

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	240
Number of Logic Elements/Cells	2160
Total RAM Bits	73728
Number of I/O	108
Number of Gates	100000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s100e-4tqg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Spartan-3E FPGAs provide additional input flexibility by allowing I/O standards to be mixed in different banks. For a particular V_{CCO} voltage, Table 6 and Table 7 list all of the

IOSTANDARDs that can be combined and if the IOSTANDARD is supported as an input only or can be used for both inputs and outputs.

Table 6: Single-Ended IOSTANDARD Bank Compatibility

	V _{CCO} Supply/Compatibility					Input Requirements		
Single-Ended IOSTANDARD	1.2V	1.5V	1.8V	2.5V	3.3V	V _{REF}	Board Termination Voltage (V _{TT})	
LVTTL	-	-	-	-	Input/ Output	N/R ⁽¹⁾	N/R	
LVCMOS33	-	-	-	-	Input/ Output	N/R	N/R	
LVCMOS25	-	-	-	Input/ Output	Input	N/R	N/R	
LVCMOS18	-	-	Input/ Output	Input	Input	N/R	N/R	
LVCMOS15	-	Input/ Output	Input	Input	Input	N/R	N/R	
LVCMOS12	Input/ Output	Input	Input	Input	Input	N/R	N/R	
PCI33_3	-	-	-	-	Input/ Output	N/R	N/R	
PCI66_3	-	-	-	-	Input/ Output	N/R	N/R	
HSTL_I_18	-	-	Input/ Output	Input	Input	0.9	0.9	
HSTL_III_18	-	-	Input/ Output	Input	Input	1.1	1.8	
SSTL18_I	-	-	Input/ Output	Input	Input	0.9	0.9	
SSTL2_I	-	-	-	Input/ Output	Input	1.25	1.25	

Notes:

1. N/R - Not required for input operation.

Block RAM Port Signal Definitions

Representations of the dual-port primitive RAMB16_S[w_A]_S[w_B] and the single-port primitive RAMB16_S[w] with their associated signals are shown in Figure 32a and Figure 32b, respectively. These signals are defined in Table 23. The control signals (WE, EN, CLK, and SSR) on the block RAM are active High. However, optional inverters on the control signals change the polarity of the active edge to active Low.

Design Note

Whenever a block RAM port is enabled (ENA or ENB = High), all address transitions must meet the data sheet setup and hold times with respect to the port clock (CLKA or CLKB), as shown in Table 103, page 138.This requirement must be met even if the RAM read output is of no interest.

Notes:

- 1. w_A and w_B are integers representing the total data path width (i.e., data bits plus parity bits) at Ports A and B, respectively.
- 2. p_A and p_B are integers that indicate the number of data path lines serving as parity bits.
- 3. r_A and r_B are integers representing the address bus width at ports A and B, respectively.
- 4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.

Figure 32: Block RAM Primitives

Dedicated Multipliers

For additional information, refer to the "Using Embedded Multipliers" chapter in <u>UG331</u>.

The Spartan-3E devices provide 4 to 36 dedicated multiplier blocks per device. The multipliers are located together with the block RAM in one or two columns depending on device density. See Arrangement of RAM Blocks on Die for details on the location of these blocks and their connectivity.

Operation

The multiplier blocks primarily perform two's complement numerical multiplication but can also perform some less obvious applications, such as simple data storage and barrel shifting. Logic slices also implement efficient small multipliers and thereby supplement the dedicated multipliers. The Spartan-3E dedicated multiplier blocks have additional features beyond those provided in Spartan-3 FPGAs.

Each multiplier performs the principle operation $P = A \times B$, where 'A' and 'B' are 18-bit words in two's complement form, and 'P' is the full-precision 36-bit product, also in two's complement form. The 18-bit inputs represent values ranging from -131,072₁₀ to +131,071₁₀ with a resulting product ranging from $-17,179,738,112_{10}$ to $+17,179,869,184_{10}$.

