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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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The basic usage of the carry logic is to generate a half-sum 
in the LUT via an XOR function, which generates or 
propagates a carry out COUT via the carry mux CYMUXF 
(or CYMUXG), and then complete the sum with the 
dedicated XORF (or XORG) gate and the carry input CIN. 
This structure allows two bits of an arithmetic function in 
each slice. The CYMUXF (or CYMUXG) can be instantiated 
using the MUXCY element, and the XORF (or XORG) can 
be instantiated using the XORCY element.

The FAND (or GAND) gate is used for partial product 
multiplication and can be instantiated using the MULT_AND 
component. Partial products are generated by two-input 
AND gates and then added. The carry logic is efficient for 
the adder, but one of the inputs must be outside the LUT as 
shown in Figure 23. 

The FAND (or GAND) gate is used to duplicate one of the 
partial products, while the LUT generates both partial 
products and the XOR function, as shown in Figure 24.

CY0G Carry generation for top half of slice. Fixed selection of:
· G1 or G2 inputs to the LUT (both equal 1 when a carry is to be generated)
· GAND gate for multiplication
· BY input for carry initialization
· Fixed 1 or 0 input for use as a simple Boolean function

CYMUXF Carry generation or propagation mux for bottom half of slice. Dynamic selection via CYSELF of:
· CYINIT carry propagation (CYSELF = 1)
· CY0F carry generation (CYSELF = 0)

CYMUXG Carry generation or propagation mux for top half of slice. Dynamic selection via CYSELF of:
· CYMUXF carry propagation (CYSELG = 1)
· CY0G carry generation (CYSELG = 0)

CYSELF Carry generation or propagation select for bottom half of slice. Fixed selection of:
· F-LUT output (typically XOR result)
· Fixed 1 to always propagate

CYSELG Carry generation or propagation select for top half of slice. Fixed selection of:
· G-LUT output (typically XOR result)
· Fixed 1 to always propagate

XORF Sum generation for bottom half of slice. Inputs from:
· F-LUT
· CYINIT carry signal from previous stage
Result is sent to either the combinatorial or registered output for the top of the slice.

XORG Sum generation for top half of slice. Inputs from:
· G-LUT 
· CYMUXF carry signal from previous stage
Result is sent to either the combinatorial or registered output for the top of the slice.

FAND Multiplier partial product for bottom half of slice. Inputs:
· F-LUT F1 input
· F-LUT F2 input
Result is sent through CY0F to become the carry generate signal into CYMUXF

GAND Multiplier partial product for top half of slice. Inputs:
· G-LUT G1 input
· G-LUT G2 input
Result is sent through CY0G to become the carry generate signal into CYMUXG

Table  14: Carry Logic Functions (Cont’d)

Function Description

X-Ref Target - Figure 23

Figure 23: Using the MUXCY and XORCY in the Carry 
Logic
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X-Ref Target - Figure 31

Figure 31: Data Organization and Bus-matching Operation with Different Port Widths on Port A and Port B
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Delay-Locked Loop (DLL) 

The most basic function of the DLL component is to 
eliminate clock skew. The main signal path of the DLL 
consists of an input stage, followed by a series of discrete 
delay elements or steps, which in turn leads to an output 
stage. This path together with logic for phase detection and 
control forms a system complete with feedback as shown in 
Figure 41. In Spartan-3E FPGAs, the DLL is implemented 
using a counter-based delay line.

The DLL component has two clock inputs, CLKIN and 
CLKFB, as well as seven clock outputs, CLK0, CLK90, 
CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as 
described in Table 28. The clock outputs drive 
simultaneously. Signals that initialize and report the state of 
the DLL are discussed in Status Logic.

 

The clock signal supplied to the CLKIN input serves as a 
reference waveform. The DLL seeks to align the rising-edge 
of feedback signal at the CLKFB input with the rising-edge 
of CLKIN input. When eliminating clock skew, the common 
approach to using the DLL is as follows: The CLK0 signal is 
passed through the clock distribution network that feeds all 
the registers it synchronizes. These registers are either 

internal or external to the FPGA. After passing through the 
clock distribution network, the clock signal returns to the 
DLL via a feedback line called CLKFB. The control block 
inside the DLL measures the phase error between CLKFB 
and CLKIN. This phase error is a measure of the clock skew 
that the clock distribution network introduces. The control 
block activates the appropriate number of delay steps to 

X-Ref Target - Figure 41

Figure 41: Simplified Functional Diagram of DLL

Table  28: DLL Signals

Signal Direction Description

CLKIN Input Receives the incoming clock signal. See Table 30, Table 31, and Table 32 for optimal external 
inputs to a DCM.

CLKFB Input Accepts either CLK0 or CLK2X as the feedback signal. (Set the CLK_FEEDBACK attribute 
accordingly). 

CLK0 Output Generates a clock signal with the same frequency and phase as CLKIN. 

CLK90 Output Generates a clock signal with the same frequency as CLKIN, phase-shifted by 90°. 

CLK180 Output Generates a clock signal with the same frequency as CLKIN, phase-shifted by 180°. 

CLK270 Output Generates a clock signal with the same frequency as CLKIN, phase-shifted by 270°. 

CLK2X Output Generates a clock signal with the same phase as CLKIN, and twice the frequency. 

CLK2X180 Output Generates a clock signal with twice the frequency of CLKIN, and phase-shifted 180° with respect 
to CLK2X. 

CLKDV Output Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower frequency clock signal 
that is phase-aligned to CLKIN. 
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SPI Serial Flash Mode

For additional information, refer to the “Master SPI Mode” 
chapter in UG332.

In SPI Serial Flash mode (M[2:0] = <0:0:1>), the Spartan-3E 
FPGA configures itself from an attached industry-standard 
SPI serial Flash PROM, as illustrated in Figure 53 and 
Figure 54. The FPGA supplies the CCLK output clock from 
its internal oscillator to the clock input of the attached SPI 
Flash PROM.

