuration. 
Requires external 330 Ω pull-up resistor to 
2.5V. 

Connects to PROM’s chip-enable 
(CE) input. Enables PROM during 
configuration. Disables PROM 
after configuration.

Pulled High via external 
pull-up.   When High, 
indicates that the FPGA 
successfully 
configured.

PROG_B Input Program FPGA. Active Low. When asserted 
Low for 500 ns or longer, forces the FPGA to 
restart its configuration process by clearing 
configuration memory and resetting the 
DONE and INIT_B pins once PROG_B 
returns High. Recommend external 4.7 kΩ 
pull-up resistor to 2.5V. Internal pull-up value 
may be weaker (see Table 78). If driving 
externally with a 3.3V output, use an 
open-drain or open-collector driver or use a 
current limiting series resistor.

Must be High during configuration 
to allow configuration to start. 
Connects to PROM’s CF pin, 
allowing JTAG PROM 
programming algorithm to 
reprogram the FPGA.

Drive PROG_B Low 
and release to 
reprogram FPGA.

P
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read operations at this time. Spartan-3E FPGAs issue the 
read command just once. If the SPI Flash is not ready, then 
the FPGA does not properly configure.

If the 3.3V supply is last in the sequence and does not ramp 
fast enough, or if the SPI Flash PROM cannot be ready 
when required by the FPGA, delay the FPGA configuration 
process by holding either the FPGA's PROG_B input or 
INIT_B input Low, as highlighted in Figure 54. Release the 
FPGA when the SPI Flash PROM is ready. For example, a 
simple R-C delay circuit attached to the INIT_B pin forces 
the FPGA to wait for a preselected amount of time. 
Alternately, a Power Good signal from the 3.3V supply or a 
system reset signal accomplishes the same purpose. Use 
an open-drain or open-collector output when driving 
PROG_B or INIT_B.

SPI Flash PROM Density Requirements

Table 57 shows the smallest usable SPI Flash PROM to 
program a single Spartan-3E FPGA. Commercially 
available SPI Flash PROMs range in density from 1 Mbit to 
128 Mbits. A multiple-FPGA daisy-chained application 
requires a SPI Flash PROM large enough to contain the 
sum of the FPGA file sizes. An application can also use a 
larger-density SPI Flash PROM to hold additional data 
beyond just FPGA configuration data. For example, the SPI 
Flash PROM can also store application code for a 
MicroBlaze™ RISC processor core integrated in the 
Spartan-3E FPGA. See Using the SPI Flash Interface after 
Configuration.

CCLK Frequency

In SPI Flash mode, the FPGA’s internal oscillator generates 
the configuration clock frequency. The FPGA provides this 
clock on its CCLK output pin, driving the PROM’s clock input 
pin. The FPGA starts configuration at its lowest frequency 
and increases its frequency for the remainder of the 
configuration process if so specified in the configuration 
bitstream. The maximum frequency is specified using the 
ConfigRate bitstream generator option. The maximum 
frequency supported by the FPGA configuration logic 
depends on the timing for the SPI Flash device. Without 
examining the timing for a specific SPI Flash PROM, use 
ConfigRate = 12 or lower. SPI Flash PROMs that support 
the FAST READ command support higher data rates. Some 

such PROMs support up to ConfigRate = 25 and beyond 
but require careful data sheet analysis. See Serial 
Peripheral Interface (SPI) Configuration Timing for more 
detailed timing analysis.

Using the SPI Flash Interface after Configuration

After the FPGA successfully completes configuration, all of 
the pins connected to the SPI Flash PROM are available as 
user-I/O pins.

If not using the SPI Flash PROM after configuration, drive 
CSO_B High to disable the PROM. The MOSI, DIN, and 
CCLK pins are then available to the FPGA application.

Because all the interface pins are user I/O after 
configuration, the FPGA application can continue to use the 
SPI Flash interface pins to communicate with the SPI Flash 
PROM, as shown in Figure 56. SPI Flash PROMs offer 
random-accessible, byte-addressable, read/write, 
non-volatile storage to the FPGA application.