Implement multipliers with inputs less than 18 bits by sign-extending the inputs (i.e., replicating the most-significant bit). Wider multiplication operations are performed by combining the dedicated multipliers and slice-based logic in any viable combination or by time-sharing a single multiplier. Perform unsigned multiplication by restricting the inputs to the positive range. Tie the most-significant bit Low and represent the unsigned value in the remaining 17 lesser-significant bits.

Optional Pipeline Registers

As shown in Figure 36, each multiplier block has optional registers on each of the multiplier inputs and the output. The registers are named AREG, BREG, and PREG and can be used in any combination. The clock input is common to all the registers within a block, but each register has an independent clock enable and synchronous reset controls making them ideal for storing data samples and coefficients. When used for pipelining, the registers boost the multiplier clock rate, beneficial for higher performance applications.

Figure 36 illustrates the principle features of the multiplier block.

Figure 36: Principle Ports and Functions of Dedicated Multiplier Blocks

Use the MULT18X18SIO primitive shown in Figure 37 to instantiate a multiplier within a design. Although high-level logic synthesis software usually automatically infers a multiplier, adding the pipeline registers might require the MULT18X18SIO primitive. Connect the appropriate signals to the MULT18X18SIO multiplier ports and set the individual AREG, BREG, and PREG attributes to '1' to insert the associated register, or to 0 to remove it and make the signal path combinatorial.

The connections for the bottom-edge BUFGMUX elements are similar to the top-edge connections (see Figure 46).

🐮 XILINX.

On the left and right edges, only two clock inputs feed each pair of BUFGMUX elements.

Figure 46: Clock Switch Matrix to BUFGMUX Pair Connectivity

Quadrant Clock Routing

The clock routing within the FPGA is quadrant-based, as shown in Figure 45. Each clock quadrant supports eight total clock signals, labeled 'A' through 'H' in Table 41 and Figure 47. The clock source for an individual clock line originates either from a global BUFGMUX element along the top and bottom edges or from a BUFGMUX element along the associated edge, as shown in Figure 47. The clock lines feed the synchronous resource elements (CLBs, IOBs, block RAM, multipliers, and DCMs) within the quadrant.

The four quadrants of the device are:

- Top Right (TR)
- Bottom Right (BR)
- Bottom Left (BL)
- Top Left (TL)

Note that the quadrant clock notation (TR, BR, BL, TL) is separate from that used for similar IOB placement constraints.

To estimate the quadrant location for a particular I/O, see the footprint diagrams in Module 4, Pinout Descriptions. For exact quadrant locations, use the floorplanning tool. In the QFP packages (VQ100, TQ144 and PQ208) the quadrant borders fall in the middle of each side of the package, at a GND pin. The clock inputs fall on the quadrant boundaries, as indicated in Table 42.

Table 42: QFP Package Clock Quadrant Locations

Clock Pins	Quadrant
GCLK[3:0]	BR
GCLK[7:4]	TR
GCLK[11:8]	TL
GCLK[15:12]	BL
RHCLK[3:0]	BR
RHCLK[7:4]	TR
LHCLK[3:0]	TL
LHCLK[7:4]	BL

In a few cases, a dedicated input is physically in one quadrant of the device but connects to a different clock quadrant:

- FT256, H16 is in clock quadrant BR
- FG320, K2 is in clock quadrant BL
- FG400, L8 is in clock quadrant TL and the I/O at N11 is in clock quadrant BL
- FG484, M2 is in clock quadrant TL and L15 is in clock quadrant BR

Pin Name	FPGA Direction	Description	During Configuration	After Configuration
DONE	Open-drain bidirectional I/O	FPGA Configuration Done . Low during configuration. Goes High when FPGA successfully completes configuration. Requires external 330Ω pull-up resistor to 2.5V.	Low indicates that the FPGA is not yet configured.	Pulled High via external pull-up. When High, indicates that the FPGA is successfully configured.
PROG_B	Input	Program FPGA . Active Low. When asserted Low for 500 ns or longer, forces the FPGA to restart its configuration process by clearing configuration memory and resetting the DONE and INIT_B pins once PROG_B returns High. Recommend external 4.7 kΩ pull-up resistor to 2.5V. Internal pull-up value may be weaker (see Table 78). If driving externally with a 3.3V output, use an open-drain or open-collector driver or use a current limiting series resistor.	Must be High to allow configuration to start.	Drive PROG_B Low and release to reprogram FPGA. Hold PROG_B to force FPGA I/O pins into Hi-Z, allowing direct programming access to Flash PROM pins.