 Although SPI is a standard four-wire interface, various 
available SPI Flash PROMs use different command 
protocols. The FPGA’s variant select pins, VS[2:0], define 
how the FPGA communicates with the SPI Flash, including 
which SPI Flash command the FPGA issues to start the 
read operation and the number of dummy bytes inserted 
before the FPGA expects to receive valid data from the SPI 
Flash. Table 53 shows the available SPI Flash PROMs 
expected to operate with Spartan-3E FPGAs. Other 
compatible devices might work but have not been tested for 
suitability with Spartan-3E FPGAs. All other VS[2:0] values 
are reserved for future use. Consult the data sheet for the 
desired SPI Flash device to determine its suitability. The 
basic timing requirements and waveforms are provided in 

Serial Peripheral Interface (SPI) Configuration Timing in 
Module 3.

Figure 53 shows the general connection diagram for those 
SPI Flash PROMs that support the 0x03 READ command 
or the 0x0B FAST READ commands.

Figure 54 shows the connection diagram for Atmel 
DataFlash serial PROMs, which also use an SPI-based 
protocol. ‘B’-series DataFlash devices are limited to FPGA 
applications operating over the commercial temperature 
range. Industrial temperature range applications must use 
‘C’- or ‘D’-series DataFlash devices, which have a shorter 
DataFlash select setup time, because of the faster FPGA 
CCLK frequency at cold temperatures.

X-Ref Target - Figure 53

Figure 53: SPI Flash PROM Interface for PROMs Supporting READ (0x03) and FAST_READ (0x0B) Commands
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HDC Output PROM Write Enable Connect to PROM write-enable 
input (WE#). FPGA drives this 
signal High throughout 
configuration.

User I/O

LDC2 Output PROM Byte Mode This signal is not used for x8 
PROMs. For PROMs with a x8/x16 
data width control, connect to 
PROM byte-mode input (BYTE#). 
See Precautions Using x8/x16 
Flash PROMs. FPGA drives this 
signal Low throughout 
configuration.

User I/O. Drive this pin High 
after configuration to use a 
x8/x16 PROM in x16 mode.

A[23:0] Output Address Connect to PROM address inputs. 
High-order address lines may not 
be available in all packages and 
not all may be required. Number of 
address lines required depends on 
the size of the attached Flash 
PROM. FPGA address generation 
controlled by M0 mode pin. 
Addresses presented on falling 
CCLK edge.
Only 20 address lines are available 
in TQ144 package.

User I/O

D[7:0] Input Data Input FPGA receives byte-wide data on 
these pins in response the address 
presented on A[23:0]. Data 
captured by FPGA on rising edge 
of CCLK.

User I/O. If bitstream option 
Persist=Yes, becomes 
part of SelectMap parallel 
peripheral interface.

CSO_B Output Chip Select Output. Active Low. Not used in single FPGA 
applications. In a daisy-chain 
configuration, this pin connects to 
the CSI_B pin of the next FPGA in 
the chain. If HSWAP = 1 in a 
multi-FPGA daisy-chain 
application, connect this signal to a 
4.7 kΩ pull-up resistor to VCCO_2. 
Actively drives Low when selecting 
a downstream device in the chain.

User I/O

BUSY Output Busy Indicator. Typically only used 
after configuration, if bitstream 
option Persist=Yes.

Not used during configuration but 
actively drives.

User I/O. If bitstream option 
Persist=Yes, becomes 
part of SelectMap parallel 
peripheral interface.

CCLK Output Configuration Clock. Generated 
by FPGA internal oscillator. 
Frequency controlled by 
ConfigRate bitstream generator 
option. If CCLK PCB trace is long or 
has multiple connections, terminate 
this output to maintain signal 
integrity. See CCLK Design 
Considerations.

Not used in single FPGA 
applications but actively drives. In 
a daisy-chain configuration, drives 
the CCLK inputs of all other 
FPGAs in the daisy-chain.

User I/O. If bitstream option 
Persist=Yes, becomes 
part of SelectMap parallel 
peripheral interface.

INIT_B Open-drain 
bidirectional I/O

Initialization Indicator. Active Low. 
Goes Low at start of configuration 
during the Initialization memory 
clearing process. Released at the 
end of memory clearing, when the 
mode select pins are sampled. In 
daisy-chain applications, this signal 
requires an external 4.7 kΩ pull-up 
resistor to VCCO_2.

Active during configuration. If CRC 
error detected during 
configuration, FPGA drives INIT_B 
Low.

User I/O. If unused in the 
application, drive INIT_B 
High.

Table  59: Byte-Wide Peripheral Interface (BPI) Connections (Cont’d)

Pin Name FPGA Direction Description During Configuration After Configuration

D
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Voltage Compatibility

 The FPGA’s parallel Flash interface signals are within 
I/O Banks 1 and 2. The majority of parallel Flash PROMs 
use a single 3.3V supply voltage.    Consequently, in most 
cases, the FPGA’s VCCO_1 and VCCO_2 supply voltages 
must also be 3.3V to match the parallel Flash PROM. There 
are some 1.8V parallel Flash PROMs available and the 
FPGA interfaces with these devices if the VCCO_1 and 
VCCO_2 supplies are also 1.8V.

Power-On Precautions if PROM Supply is Last in 
Sequence

Like SPI Flash PROMs, parallel Flash PROMs typically 
require some amount of internal initialization time when the 
supply voltage reaches its minimum value. 

The PROM supply voltage also connects to the FPGA’s 
VCCO_2 supply input. In many systems, the PROM supply 
feeding the FPGA’s VCCO_2 input is valid before the 
FPGA’s other VCCINT and VCCAUX supplies, and 
consequently, there is no issue. However, if the PROM 
supply is last in the sequence, a potential race occurs 
between the FPGA and the parallel Flash PROM. See 

Power-On Precautions if 3.3V Supply is Last in Sequence 
for a similar description of the issue for SPI Flash PROMs.