SPI Flash PROMs are available in densities ranging from 
1 Mbit up to 128 Mbits. However, a single Spartan-3E 
FPGA requires less than 6 Mbits. If desired, use a larger 
SPI Flash PROM to contain additional non-volatile 
application data, such as MicroBlaze processor code, or 
other user data such as serial numbers and Ethernet MAC 
IDs. In the example shown in Figure 56, the FPGA 
configures from SPI Flash PROM. Then using FPGA logic 
after configuration, the FPGA copies MicroBlaze code from 
SPI Flash into external DDR SDRAM for code execution. 
Similarly, the FPGA application can store non-volatile 
application data within the SPI Flash PROM.

The FPGA configuration data is stored starting at location 0. 
Store any additional data beginning in the next available SPI 
Flash PROM sector or page. Do not mix configuration data 
and user data in the same sector or page.

Similarly, the SPI bus can be expanded to additional SPI 
peripherals. Because SPI is a common industry-standard 
interface, various SPI-based peripherals are available, such 
as analog-to-digital (A/D) converters, digital-to-analog (D/A) 
converters, CAN controllers, and temperature sensors. 
However, if sufficient I/O pins are available in the 
application, Xilinx recommends creating a separate SPI bus 
to control peripherals. Creating a second port reduces the 
loading on the CCLK and DIN pins, which are crucial for 
configuration.

The MOSI, DIN, and CCLK pins are common to all SPI 
peripherals. Connect the select input on each additional SPI 
peripheral to one of the FPGA user I/O pins. If HSWAP = 0 
during configuration, the FPGA holds the select line High. If 
HSWAP = 1, connect the select line to +3.3V via an external 
4.7 kΩ pull-up resistor to avoid spurious read or write 
operations. After configuration, drive the select line Low to 
select the desired SPI peripheral.

Table  57: Number of Bits to Program a Spartan-3E 
FPGA and Smallest SPI Flash PROM

Device Number of 
Configuration Bits

Smallest Usable SPI 
Flash PROM

XC3S100E 581,344 1 Mbit

XC3S250E 1,353,728 2 Mbit

XC3S500E 2,270,208 4 Mbit

XC3S1200E 3,841,184 4 Mbit

XC3S1600E 5,969,696 8 Mbit

http://www.xilinx.com
http://www.xilinx.com/microblaze
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Power Supply Specifications

Table  74: Supply Voltage Thresholds for Power-On Reset

Symbol Description Min Max Units

VCCINTT Threshold for the VCCINT supply 0.4 1.0 V

VCCAUXT Threshold for the VCCAUX supply 0.8 2.0 V

VCCO2T Threshold for the VCCO Bank 2 supply 0.4 1.0 V

Notes: 
1. VCCINT, VCCAUX, and VCCO supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash, 

SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration 
source. In Step 0 devices using the HSWAP internal pull-up, VCCINT must be applied before VCCAUX.

2. To ensure successful power-on, VCCINT, VCCO Bank 2, and VCCAUX supplies must rise through their respective threshold-voltage ranges with 
no dips at any point.

Table  75: Supply Voltage Ramp Rate

Symbol Description Min Max Units

VCCINTR Ramp rate from GND to valid VCCINT supply level 0.2 50 ms

VCCAUXR Ramp rate from GND to valid VCCAUX supply level 0.2 50 ms

VCCO2R Ramp rate from GND to valid VCCO Bank 2 supply level 0.2 50 ms

Notes: 
1. VCCINT, VCCAUX, and VCCO supplies to the FPGA can be applied in any order. However, the FPGA’s configuration source (Platform Flash, 

SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration 
source. In Step 0 devices using the HSWAP internal pull-up, VCCINT must be applied before VCCAUX.

2. To ensure successful power-on, VCCINT, VCCO Bank 2, and VCCAUX supplies must rise through their respective threshold-voltage ranges with 
no dips at any point.

Table  76: Supply Voltage Levels Necessary for Preserving RAM Contents

Symbol Description Min Units

VDRINT VCCINT level required to retain RAM data 1.0 V

VDRAUX VCCAUX level required to retain RAM data 2.0 V

Notes: 
1. RAM contents include configuration data.

http://www.xilinx.com
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Quiescent Current Requirements

Table  79: Quiescent Supply Current Characteristics

Symbol Description Device Typical Commercial
Maximum(1)