Table 59: Byte-Wide Peripheral Interface (BPI) Connections (Cont'd)

Voltage Compatibility

V The FPGA's parallel Flash interface signals are within I/O Banks 1 and 2. The majority of parallel Flash PROMs use a single 3.3V supply voltage. Consequently, in most cases, the FPGA's VCCO_1 and VCCO_2 supply voltages must also be 3.3V to match the parallel Flash PROM. There are some 1.8V parallel Flash PROMs available and the FPGA interfaces with these devices if the VCCO_1 and VCCO_2 supplies are also 1.8V.

Power-On Precautions if PROM Supply is Last in Sequence

Like SPI Flash PROMs, parallel Flash PROMs typically require some amount of internal initialization time when the supply voltage reaches its minimum value.

The PROM supply voltage also connects to the FPGA's VCCO_2 supply input. In many systems, the PROM supply feeding the FPGA's VCCO_2 input is valid before the FPGA's other V_{CCINT} and V_{CCAUX} supplies, and consequently, there is no issue. However, if the PROM supply is last in the sequence, a potential race occurs between the FPGA and the parallel Flash PROM. See

Power-On Precautions if 3.3V Supply is Last in Sequence for a similar description of the issue for SPI Flash PROMs.

Supported Parallel NOR Flash PROM Densities

Table 60 indicates the smallest usable parallel Flash PROMto program a single Spartan-3E FPGA. Parallel Flashdensity is specified in bits but addressed as bytes. TheFPGA presents up to 24 address lines during configurationbut not all are required for single FPGA applications.Table 60 shows the minimum required number of addresslines between the FPGA and parallel Flash PROM. Theactual number of address line required depends on thedensity of the attached parallel Flash PROM.

A multiple-FPGA daisy-chained application requires a parallel Flash PROM large enough to contain the sum of the FPGA file sizes. An application can also use a larger-density parallel Flash PROM to hold additional data beyond just FPGA configuration data. For example, the parallel Flash PROM can also contain the application code for a MicroBlaze RISC processor core implemented within the Spartan-3E FPGA. After configuration, the MicroBlaze processor can execute directly from external Flash or can copy the code to other, faster system memory before executing the code.

Table 60: Number of Bits to Program a Spartan-3E FPGA and Smallest Parallel Flash PROM

Spartan-3E FPGA	Uncompressed File Sizes (bits)	Smallest Usable Parallel Flash PROM	Minimum Required Address Lines
XC3S100E	581,344	1 Mbit	A[16:0]
XC3S250E	1,353,728	2 Mbit	A[17:0]
XC3S500E	2,270,208	4 Mbit	A[18:0]
XC3S1200E	3,841,184	4 Mbit	A[18:0]
XC3S1600E	5,969,696	8 Mbit	A[19:0]

Also, in a multi-FPGA daisy-chain configuration of more than two devices, all intermediate FPGAs between the first and last devices must be Spartan-3E or Virtex-5 FPGAs. The last FPGA in the chain can be from any Xilinx FPGA family.

BPI Mode Interaction with Right and Bottom Edge Global Clock Inputs

Some of the BPI mode configuration pins are shared with global clock inputs along the right and bottom edges of the device (Bank 1 and Bank 2, respectively). These pins are not easily reclaimable for clock inputs after configuration, especially if the FPGA application access the parallel NOR Flash after configuration. Table 64 summarizes the shared pins.

Table 64: Shared BPI Configuration Mode and GlobalBuffer Input Pins

Device Edge	Global Buffer Input Pin	BPI Mode Configuration Pin
	GCLK0	RDWR_B
	GCLK2	D2
	GCLK3	D1
Bottom	GCLK12	D7
	GCLK13	D6
	GCLK14	D4
	GCLK15	D3
	RHCLK0	A10
	RHCLK1	A9
	RHCLK2	A8
Diabt	RHCLK3	A7
nigili	RHCLK4	A6
	RHCLK5	A5
	RHCLK6	A4
	RHCLK7	A3

can also be eliminated from the interface. However, RDWR_B must remain Low during configuration.