Supported Parallel NOR Flash PROM Densities

Table 60 indicates the smallest usable parallel Flash PROM 
to program a single Spartan-3E FPGA. Parallel Flash 
density is specified in bits but addressed as bytes. The 
FPGA presents up to 24 address lines during configuration 
but not all are required for single FPGA applications. 
Table 60 shows the minimum required number of address 
lines between the FPGA and parallel Flash PROM. The 
actual number of address line required depends on the 
density of the attached parallel Flash PROM.

A multiple-FPGA daisy-chained application requires a 
parallel Flash PROM large enough to contain the sum of the 
FPGA file sizes. An application can also use a larger-density 
parallel Flash PROM to hold additional data beyond just 
FPGA configuration data. For example, the parallel Flash 
PROM can also contain the application code for a MicroBlaze 
RISC processor core implemented within the Spartan-3E 
FPGA. After configuration, the MicroBlaze processor can 
execute directly from external Flash or can copy the code to 
other, faster system memory before executing the code.

DONE Open-drain 
bidirectional I/O

FPGA Configuration Done. Low 
during configuration. Goes High 
when FPGA successfully completes 
configuration. Requires external 
330 Ω pull-up resistor to 2.5V. 

Low indicates that the FPGA is not 
yet configured.

Pulled High via external 
pull-up. When High, 
indicates that the FPGA is 
successfully configured.

PROG_B Input Program FPGA. Active Low. When 
asserted Low for 500 ns or longer, 
forces the FPGA to restart its 
configuration process by clearing 
configuration memory and resetting 
the DONE and INIT_B pins once 
PROG_B returns High. 
Recommend external 4.7 kΩ 
pull-up resistor to 2.5V. Internal 
pull-up value may be weaker (see 
Table 78). If driving externally with a 
3.3V output, use an open-drain or 
open-collector driver or use a 
current limiting series resistor.

Must be High to allow configuration 
to start.

Drive PROG_B Low and 
release to reprogram 
FPGA. Hold PROG_B to 
force FPGA I/O pins into 
Hi-Z, allowing direct 
programming access to 
Flash PROM pins.

Table  59: Byte-Wide Peripheral Interface (BPI) Connections (Cont’d)

Pin Name FPGA Direction Description During Configuration After Configuration

V

Table  60: Number of Bits to Program a Spartan-3E FPGA and Smallest Parallel Flash PROM

Spartan-3E FPGA Uncompressed
File Sizes (bits)

Smallest Usable
Parallel Flash PROM

Minimum Required
Address Lines

XC3S100E 581,344 1 Mbit A[16:0]

XC3S250E 1,353,728 2 Mbit A[17:0]

XC3S500E 2,270,208 4 Mbit A[18:0]

XC3S1200E 3,841,184 4 Mbit A[18:0]

XC3S1600E 5,969,696 8 Mbit A[19:0]

http://www.xilinx.com
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Readback

FPGA configuration data can be read back using either the 
Slave Parallel or JTAG mode. This function is disabled if the 
Bitstream Generator Security option is set to either Level1 
or Level2.

Along with the configuration data, it is possible to read back 
the contents of all registers and distributed RAM.

To synchronously control when register values are captured 
for readback, use the CAPTURE_SPARTAN3 library 
primitive, which applies for both Spartan-3 and Spartan-3E 
FPGA families.

The Readback feature is available in most Spartan-3E 
FPGA product options, as indicated in Table 68. The 
Readback feature is not available in the XC3S1200E and 
XC3S1600E FPGAs when using the -4 speed grade in the 
Commercial temperature grade. Similarly, block RAM 
Readback support is not available in the -4 speed grade, 
Commercial temperature devices. If Readback is required in 
an XC3S1200E or XC3S1600E FPGA, or if block RAM 
Readback is required on any Spartan-3E FPGA, upgrade to 
either the Industrial temperature grade version or the -5 
speed grade.

The Xilinx iMPACT programming software uses the 
Readback feature for its optional Verify and Readback 
operations. The Xilinx ChipScope™ software presently 
does not use Readback but may in future updates. 

 

Table  68: Readback Support in Spartan-3E FPGAs

Temperature Range Commercial Industrial

Speed Grade -4 -5 -4

Block RAM Readback

All Spartan-3E FPGAs No Yes Yes

General Readback (registers, distributed RAM)

XC3S100E Yes Yes Yes

XC3S250E Yes Yes Yes

XC3S500E Yes Yes Yes

XC3S1200E No Yes Yes

XC3S1600E No Yes Yes

http://www.xilinx.com
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Differential I/O Standards
X-Ref Target - Figure 69

Figure 69: Differential Input Voltages

Table  82: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

IOSTANDARD 
Attribute

VCCO for Drivers(1) VID VICM

Min (V) Nom (V) Max (V) Min (mV) Nom (mV) Max (mV) Min (V) Nom (V) Max (V)

LVDS_25 2.375 2.50 2.625 100 350 600 0.30 1.25 2.20

BLVDS_25 2.375 2.50 2.625 100 350 600 0.30 1.25 2.20

MINI_LVDS_25 2.375 2.50 2.625 200 - 600 0.30 - 2.2

LVPECL_25(2) Inputs Only 100 800 1000 0.5 1.2 2.0

RSDS_25 2.375 2.50 2.625 100 200 - 0.3 1.20 1.4

DIFF_HSTL_I_18 1.7 1.8 1.9 100 - - 0.8 - 1.1

DIFF_HSTL_III_18 1.7 1.8 1.9 100 - - 0.8 - 1.1

DIFF_SSTL18_I 1.7 1.8 1.9 100 - - 0.7 - 1.1

DIFF_SSTL2_I 2.3 2.5 2.7 100 - - 1.0 - 1.5

Notes: 
1. The VCCO rails supply only differential output drivers, not input circuits.
2. VREF inputs are not used for any of the differential I/O standards.

DS099-3_01_012304
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Switching Characteristics
All Spartan-3E FPGAs ship in two speed grades: -4 and the 
higher performance -5. Switching characteristics in this 
document may be designated as Advance, Preliminary, or 
Production, as shown in Table 84. Each category is defined 
as follows:

Advance: These specifications are based on simulations 
only and are typically available soon after establishing 
FPGA specifications. Although speed grades with this 
designation are considered relatively stable and 
conservative, some under-reporting might still occur.