Industrial
Maximum(1) Units

ICCINTQ Quiescent VCCINT supply current XC3S100E 8 27 36 mA

XC3S250E 15 78 104 mA

XC3S500E 25 106 145 mA

XC3S1200E 50 259 324 mA

XC3S1600E 65 366 457 mA

ICCOQ Quiescent VCCO supply current XC3S100E 0.8 1.0 1.5 mA

XC3S250E 0.8 1.0 1.5 mA

XC3S500E 0.8 1.0 1.5 mA

XC3S1200E 1.5 2.0 2.5 mA

XC3S1600E 1.5 2.0 2.5 mA

ICCAUXQ Quiescent VCCAUX supply current XC3S100E 8 12 13 mA

XC3S250E 12 22 26 mA

XC3S500E 18 31 34 mA

XC3S1200E 35 52 59 mA

XC3S1600E 45 76 86 mA

Notes: 
1. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.
2. The numbers in this table are based on the conditions set forth in Table 77. 
3. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads 

disabled. Typical values are characterized using typical devices at room temperature (TJ of 25°C at VCCINT = 1.2 V, VCCO = 3.3V, and VCCAUX 
= 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage 
limits with VCCINT = 1.26V, VCCO = 3.465V, and VCCAUX = 2.625V. The FPGA is programmed with a “blank” configuration data file (i.e., a 
design with no functional elements instantiated). For conditions other than those described above, (e.g., a design including functional 
elements), measured quiescent current levels may be different than the values in the table. For more accurate estimates for a specific design, 
use the Xilinx® XPower tools.

4. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The 
Spartan-3E XPower Estimator provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower 
Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates.

http://www.xilinx.com/ise/power_tools/license_spartan3e.htm
http://www.xilinx.com
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Timing Measurement Methodology

When measuring timing parameters at the programmable 
I/Os, different signal standards call for different test 
conditions. Table 95 lists the conditions to use for each 
standard. 

The method for measuring Input timing is as follows: A 
signal that swings between a Low logic level of VL and a 
High logic level of VH is applied to the Input under test. 
Some standards also require the application of a bias 
voltage to the VREF pins of a given bank to properly set the 
input-switching threshold. The measurement point of the 
Input signal (VM) is commonly located halfway between VL 
and VH.

The Output test setup is shown in Figure 72. A termination 
voltage VT is applied to the termination resistor RT, the other 
end of which is connected to the Output. For each standard, 
RT and VT generally take on the standard values 
recommended for minimizing signal reflections. If the 
standard does not ordinarily use terminations (e.g., 

LVCMOS, LVTTL), then RT is set to 1MΩ to indicate an open 
connection, and VT is set to zero. The same measurement 
point (VM) that was used at the Input is also used at the 
Output.

X-Ref Target - Figure 72

Figure 72: Output Test Setup

FPGA Output

VT (VREF)

RT (RREF)

VM (VMEAS)

CL (CREF)

ds312-3_04_090105

Notes: 
1. The names shown in parentheses are 

used in the IBIS file.

Table  95: Test Methods for Timing Measurement at I/Os

Signal Standard
(IOSTANDARD)

Inputs Outputs Inputs and 
Outputs

VREF (V) VL (V) VH (V) RT (Ω) VT (V) VM (V) 

Single-Ended

LVTTL - 0 3.3 1M 0 1.4

LVCMOS33 - 0 3.3 1M 0 1.65

LVCMOS25 - 0 2.5 1M 0 1.25

LVCMOS18 - 0 1.8 1M 0 0.9

LVCMOS15 - 0 1.5 1M 0 0.75

LVCMOS12 - 0 1.2 1M 0 0.6

PCI33_3 Rising - Note 3 Note 3 25 0 0.94

Falling 25 3.3 2.03

PCI66_3 Rising - Note 3 Note 3 25 0 0.94

Falling 25 3.3 2.03

HSTL_I_18 0.9 VREF – 0.5 VREF + 0.5 50 0.9 VREF

HSTL_III_18 1.1 VREF – 0.5 VREF + 0.5 50 1.8 VREF

SSTL18_I 0.9 VREF – 0.5 VREF + 0.5 50 0.9 VREF

SSTL2_I 1.25 VREF – 0.75 VREF + 0.75 50 1.25 VREF

Differential

LVDS_25 - VICM – 0.125 VICM + 0.125 50 1.2 VICM

BLVDS_25 - VICM – 0.125 VICM + 0.125 1M 0 VICM

MINI_LVDS_25 - VICM – 0.125 VICM + 0.125 50 1.2 VICM

LVPECL_25 - VICM – 0.3 VICM + 0.3 1M 0 VICM

RSDS_25 - VICM – 0.1 VICM + 0.1 50 1.2 VICM

http://www.xilinx.com
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IEEE 1149.1/1532 JTAG Test Access Port Timing
X-Ref Target - Figure 78