After configuration, all of the interface pins except DONE and PROG_B are available as user I/Os. Alternatively, the bidirectional SelectMAP configuration interface is available after configuration. To continue using SelectMAP mode, set the **Persist** bitstream generator option to **Yes**. The external host can then read and verify configuration data. The Persist option will maintain A20-A23 as configuration pins although they are not used in SelectMAP mode.

The Slave Parallel mode is also used with BPI mode to create multi-FPGA daisy-chains. The lead FPGA is set for BPI mode configuration; all the downstream daisy-chain FPGAs are set for Slave Parallel configuration, as highlighted in Figure 59.

Pin Name	FPGA Direction	Description	During Configuration	After Configuration
HSWAP	Input	User I/O Pull-Up Control. When Low during configuration, enables pull-up resistors in all I/O pins to respective I/O bank V _{CCO} input. 0: Pull-ups during configuration 1: No pull-ups	Drive at valid logic level throughout configuration.	User I/O
M[2:0]	Input	Mode Select . Selects the FPGA configuration mode. See Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins.	M2 = 1, M1 = 1, M0 = 0 Sampled when INIT_B goes High.	User I/O
D[7:0]	Input	Data Input.	Byte-wide data provided by host. FPGA captures data on rising CCLK edge.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
BUSY	Output	Busy Indicator.	If CCLK frequency is < 50 MHz, this pin may be ignored. When High, indicates that the FPGA is not ready to receive additional configuration data. Host must hold data an additional clock cycle.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
CSI_B	Input	Chip Select Input. Active Low.	Must be Low throughout configuration.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
RDWR_B	Input	Read/Write Control . Active Low write enable.	Must be Low throughout configuration.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
CCLK	Input	Configuration Clock . If CCLK PCB trace is long or has multiple connections, terminate this output to maintain signal integrity. See CCLK Design Considerations.	External clock.	User I/O If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
CSO_B	Output	Chip Select Output. Active Low.	Not used in single FPGA applications. In a daisy-chain configuration, this pin connects to the CSI_B pin of the next FPGA in the chain. Actively drives.	User I/O

Table 65: Slave Parallel Mode Connections

Figure 65: JTAG Configuration Mode

Voltage Compatibility

The 2.5V V_{CCAUX} supply powers the JTAG interface. All of the user I/Os are separately powered by their respective VCCO_# supplies.

When connecting the Spartan-3E JTAG port to a 3.3V interface, the JTAG input pins must be current-limited to 10 mA or less using series resistors. Similarly, the TDO pin is a CMOS output powered from +2.5V. The TDO output can directly drive a 3.3V input but with reduced noise immunity. See <u>XAPP453</u>: The 3.3V Configuration of Spartan-3 FPGAs for additional information.

Spartan-3E	4-Bit Revi	sion Code	28-Bit		
FPGA	Step 0	Step 1	Identifier		
XC3S100E	0x0	0x1	0x1C 10 093		
XC3S250E	0x0	0x1	0x1C 1A 093		
XC3S500E	0x0 0x2	0x4	0x1C 22 093		
XC3S1200E	0x0 0x1	0x2	0x1C 2E 093		
XC3S1600E	0x0 0x1	0x2	0x1C 3A 093		

Table 67: Spartan-3E JTAG Device Identifiers

JTAG Device ID

Each Spartan-3E FPGA array type has a 32-bit device-specific JTAG device identifier as shown in Table 67. The lower 28 bits represent the device vendor (Xilinx) and device identifer. The upper four bits, ignored by most tools, represent the revision level of the silicon mounted on the printed circuit board. Table 67 associates the revision code with a specific stepping level.

JTAG User ID

The Spartan-3E JTAG interface also provides the option to store a 32-bit User ID, loaded during configuration. The User ID value is specified via the *UserID* configuration bitstream option, shown in Table 69, page 107.