Preliminary: These specifications are based on complete 
early silicon characterization. Devices and speed grades 
with this designation are intended to give a better indication 
of the expected performance of production silicon. The 
probability of under-reporting preliminary delays is greatly 
reduced compared to Advance data.

Production: These specifications are approved once 
enough production silicon of a particular device family 
member has been characterized to provide full correlation 
between speed files and devices over numerous production 
lots. There is no under-reporting of delays, and customers 
receive formal notification of any subsequent changes. 
Typically, the slowest speed grades transition to Production 
before faster speed grades.

Software Version Requirements

Production-quality systems must use FPGA designs 
compiled using a speed file designated as PRODUCTION 
status. FPGAs designs using a less mature speed file 
designation should only be used during system prototyping 
or pre-production qualification. FPGA designs with speed 
files designated as Advance or Preliminary should not be 
used in a production-quality system.

Whenever a speed file designation changes, as a device 
matures toward Production status, rerun the latest Xilinx 
ISE software on the FPGA design to ensure that the FPGA 
design incorporates the latest timing information and 
software updates.

All parameter limits are representative of worst-case supply 
voltage and junction temperature conditions. Unless 
otherwise noted, the published parameter values apply 
to all Spartan-3E devices. AC and DC characteristics 
are specified using the same numbers for both 
commercial and industrial grades. 

Create a Xilinx user account and sign up to receive 
automatic e-mail notification whenever this data sheet or 
the associated user guides are updated.

Sign Up for Alerts on Xilinx.com
https://secure.xilinx.com/webreg/register.do
?group=myprofile&languageID=1

Timing parameters and their representative values are 
selected for inclusion below either because they are 
important as general design requirements or they indicate 
fundamental device performance characteristics. The 
Spartan-3E speed files (v1.27), part of the Xilinx 
Development Software, are the original source for many but 
not all of the values. The speed grade designations for 
these files are shown in Table 84. For more complete, more 
precise, and worst-case data, use the values reported by 
the Xilinx static timing analyzer (TRACE in the Xilinx 
development software) and back-annotated to the 
simulation netlist.

Table 85 provides the history of the Spartan-3E speed files 
since all devices reached Production status.

Table  84: Spartan-3E v1.27 Speed Grade Designations

Device Advance Preliminary Production

XC3S100E -MIN, -4, -5

XC3S250E -MIN, -4, -5

XC3S500E -MIN, -4, -5

XC3S1200E -MIN, -4, -5

XC3S1600E -MIN, -4, -5

Table  85: Spartan-3E Speed File Version History

Version ISE 
Release Description

1.27 9.2.03i Added XA Automotive.

1.26 8.2.02i Added -0/-MIN speed grade, which 
includes minimum values.

1.25 8.2.01i Added XA Automotive devices to speed 
file. Improved model for left and right 
DCMs.

1.23 8.2i Updated input setup/hold values based 
on default IFD_DELAY_VALUE 
settings.

1.21 8.1.03i All Spartan-3E FPGAs and all speed 
grades elevated to Production status.

http://www.xilinx.com
https://secure.xilinx.com/webreg/register.do?group=myprofile&languageID=1
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The capacitive load (CL) is connected between the output 
and GND. The Output timing for all standards, as published 
in the speed files and the data sheet, is always based on a 
CL value of zero. High-impedance probes (less than 1 pF) 
are used for all measurements. Any delay that the test 
fixture might contribute to test measurements is subtracted 
from those measurements to produce the final timing 
numbers as published in the speed files and data sheet.

Using IBIS Models to Simulate Load 
Conditions in Application

IBIS models permit the most accurate prediction of timing 
delays for a given application. The parameters found in the 
IBIS model (VREF, RREF, and VMEAS) correspond directly 
with the parameters used in Table 95 (VT, RT, and VM). Do 
not confuse VREF (the termination voltage) from the IBIS 
model with VREF (the input-switching threshold) from the 
table. A fourth parameter, CREF, is always zero. The four 
parameters describe all relevant output test conditions. IBIS 
models are found in the Xilinx development software as well 
as at the following link:

http://www.xilinx.com/support/download/index.htm

Delays for a given application are simulated according to its 
specific load conditions as follows:

1. Simulate the desired signal standard with the output 
driver connected to the test setup shown in Figure 72. 
Use parameter values VT, RT, and VM from Table 95. 
CREF is zero. 

2. Record the time to VM.

3. Simulate the same signal standard with the output 
driver connected to the PCB trace with load. Use the 
appropriate IBIS model (including VREF, RREF, CREF, 
and VMEAS values) or capacitive value to represent the 
load.

4. Record the time to VMEAS.

5. Compare the results of steps 2 and 4. Add (or subtract) 
the increase (or decrease) in delay to (or from) the 
appropriate Output standard adjustment (Table 94) to 
yield the worst-case delay of the PCB trace.

DIFF_HSTL_I_18 - VREF – 0.5 VREF + 0.5 50 0.9 VICM

DIFF_HSTL_III_18 - VREF – 0.5 VREF + 0.5 50 1.8 VICM

DIFF_SSTL18_I - VREF – 0.5 VREF + 0.5 50 0.9 VICM

DIFF_SSTL2_I - VREF – 0.5 VREF + 0.5 50 1.25 VICM

Notes: 
1. Descriptions of the relevant symbols are as follows:

VREF – The reference voltage for setting the input switching threshold
VICM – The common mode input voltage
VM – Voltage of measurement point on signal transition
VL – Low-level test voltage at Input pin
VH – High-level test voltage at Input pin
RT – Effective termination resistance, which takes on a value of 1MΩ when no parallel termination is required
VT – Termination voltage

2. The load capacitance (CL) at the Output pin is 0 pF for all signal standards.
3. According to the PCI specification.

Table  95: Test Methods for Timing Measurement at I/Os (Cont’d)

Signal Standard
(IOSTANDARD)