Figure 78: JTAG Waveforms
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Table  123: Timing for the JTAG Test Access Port

Symbol Description
All Speed Grades

Units
Min Max

Clock-to-Output Times

TTCKTDO The time from the falling transition on the TCK pin to 
data appearing at the TDO pin

1.0 11.0 ns

Setup Times

TTDITCK The time from the setup of data at the TDI pin to the 
rising transition at the TCK pin

7.0 - ns

TTMSTCK The time from the setup of a logic level at the TMS pin 
to the rising transition at the TCK pin

7.0 - ns

Hold Times

TTCKTDI The time from the rising transition at the TCK pin to the 
point when data is last held at the TDI pin

0 - ns

TTCKTMS The time from the rising transition at the TCK pin to the 
point when a logic level is last held at the TMS pin

0 - ns

Clock Timing

TCCH The High pulse width at the TCK pin 5 - ns

TCCL The Low pulse width at the TCK pin 5 - ns

FTCK Frequency of the TCK signal - 30 MHz

Notes: 
1. The numbers in this table are based on the operating conditions set forth in Table 77.

http://www.xilinx.com
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Differential Pair Labeling 

I/Os with Lxxy_# are part of a differential pair. ‘L’ indicates 
differential capability. The ‘xx’ field is a two-digit integer, 
unique to each bank that identifies a differential pin-pair. 
The ‘y’ field is either ‘P’ for the true signal or ‘N’ for the 
inverted signal in the differential pair. The ‘#’ field is the I/O 
bank number. 

The pin name suffix has the following significance. 
Figure 79 provides a specific example showing a differential 
input to and a differential output from Bank 1. 

 ‘L’ indicates that the pin is part of a differential pair. 

‘xx’ is a two-digit integer, unique for each bank, that 
identifies a differential pin-pair. 

‘y’ is replaced by ‘P’ for the true signal or ‘N’ for the 
inverted. These two pins form one differential pin-pair. 

‘#’ is an integer, 0 through 3, indicating the associated 
I/O bank. 

VCCAUX Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the 
package used. All must be connected to +2.5V. See the Powering Spartan-3E 
FPGAs section in Module 2 for details.

VCCAUX

VCCINT Dedicated internal core logic power supply pin. The number of VCCINT pins 
depends on the package used. All must be connected to +1.2V. See the Powering 
Spartan-3E FPGAs section in Module 2 for details.

VCCINT

VCCO Along with all the other VCCO pins in the same bank, this pin supplies power to the 
output buffers within the I/O bank and sets the input threshold voltage for some I/O 
standards. See the Powering Spartan-3E FPGAs section in Module 2 for details.

VCCO_#

N.C. This package pin is not connected in this specific device/package combination but 
may be connected in larger devices in the same package.

N.C. 

Notes: 
1. # = I/O bank number, an integer between 0 and 3.
2. IRDY/TRDY designations are for PCI designs; refer to PCI documentation for details.

Table  124: Types of Pins on Spartan-3E FPGAs (Cont’d)

Type / Color 
Code Description Pin Name(s) in Type(1)

X-Ref Target - Figure 79

Figure 79: Differential Pair Labeling
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User I/Os by Bank 

Table 134 shows how the 83 available user-I/O pins are 
distributed on the XC3S100E FPGA packaged in the CP132 
package. Table 135 indicates how the 92 available user-I/O 

pins are distributed on the XC3S250E and the XC3S500E 
FPGAs in the CP132 package.

Table  134: User I/Os Per Bank for the XC3S100E in the CP132 Package

Package 
Edge I/O Bank Maximum I/O

All Possible I/O Pins by Type

I/O INPUT DUAL VREF(1) CLK(2)

Top 0 18 6 2 1 1 8

Right 1 23 0 0 21 2 0(2)

Bottom 2 22 0 0 20 2 0(2)

Left 3 20 10 0 0 2 8

TOTAL 83 16 2 42 7 16

Notes: 
1. Some VREF and CLK pins are on INPUT pins.
2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table  135: User I/Os Per Bank for the XC3S250E and XC3S500E in the CP132 Package

Package 
Edge I/O Bank Maximum I/O

All Possible I/O Pins by Type

I/O INPUT DUAL VREF(1) CLK(2)

Top 0 22 11 0 1 2 8

Right 1 23 0 0 21 2 0(2)

Bottom 2 26 0 0 24 2 0(2)

Left 3 21 11 0 0 2 8

TOTAL 92 22 0 46 8 16

Notes: 
1. Some VREF and CLK pins are on INPUT pins.
2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.
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FT256: 256-ball Fine-pitch, Thin Ball Grid Array
The 256-ball fine-pitch, thin ball grid array package, FT256, 
supports three different Spartan-3E FPGAs, including the 
XC3S250E, the XC3S500E, and the XC3S1200E.