Using JTAG Interface to Communicate to a Configured FPGA Design

After the FPGA is configured, using any of the available modes, the JTAG interface offers a possible communications channel to internal FPGA logic. The BSCAN_SPARTAN3 design primitive provides two private JTAG instructions to create an internal boundary scan chain.

Maximum Bitstream Size for Daisy-Chains

The maximum bitstream length supported by Spartan-3E FPGAs in serial daisy-chains is 4,294,967,264 bits (4 Gbits), roughly equivalent to a daisy-chain with 720 XC3S1600E FPGAs. This is a limit only for serial daisy-chains where configuration data is passed via the FPGA's DOUT pin. There is no such limit for JTAG chains.

Configuration Sequence

For additional information including I/O behavior before and during configuration, refer to the "Sequence of Events" chapter in <u>UG332</u>.

The Spartan-3E configuration process is three-stage process that begins after the FPGA powers on (a POR event) or after the PROG_B input is asserted. Power-On Reset (POR) occurs after the V_{CCINT} , V_{CCAUX} , and the V_{CCO} Bank 2 supplies reach their respective input threshold levels. After either a POR or PROG_B event, the three-stage configuration process begins.

- 1. The FPGA clears (initializes) the internal configuration memory.
- 2. Configuration data is loaded into the internal memory.
- 3. The user-application is activated by a start-up process.

Figure 66 is a generalized block diagram of the Spartan-3E configuration logic, showing the interaction of different device inputs and Bitstream Generator (BitGen) options. A flow diagram for the configuration sequence of the Serial and Parallel modes appears in Figure 66. Figure 67 shows the Boundary-Scan or JTAG configuration sequence.

Initialization

Configuration automatically begins after power-on or after asserting the FPGA PROG_B pin, unless delayed using the FPGA's INIT_B pin. The FPGA holds the open-drain INIT_B signal Low while it clears its internal configuration memory. Externally holding the INIT_B pin Low forces the configuration sequencer to wait until INIT_B again goes High.

The FPGA signals when the memory-clearing phase is complete by releasing the open-drain INIT_B pin, allowing the pin to go High via the external pull-up resistor to VCCO_2.

Loading Configuration Data

After initialization, configuration data is written to the FPGA's internal memory. The FPGA holds the Global Set/Reset (GSR) signal active throughout configuration, holding all FPGA flip-flops in a reset state. The FPGA signals when the entire configuration process completes by releasing the DONE pin, allowing it to go High. The FPGA configuration sequence can also be initiated by asserting PROG_B. Once released, the FPGA begins clearing its internal configuration memory, and progresses through the remainder of the configuration process.

Bitstream Generator (BitGen) Options

For additional information, refer to the "Configuration Bitstream Generator (BitGen) Settings" chapter in UG332.

Various Spartan-3E FPGA functions are controlled by specific bits in the configuration bitstream image. These

values are specified when creating the bitstream image with the Bitstream Generator (BitGen) software.

Table 69 provides a list of all BitGen options for Spartan-3EFPGAs.