Inputs Outputs Inputs and 
Outputs

VREF (V) VL (V) VH (V) RT (Ω) VT (V) VM (V) 

http://www.xilinx.com/support/download/index.htm
http://www.xilinx.com
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Table  105: Switching Characteristics for the DLL

Symbol Description Device

Speed Grade

Units-5 -4

Min Max Min Max

Output Frequency Ranges

CLKOUT_FREQ_CLK0 Frequency for the CLK0 and 
CLK180 outputs

Stepping 0 XC3S100E
XC3S250E
XC3S500E

XC3S1600E

N/A N/A 5 90 MHz

XC3S1200E 200 MHz

Stepping 1 All 5 275 240 MHz

CLKOUT_FREQ_CLK90 Frequency for the CLK90 and 
CLK270 outputs

Stepping 0 XC3S100E
XC3S250E
XC3S500E

XC3S1600E

N/A N/A 5 90 MHz

XC3S1200E 167 MHz

Stepping 1 All 5 200 200 MHz

CLKOUT_FREQ_2X Frequency for the CLK2X and 
CLK2X180 outputs

Stepping 0 XC3S100E
XC3S250E
XC3S500E

XC3S1600E

N/A N/A 10 180 MHz

XC3S1200E 311 MHz

Stepping 1 All 10 333 311 MHz

CLKOUT_FREQ_DV Frequency for the CLKDV 
output

Stepping 0 XC3S100E
XC3S250E
XC3S500E

XC3S1600E

N/A N/A 0.3125 60 MHz

XC3S1200E 133 MHz

Stepping 1 All 0.3125 183 160 MHz

Output Clock Jitter (2,3,4)

CLKOUT_PER_JITT_0 Period jitter at the CLK0 output All - ±100 - ±100 ps

CLKOUT_PER_JITT_90 Period jitter at the CLK90 output - ±150 - ±150 ps

CLKOUT_PER_JITT_180 Period jitter at the CLK180 output - ±150 - ±150 ps

CLKOUT_PER_JITT_270 Period jitter at the CLK270 output - ±150 - ±150 ps

CLKOUT_PER_JITT_2X Period jitter at the CLK2X and CLK2X180 outputs - ±[1% of 
CLKIN 
period
+ 150]

- ±[1% of 
CLKIN 
period
+ 150]

ps

CLKOUT_PER_JITT_DV1 Period jitter at the CLKDV output when 
performing integer division

- ±150 - ±150 ps

CLKOUT_PER_JITT_DV2 Period jitter at the CLKDV output when 
performing non-integer division

- ±[1% of 
CLKIN 
period
+ 200]

- ±[1% of 
CLKIN 
period
+ 200]

ps

Duty Cycle(4)

CLKOUT_DUTY_CYCLE_DLL Duty cycle variation for the CLK0, CLK90, 
CLK180, CLK270, CLK2X, CLK2X180, and 
CLKDV outputs, including the BUFGMUX and 
clock tree duty-cycle distortion

All - ±[1% of 
CLKIN 
period
+ 400]

- ±[1% of 
CLKIN 
period
+ 400]

ps

http://www.xilinx.com
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Digital Frequency Synthesizer (DFS)

Phase Alignment(4)

CLKIN_CLKFB_PHASE Phase offset between the CLKIN and CLKFB 
inputs

All - ±200 - ±200 ps

CLKOUT_PHASE_DLL Phase offset between DLL 
outputs

CLK0 to CLK2X
(not CLK2X180)

- ±[1% of 
CLKIN 
period
+ 100]

- ±[1% of 
CLKIN 
period
+ 100]

ps

All others - ±[1% of 
CLKIN 
period
+ 200]

- ±[1% of 
CLKIN 
period
+ 200]

ps

Lock Time

LOCK_DLL(3) When using the DLL alone: 
The time from deassertion at 
the DCM’s Reset input to the 
rising transition at its 
LOCKED output. When the 
DCM is locked, the CLKIN and 
CLKFB signals are in phase

5 MHz ≤ FCLKIN 
≤ 15 MHz

All - 5 - 5 ms

FCLKIN > 15 MHz - 600 - 600 μs

Delay Lines

DCM_DELAY_STEP Finest delay resolution All 20 40 20 40 ps

Notes: 
1. The numbers in this table are based on the operating conditions set forth in Table 77 and Table 104.
2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. 

Example: The data sheet specifies a maximum jitter of ±[1% of CLKIN period + 150]. Assume the CLKIN frequency is 100 MHz. The 
equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] 
= ±250 ps.

Table  105: Switching Characteristics for the DLL (Cont’d)

Symbol Description Device

Speed Grade

Units-5 -4

Min Max Min Max

Table  106: Recommended Operating Conditions for the DFS

Symbol Description

Speed Grade

Units-5 -4

Min Max Min Max

Input Frequency Ranges(2)

FCLKIN CLKIN_FREQ_FX Frequency for the CLKIN input 0.200 333(4) 0.200 333(4) MHz

Input Clock Jitter Tolerance(3)

CLKIN_CYC_JITT_FX_LF Cycle-to-cycle jitter at the 
CLKIN input, based on CLKFX 
output frequency

FCLKFX ≤ 150 MHz - ±300 - ±300 ps

CLKIN_CYC_JITT_FX_HF FCLKFX > 150 MHz - ±150 - ±150 ps

CLKIN_PER_JITT_FX Period jitter at the CLKIN input - ±1 - ±1 ns

Notes: 
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 104.
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.
4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming 

clock frequency by two as it enters the DCM.

http://www.xilinx.com


Spartan-3 FPGA Family: DC and Switching Characteristics

DS312 (4.0) October 29, 2012 www.xilinx.com
Product Specification 144

PRODUCT NOT RECOMMENDED FOR NEW DESIGNS

Configuration and JTAG Timing

General Configuration Power-On/Reconfigure Timing
X-Ref Target - Figure 73

Figure 73: Waveforms for Power-On and the Beginning of Configuration

Table  111: Power-On Timing and the Beginning of Configuration

Symbol Description Device
All Speed Grades

Units
Min Max

TPOR
(2) The time from the application of VCCINT, VCCAUX, and VCCO 

Bank 2 supply voltage ramps (whichever occurs last) to the 
rising transition of the INIT_B pin