Table 143 lists all the package pins. They are sorted by 
bank number and then by pin name of the largest device. 
Pins that form a differential I/O pair appear together in the 
table. The table also shows the pin number for each pin and 
the pin type, as defined earlier.

The highlighted rows indicate pinout differences between 
the XC3S250E, the XC3S500E, and the XC3S1200E 
FPGAs. The XC3S250E has 18 unconnected balls, 
indicated as N.C. (No Connection) in Table 143 and with the 
black diamond character () in Table 143 and Figure 83.

If the table row is highlighted in tan, then this is an instance 
where an unconnected pin on the XC3S250E FPGA maps 

to a VREF pin on the XC3S500E and XC3S1200E FPGA. If 
the FPGA application uses an I/O standard that requires a 
VREF voltage reference, connect the highlighted pin to the 
VREF voltage supply, even though this does not actually 
connect to the XC3S250E FPGA. This VREF connection on 
the board allows future migration to the larger devices 
without modifying the printed-circuit board.

All other balls have nearly identical functionality on all three 
devices. Table 147 summarizes the Spartan-3E footprint 
migration differences for the FT256 package.

An electronic version of this package pinout table and 
footprint diagram is available for download from the Xilinx 
web site at:

http://www.xilinx.com/support/documentation/data_sheets
/s3e_pin.zip

Pinout Table

Table  143: FT256 Package Pinout

Bank XC3S250E Pin Name XC3S500E Pin Name XC3S1200E Pin Name FT256 
Ball Type

0 IO IO IO A7 I/O

0 IO IO IO A12 I/O

0 IO IO IO B4 I/O

0 IP IP IO B6 250E: INPUT
500E: INPUT
1200E: I/O

0 IP IP IO B10 250E: INPUT
500E: INPUT
1200E: I/O

0 IO/VREF_0 IO/VREF_0 IO/VREF_0 D9 VREF

0 IO_L01N_0 IO_L01N_0 IO_L01N_0 A14 I/O

0 IO_L01P_0 IO_L01P_0 IO_L01P_0 B14 I/O

0 IO_L03N_0/VREF_0 IO_L03N_0/VREF_0 IO_L03N_0/VREF_0 A13 VREF

0 IO_L03P_0 IO_L03P_0 IO_L03P_0 B13 I/O

0 IO_L04N_0 IO_L04N_0 IO_L04N_0 E11 I/O

0 IO_L04P_0 IO_L04P_0 IO_L04P_0 D11 I/O

0 IO_L05N_0/VREF_0 IO_L05N_0/VREF_0 IO_L05N_0/VREF_0 B11 VREF

0 IO_L05P_0 IO_L05P_0 IO_L05P_0 C11 I/O

0 IO_L06N_0 IO_L06N_0 IO_L06N_0 E10 I/O

0 IO_L06P_0 IO_L06P_0 IO_L06P_0 D10 I/O

0 IO_L08N_0/GCLK5 IO_L08N_0/GCLK5 IO_L08N_0/GCLK5 F9 GCLK

0 IO_L08P_0/GCLK4 IO_L08P_0/GCLK4 IO_L08P_0/GCLK4 E9 GCLK

0 IO_L09N_0/GCLK7 IO_L09N_0/GCLK7 IO_L09N_0/GCLK7 A9 GCLK

0 IO_L09P_0/GCLK6 IO_L09P_0/GCLK6 IO_L09P_0/GCLK6 A10 GCLK

0 IO_L11N_0/GCLK11 IO_L11N_0/GCLK11 IO_L11N_0/GCLK11 D8 GCLK

0 IO_L11P_0/GCLK10 IO_L11P_0/GCLK10 IO_L11P_0/GCLK10 C8 GCLK

0 IO_L12N_0 IO_L12N_0 IO_L12N_0 F8 I/O
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