Table 69: Spartan-3E FPGA Bitstream Generator (BitGen) Options

Option Name	Pins/Function Affected	Values (<i>default</i>)	Description			
ConfigRate	CCLK, Configuration	<u>1</u> , 3, 6, 12, 25, 50	Sets the approximate frequency, in MHz, of the internal oscillator using for Master Serial, SPI, and BPI configuration modes. The internal oscillator powers up at its lowest frequency, and the new setting is loaded as part of the configuration bitstream. The software default value is 1 (~1.5 MHz) starting with ISE 8.1, Service Pack 1.			
StartupClk	Configuration, Startup	<u>Cclk</u>	 software default value is 1 (~1.5 MHz) starting with ISE 8.1, Service Pack I. Default. The CCLK signal (internally or externally generated) controls the start sequence when the FPGA transitions from configuration mode to the user mod Start-Up. Ik A clock signal from within the FPGA application controls the startup sequence where the sequence when the startup sequence when the STARTUP_SPARTAN primitive. The JTAG TCK input controls the startup sequence when the FPGA transitions fro configuration mode to the user mode. See Start-Up. Mm Default. All unused I/O pins and input-only pins have a pull-down resistor to Gf for its associated I/O bank. All unused I/O pins and input-only pins have a pull-up resistor to the VCCO_# s for its associated I/O bank. All unused I/O pins and input-only pins are left floating (Hi-Z, high-impedance, three-state). Use external pull-up or pull-down resistors or logic to apply a valid level. Selects the Configuration Startup phase that activates the FPGA's DONE pin. S Start-Up. Waits for the DONE pin input to go High before asserting the internal write-enable si all flip-flops, LUT RAMs and shift registers (SRL16). It also enables block RAM read and wr operations are enabled at this time. Retains the current GWE_cycle setting for partial reconfiguration applications. Selects the Configuration Startup phase that releases the internal write-enable for all flip-flops, LUT RAMs and shift registers (SRL16). Block RAM read and wr operations are enabled at this time. Retains the current GWE_cycle setting for partial reconfiguration applications. Selects the Configuration Startup phase that releases the internal three-state cholding all I/O buffers in high-impedance (Hi-Z). Output buffers actively drive, if configured, after this point. See Start-Up. 			
		UserClk	A clock signal from within the FPGA application controls the startup sequence when the FPGA transitions from configuration mode to the user mode. See Start-Up. The FPGA application supplies the user clock on the CLK pin on the STARTUP_SPARTAN3E primitive.			
		Jtag	The JTAG TCK input controls the startup sequence when the FPGA transitions from the configuration mode to the user mode. See Start-Up.			
UnusedPin	Unused I/O	Pulldown	Default. All unused I/O pins and input-only pins have a pull-down resistor to GND.			
	Pins	Pullup	All unused I/O pins and input-only pins have a pull-up resistor to the VCCO_# supply for its associated I/O bank.			
		Pullnone	All unused I/O pins and input-only pins are left floating (Hi-Z, high-impedance, three-state). Use external pull-up or pull-down resistors or logic to apply a valid signal level.			
DONE_cycle	DONE pin, Configuration Startup	1, 2, 3, <u>4</u> , 5, 6	Selects the Configuration Startup phase that activates the FPGA's DONE pin. See Start-Up.			
GWE_cycle	All flip-flops, LUT RAMs, and SRL16 shift	1, 2, 3, 4, 5, <u>6</u>	Selects the Configuration Startup phase that asserts the internal write-enable signal to all flip-flops, LUT RAMs and shift registers (SRL16). It also enables block RAM read and write operations. See Start-Up.			
	RAM, Configuration Startup	Done	Waits for the DONE pin input to go High before asserting the internal write-enable signal to all flip-flops, LUT RAMs and shift registers (SRL16). Block RAM read and write operations are enabled at this time.			
		Keep	Retains the current GWE_cycle setting for partial reconfiguration applications.			
GTS_cycle	All I/O pins, Configuration	1, 2, 3, 4, <u>5</u> , 6	Selects the Configuration Startup phase that releases the internal three-state control, holding all I/O buffers in high-impedance (Hi-Z). Output buffers actively drive, if so configured, after this point. See Start-Up.			
		Done	Waits for the DONE pin input to go High before releasing the internal three-state control, holding all I/O buffers in high-impedance (Hi-Z). Output buffers actively drive, if so configured, after this point.			
		Keep	Retains the current GTS_cycle setting for partial reconfiguration applications.			
LCK_cycle	DCMs,	<u>NoWait</u>	The FPGA does not wait for selected DCMs to lock before completing configuration.			
	Startup	0, 1, 2, 3, 4, 5, 6	If one or more DCMs in the design have the STARTUP_WAIT attribute set to TRUE, the FPGA waits for such DCMs to acquire their respective input clock and assert their LOCKED output. This setting selects the Configuration Startup phase where the FPGA waits for the DCMs to lock.			
DonePin	DONE pin	<u>Pullup</u>	Internally connects a pull-up resistor between DONE pin and V _{CCAUX} . An external 330 Ω pull-up resistor to V _{CCAUX} is still recommended.			
		Pullnone	No internal pull-up resistor on DONE pin. An external 330 Ω pull-up resistor to V_{CCAUX} is required.			