XC3S100E - 5 ms

XC3S250E - 5 ms

XC3S500E - 5 ms

XC3S1200E - 5 ms

XC3S1600E - 7 ms

TPROG The width of the low-going pulse on the PROG_B pin All 0.5 - μs

TPL
(2) The time from the rising edge of the PROG_B pin to the 

rising transition on the INIT_B pin
XC3S100E - 0.5 ms

XC3S250E - 0.5 ms

XC3S500E - 1 ms

XC3S1200E - 2 ms

XC3S1600E - 2 ms

TINIT Minimum Low pulse width on INIT_B output All 250 - ns

TICCK
(3) The time from the rising edge of the INIT_B pin to the 

generation of the configuration clock signal at the CCLK 
output pin

All 0.5 4.0 μs

Notes: 
1. The numbers in this table are based on the operating conditions set forth in Table 77. This means power must be applied to all VCCINT, VCCO, 

and VCCAUX lines. 
2. Power-on reset and the clearing of configuration memory occurs during this period.
3. This specification applies only to the Master Serial, SPI, BPI-Up, and BPI-Down modes.

VCCINT
(Supply)

(Supply)

(Supply)

VCCAUX

VCCO Bank 2

PROG_B

(Output)

(Open-Drain)

(Input)

INIT_B

CCLK

DS312-3_01_103105

1.2V

2.5V

TICCK

TPROG
TPL

TPOR

1.0V

1.0V

2.0V

Notes: 
1. The VCCINT, VCCAUX, and VCCO supplies may be applied in any order.
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).

http://www.xilinx.com
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IEEE 1149.1/1532 JTAG Test Access Port Timing
X-Ref Target - Figure 78

Figure 78: JTAG Waveforms

TCK

TTMSTCK

TMS

TDI

TDO

(Input)

(Input)

(Input)

(Output)

TTCKTMS

TTCKTDI

TTCKTDO

TTDITCK

DS312-3_79_032409

TCCH TCCL

1/FTCK

Table  123: Timing for the JTAG Test Access Port

Symbol Description
All Speed Grades

Units
Min Max

Clock-to-Output Times

TTCKTDO The time from the falling transition on the TCK pin to 
data appearing at the TDO pin

1.0 11.0 ns

Setup Times

TTDITCK The time from the setup of data at the TDI pin to the 
rising transition at the TCK pin

7.0 - ns

TTMSTCK The time from the setup of a logic level at the TMS pin 
to the rising transition at the TCK pin

7.0 - ns

Hold Times

TTCKTDI The time from the rising transition at the TCK pin to the 
point when data is last held at the TDI pin

0 - ns

TTCKTMS The time from the rising transition at the TCK pin to the 
point when a logic level is last held at the TMS pin

0 - ns

Clock Timing

TCCH The High pulse width at the TCK pin 5 - ns

TCCL The Low pulse width at the TCK pin 5 - ns

FTCK Frequency of the TCK signal - 30 MHz

Notes: 
1. The numbers in this table are based on the operating conditions set forth in Table 77.

http://www.xilinx.com
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Differential Pair Labeling 

I/Os with Lxxy_# are part of a differential pair. ‘L’ indicates 
differential capability. The ‘xx’ field is a two-digit integer, 
unique to each bank that identifies a differential pin-pair. 
The ‘y’ field is either ‘P’ for the true signal or ‘N’ for the 
inverted signal in the differential pair. The ‘#’ field is the I/O 
bank number. 

The pin name suffix has the following significance. 
Figure 79 provides a specific example showing a differential 
input to and a differential output from Bank 1. 

 ‘L’ indicates that the pin is part of a differential pair. 

‘xx’ is a two-digit integer, unique for each bank, that 
identifies a differential pin-pair. 

‘y’ is replaced by ‘P’ for the true signal or ‘N’ for the 
inverted. These two pins form one differential pin-pair. 

‘#’ is an integer, 0 through 3, indicating the associated 
I/O bank. 

VCCAUX Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the 
package used. All must be connected to +2.5V. See the Powering Spartan-3E 
FPGAs section in Module 2 for details.

VCCAUX

VCCINT Dedicated internal core logic power supply pin. The number of VCCINT pins 
depends on the package used. All must be connected to +1.2V. See the Powering 
Spartan-3E FPGAs section in Module 2 for details.

VCCINT

VCCO Along with all the other VCCO pins in the same bank, this pin supplies power to the 
output buffers within the I/O bank and sets the input threshold voltage for some I/O 
standards. See the Powering Spartan-3E FPGAs section in Module 2 for details.

VCCO_#

N.C. This package pin is not connected in this specific device/package combination but 
may be connected in larger devices in the same package.

N.C. 

Notes: 
1. # = I/O bank number, an integer between 0 and 3.
2. IRDY/TRDY designations are for PCI designs; refer to PCI documentation for details.

Table  124: Types of Pins on Spartan-3E FPGAs (Cont’d)

Type / Color 
Code Description Pin Name(s) in Type(1)

X-Ref Target - Figure 79

Figure 79: Differential Pair Labeling
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IO_L39P_1

IO_L39N_1
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Package Overview
Table 125 shows the eight low-cost, space-saving 
production package styles for the Spartan-3E family. Each 
package style is available as a standard and an 
environmentally friendly lead-free (Pb-free) option. The 
Pb-free packages include an extra ‘G’ in the package style 
name. For example, the standard “VQ100” package 
becomes “VQG100” when ordered as the Pb-free option. 
The mechanical dimensions of the standard and Pb-free 

packages are similar, as shown in the mechanical drawings 
provided in Table 127. 

Not all Spartan-3E densities are available in all packages. 
For a specific package, however, there is a common 
footprint that supports all the devices available in that 
package. See the footprint diagrams that follow.

For additional package information, see UG112: Device 
Package User Guide.