Spartan-3 FPGA Family: DC and Switching Characteristics

DS312 (4.0) October 29, 2012

Product Specification

DC Electrical Characteristics

In this section, specifications may be designated as Advance, Preliminary, or Production. These terms are defined as follows:

<u>Advance</u>: Initial estimates are based on simulation, early characterization, and/or extrapolation from the characteristics of other families. Values are subject to change. Use as estimates, not for production.

<u>Preliminary</u>: Based on characterization. Further changes are not expected.

Production: These specifications are approved once the silicon has been characterized over numerous production lots. Parameter values are considered stable with no future changes expected.

All parameter limits are representative of worst-case supply voltage and junction temperature conditions. **Unless** otherwise noted, the published parameter values apply to all Spartan®-3E devices. AC and DC characteristics are specified using the same numbers for both commercial and industrial grades.

Absolute Maximum Ratings

Stresses beyond those listed under Table 73, Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions is not implied. Exposure to absolute maximum conditions for extended periods of time adversely affects device reliability.

Symbol	Description	Con	ditions	Min	Мах	Units
V _{CCINT}	Internal supply voltage			-0.5	1.32	V
V _{CCAUX}	Auxiliary supply voltage	Auxiliary supply voltage			3.00	V
V _{CCO}	Output driver supply voltage			-0.5	3.75	V
V _{REF}	Input reference voltage			-0.5	V _{CCO} +0.5 ⁽¹⁾	V
V _{IN} ^(1,2,3,4)	Voltage applied to all User I/O pins and	Driver in a	Commercial	-0.95	4.4	V
	Dual-Purpose pins	high-impedance Ir state A	Industrial	-0.85	4.3	V
	Voltage applied to all Dedicated pins		All temp. ranges	-0.5	V _{CCAUX} +0.5 ⁽³⁾	V
Ι _{ΙΚ}	Input clamp current per I/O pin	$-0.5 V < V_{IN} < (V_{IN})$	$-0.5 \text{ V} < \text{V}_{\text{IN}} < (\text{V}_{\text{CCO}} + 0.5 \text{ V})$		±100	mA
V _{ESD}	Electrostatic Discharge Voltage	Human body mod	Human body model		±2000	V
		Charged device model Machine model		-	±500	V
				-	±200	V
TJ	Junction temperature				125	°C
T _{STG}	Storage temperature			-65	150	°C

Table 73: Absolute Maximum Ratings

Notes:

- 1. Each of the User I/O and Dual-Purpose pins is associated with one of the four banks' V_{CCO} rails. Keeping V_{IN} within 500 mV of the associated V_{CCO} rails or ground rail ensures that the internal diode junctions do not turn on. Table 77 specifies the V_{CCO} range used to evaluate the maximum V_{IN} voltage.
- Input voltages outside the -0.5V to V_{CCO} + 0.5V (or V_{CCAUX} + 0.5V) voltage range are require the I_{IK} input diode clamp diode rating is met and no more than 100 pins exceed the range simultaneously. Prolonged exposure to such current may compromise device reliability. A sustained current of 10 mA will not compromise device reliability. See <u>XAPP459</u>: *Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3 Families* for more details.
- All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail (2.5V). Meeting the V_{IN} max limit ensures that the internal diode junctions that exist between each of these pins and the V_{CCAUX} rail do not turn on. Table 77 specifies the V_{CCAUX} range used to evaluate the maximum V_{IN} voltage. As long as the V_{IN} max specification is met, oxide stress is not possible.
- 4. See XAPP459: Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3 Families.
- 5. For soldering guidelines, see <u>UG112</u>: Device Packaging and Thermal Characteristics and <u>XAPP427</u>: Implementation and Solder Reflow Guidelines for Pb-Free Packages.