Selecting the Right Package Option

Spartan-3E FPGAs are available in both quad-flat pack 
(QFP) and ball grid array (BGA) packaging options. While 
QFP packaging offers the lowest absolute cost, the BGA 

packages are superior in almost every other aspect, as 
summarized in Table 126. Consequently, Xilinx 
recommends using BGA packaging whenever possible.

Table  125: Spartan-3E Family Package Options

Package Leads Type Maximum 
I/O

Lead 
Pitch 
(mm)

Footprint 
Area (mm)

Height 
(mm)

Mass(1)

(g)

VQ100 / VQG100 100 Very-thin Quad Flat Pack (VQFP) 66 0.5 16 x 16 1.20 0.6

CP132 / CPG132 132 Chip-Scale Package (CSP) 92 0.5 8.1 x 8.1 1.10 0.1

TQ144 / TQG144 144 Thin Quad Flat Pack (TQFP) 108 0.5 22 x 22 1.60 1.4

PQ208 / PQG208 208 Plastic Quad Flat Pack (PQFP) 158 0.5 30.6 x 30.6 4.10  5.3

FT256 / FTG256 256 Fine-pitch, Thin Ball Grid Array (FBGA) 190 1.0 17 x 17 1.55 0.9

FG320 / FGG320 320 Fine-pitch Ball Grid Array (FBGA) 250 1.0 19 x 19 2.00 1.4

FG400 / FGG400 400 Fine-pitch Ball Grid Array (FBGA) 304 1.0 21 x 21 2.43 2.2

FG484 / FGG484 484 Fine-pitch Ball Grid Array (FBGA) 376 1.0 23 x 23 2.60 2.2

Notes: 
1. Package mass is ±10%.

Table  126: QFP and BGA Comparison

Characteristic Quad Flat Pack (QFP) Ball Grid Array (BGA)

Maximum User I/O 158 376

Packing Density (Logic/Area) Good Better

Signal Integrity Fair Better

Simultaneous Switching Output (SSO) Support Fair Better

Thermal Dissipation Fair Better

Minimum Printed Circuit Board (PCB) Layers 4 4-6

Hand Assembly/Rework Possible Difficult

http://www.xilinx.com/support/documentation/user_guides/ug112.pdf
http://www.xilinx.com
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PQ208 Footprint (Right)
X-Ref Target - Figure 84

Figure 84: PQ208 Footprint (Right)
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FT256: 256-ball Fine-pitch, Thin Ball Grid Array
The 256-ball fine-pitch, thin ball grid array package, FT256, 
supports three different Spartan-3E FPGAs, including the 
XC3S250E, the XC3S500E, and the XC3S1200E.

Table 143 lists all the package pins. They are sorted by 
bank number and then by pin name of the largest device. 
Pins that form a differential I/O pair appear together in the 
table. The table also shows the pin number for each pin and 
the pin type, as defined earlier.

The highlighted rows indicate pinout differences between 
the XC3S250E, the XC3S500E, and the XC3S1200E 
FPGAs. The XC3S250E has 18 unconnected balls, 
indicated as N.C. (No Connection) in Table 143 and with the 
black diamond character () in Table 143 and Figure 83.

If the table row is highlighted in tan, then this is an instance 
where an unconnected pin on the XC3S250E FPGA maps 

to a VREF pin on the XC3S500E and XC3S1200E FPGA. If 
the FPGA application uses an I/O standard that requires a 
VREF voltage reference, connect the highlighted pin to the 
VREF voltage supply, even though this does not actually 
connect to the XC3S250E FPGA. This VREF connection on 
the board allows future migration to the larger devices 
without modifying the printed-circuit board.

All other balls have nearly identical functionality on all three 
devices. Table 147 summarizes the Spartan-3E footprint 
migration differences for the FT256 package.

An electronic version of this package pinout table and 
footprint diagram is available for download from the Xilinx 
web site at:

http://www.xilinx.com/support/documentation/data_sheets
/s3e_pin.zip

Pinout Table

Table  143: FT256 Package Pinout

Bank XC3S250E Pin Name XC3S500E Pin Name XC3S1200E Pin Name FT256 
Ball Type

0 IO IO IO A7 I/O

0 IO IO IO A12 I/O

0 IO IO IO B4 I/O

0 IP IP IO B6 250E: INPUT
500E: INPUT
1200E: I/O

0 IP IP IO B10 250E: INPUT
500E: INPUT
1200E: I/O

0 IO/VREF_0 IO/VREF_0 IO/VREF_0 D9 VREF

0 IO_L01N_0 IO_L01N_0 IO_L01N_0 A14 I/O

0 IO_L01P_0 IO_L01P_0 IO_L01P_0 B14 I/O

0 IO_L03N_0/VREF_0 IO_L03N_0/VREF_0 IO_L03N_0/VREF_0 A13 VREF

0 IO_L03P_0 IO_L03P_0 IO_L03P_0 B13 I/O

0 IO_L04N_0 IO_L04N_0 IO_L04N_0 E11 I/O

0 IO_L04P_0 IO_L04P_0 IO_L04P_0 D11 I/O

0 IO_L05N_0/VREF_0 IO_L05N_0/VREF_0 IO_L05N_0/VREF_0 B11 VREF

0 IO_L05P_0 IO_L05P_0 IO_L05P_0 C11 I/O

0 IO_L06N_0 IO_L06N_0 IO_L06N_0 E10 I/O

0 IO_L06P_0 IO_L06P_0 IO_L06P_0 D10 I/O

0 IO_L08N_0/GCLK5 IO_L08N_0/GCLK5 IO_L08N_0/GCLK5 F9 GCLK

0 IO_L08P_0/GCLK4 IO_L08P_0/GCLK4 IO_L08P_0/GCLK4 E9 GCLK

0 IO_L09N_0/GCLK7 IO_L09N_0/GCLK7 IO_L09N_0/GCLK7 A9 GCLK

0 IO_L09P_0/GCLK6 IO_L09P_0/GCLK6 IO_L09P_0/GCLK6 A10 GCLK

0 IO_L11N_0/GCLK11 IO_L11N_0/GCLK11 IO_L11N_0/GCLK11 D8 GCLK

0 IO_L11P_0/GCLK10 IO_L11P_0/GCLK10 IO_L11P_0/GCLK10 C8 GCLK

0 IO_L12N_0 IO_L12N_0 IO_L12N_0 F8 I/O

http://www.xilinx.com/support/documentation/data_sheets/s3e_pin.zip
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User I/Os by Bank 

Table 149 and Table 150 indicate how the available user-I/O 
pins are distributed between the four I/O banks on the 
FG320 package.

Table  149: User I/Os Per Bank for XC3S500E in the FG320 Package

Package 
Edge I/O Bank Maximum I/O

All Possible I/O Pins by Type

I/O INPUT DUAL VREF(1) CLK(2)

Top 0 58 29 14 1 6 8

Right 1 58 22 10 21 5 0(2)

Bottom 2 58 17 13 24 4 0(2)

Left 3 58 34 11 0 5 8

TOTAL 232 102 48 46 20 16

Notes: 
1. Some VREF and CLK pins are on INPUT pins.
2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table  150: User I/Os Per Bank for XC3S1200E and XC3S1600E in the FG320 Package

Package 
Edge I/O Bank Maximum I/O

All Possible I/O Pins by Type

I/O INPUT DUAL VREF(1) CLK(2)

Top 0 61 34 12 1 6 8

Right 1 63 25 12 21 5 0(2)

Bottom 2 63 23 11 24 5 0(2)

Left 3 63 38 12 0 5 8

TOTAL 250 120 47 46 21 16

Notes: 
1. Some VREF and CLK pins are on INPUT pins.
2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.
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0 IP_L17P_0/GCLK8 H10 GCLK

0 IP_L20N_0 G9 INPUT

0 IP_L20P_0 G8 INPUT

0 IP_L23N_0 C8 INPUT

0 IP_L23P_0 D8 INPUT

0 IP_L26N_0 E6 INPUT

0 IP_L26P_0 E7 INPUT

0 IP_L29N_0 A4 INPUT

0 IP_L29P_0 A5 INPUT

0 VCCO_0 B4 VCCO

0 VCCO_0 B10 VCCO

0 VCCO_0 B16 VCCO

0 VCCO_0 D7 VCCO

0 VCCO_0 D13 VCCO

0 VCCO_0 F10 VCCO

1 IO_L01N_1/A15 U18 DUAL

1 IO_L01P_1/A16 U17 DUAL

1 IO_L02N_1/A13 T18 DUAL

1 IO_L02P_1/A14 T17 DUAL

1 IO_L03N_1/VREF_1 V19 VREF

1 IO_L03P_1 U19 I/O

1 IO_L04N_1 W20 I/O

1 IO_L04P_1 V20 I/O

1 IO_L05N_1 R18 I/O

1 IO_L05P_1 R17 I/O

1 IO_L06N_1 T20 I/O

1 IO_L06P_1 U20 I/O

1 IO_L07N_1 P18 I/O

1 IO_L07P_1 P17 I/O

1 IO_L08N_1/VREF_1 P20 VREF

1 IO_L08P_1 R20 I/O

1 IO_L09N_1 P16 I/O

1 IO_L09P_1 N16 I/O

1 IO_L10N_1 N19 I/O

1 IO_L10P_1 N18 I/O

1 IO_L11N_1 N15 I/O

1 IO_L11P_1 M15 I/O

1 IO_L12N_1/A11 M18 DUAL

1 IO_L12P_1/A12 M17 DUAL

1 IO_L13N_1/VREF_1 L19 VREF

1 IO_L13P_1 M19 I/O

1 IO_L14N_1/A9/RHCLK1 L16 RHCLK/
DUAL

Table  152: FG400 Package Pinout (Cont’d)

Bank
XC3S1200E
XC3S1600E
Pin Name

FG400 
Ball Type

1 IO_L14P_1/A10/RHCLK0 M16 RHCLK/
DUAL

1 IO_L15N_1/A7/RHCLK3/
TRDY1

L14 RHCLK/
DUAL

1 IO_L15P_1/A8/RHCLK2 L15 RHCLK/
DUAL

1 IO_L16N_1/A5/RHCLK5 K14 RHCLK/
DUAL

1 IO_L16P_1/A6/RHCLK4/
IRDY1

K13 RHCLK/
DUAL

1 IO_L17N_1/A3/RHCLK7 J20 RHCLK/
DUAL

1 IO_L17P_1/A4/RHCLK6 K20 RHCLK/
DUAL

1 IO_L18N_1/A1 K16 DUAL

1 IO_L18P_1/A2 J16 DUAL

1 IO_L19N_1/A0 J13 DUAL

1 IO_L19P_1 J14 I/O

1 IO_L20N_1 J17 I/O

1 IO_L20P_1 J18 I/O

1 IO_L21N_1 H19 I/O

1 IO_L21P_1 J19 I/O

1 IO_L22N_1 H15 I/O

1 IO_L22P_1 H16 I/O

1 IO_L23N_1 H18 I/O

1 IO_L23P_1 H17 I/O

1 IO_L24N_1/VREF_1 H20 VREF

1 IO_L24P_1 G20 I/O

1 IO_L25N_1 G16 I/O

1 IO_L25P_1 F16 I/O

1 IO_L26N_1 F19 I/O

1 IO_L26P_1 F20 I/O

1 IO_L27N_1 F18 I/O

1 IO_L27P_1 F17 I/O

1 IO_L28N_1 D20 I/O

1 IO_L28P_1 E20 I/O

1 IO_L29N_1/LDC0 D18 DUAL

1 IO_L29P_1/HDC E18 DUAL

1 IO_L30N_1/LDC2 C19 DUAL

1 IO_L30P_1/LDC1 C20 DUAL

1 IP B20 INPUT

1 IP G15 INPUT

1 IP G18 INPUT

1 IP H14 INPUT

1 IP J15 INPUT

Table  152: FG400 Package Pinout (Cont’d)

Bank
XC3S1200E
XC3S1600E
Pin Name

FG400 
Ball Type
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