© Copyright 2005–2012 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

Quiescent Current Requirements

Table 79: Quiescent Supply Current Characteristics

Symbol	Description	Device	Typical	Commercial Maximum ⁽¹⁾	Industrial Maximum ⁽¹⁾	Units
I _{CCINTQ}	Quiescent V _{CCINT} supply current	XC3S100E	8	27	36	mA
		XC3S250E	15	78	104	mA
		XC3S500E	25	106	145	mA
		XC3S1200E	50	259	324	mA
		XC3S1600E	65	366	457	mA
Iccoq	Quiescent V _{CCO} supply current	XC3S100E	0.8	1.0	1.5	mA
		XC3S250E	0.8	1.0	1.5	mA
		XC3S500E	0.8	1.0	1.5	mA
		XC3S1200E	1.5	2.0	2.5	mA
		XC3S1600E	1.5	2.0	2.5	mA
I _{CCAUXQ}	Quiescent V _{CCAUX} supply current	XC3S100E	8	12	13	mA
		XC3S250E	12	22	26	mA
		XC3S500E	18	31	34	mA
		XC3S1200E	35	52	59	mA
		XC3S1600E	45	76	86	mA

Notes:

1. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.

- 2. The numbers in this table are based on the conditions set forth in Table 77.
- 3. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads disabled. Typical values are characterized using typical devices at room temperature (T_J of 25°C at V_{CCINT} = 1.2 V, V_{CCO} = 3.3V, and V_{CCAUX} = 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage limits with V_{CCINT} = 1.26V, V_{CCO} = 3.465V, and V_{CCAUX} = 2.625V. The FPGA is programmed with a "blank" configuration data file (i.e., a design with no functional elements instantiated). For conditions other than those described above, (e.g., a design including functional elements), measured quiescent current levels may be different than the values in the table. For more accurate estimates for a specific design, use the Xilinx® XPower tools.
- 4. There are two recommended ways to estimate the total power consumption (quiescent plus dynamic) for a specific design: a) The <u>Spartan-3E XPower Estimator</u> provides quick, approximate, typical estimates, and does not require a netlist of the design. b) XPower Analyzer uses a netlist as input to provide maximum estimates as well as more accurate typical estimates.

Table 92: Timing for the IOB Output Path

				Speed Grade		
Symbol	Description	Conditions	Device	-5	-4	Units
				Min	Min	
Clock-to-Output	Times					
T _{IOCKP}	When reading from the Output Flip-Flop (OFF), the time from the active transition at the OCLK input to data appearing at the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew rate	All	2.18	2.50	ns
Propagation Tim	es		-			
T _{IOOP}	The time it takes for data to travel from the IOB's O input to the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive,	All	2.24	2.58	ns
T _{IOOLP}	The time it takes for data to travel from the O input through the OFF latch to the Output pin	Fast siew rate		2.32	2.67	ns
Set/Reset Times		•	-			
T _{IOSRP}	Time from asserting the OFF's SR input to setting/resetting data at the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive,	All	3.27	3.76	ns
T _{IOGSRQ}	Time from asserting the Global Set Reset (GSR) input on the STARTUP_SPARTAN3E primitive to setting/resetting data at the Output pin	Fast siew rate		-5 -4 Min Min 2.18 2.50 2.24 2.58 2.32 2.67 3.27 3.76 8.40 9.65	ns	

Notes:

1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in Table 77 and Table 80.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 94.

3. For minimum delays use the values reported by the Timing Analyzer.

Digital Clock Manager (DCM) Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 104 and Table 105) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 106 through Table 109) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 104 and Table 105.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value. Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See <u>XAPP469</u>, *Spread-Spectrum Clocking Reception for Displays* for details.

Delay-Locked Loop (DLL)

Table 104: Recommended Operating Conditions for the DLL

					Speed Grade				
Symbol		Description			-	5	-4		Units
					Min	Max	Min	Max	
Input F	requency Ranges								
F _{CLKIN}	KIN CLKIN_FREQ_DLL Frequency of the CLKIN clock input		Stepping 0	XC3S100E XC3S250E XC3S500E XC3S1600E	N/A	N/A	5(2)	90 ⁽³⁾	MHz
			=	XC3S1200E ⁽³⁾				200 <mark>(3)</mark>	MHz
			Stepping 1	All	5 ⁽²⁾	275 <mark>(3)</mark>		240 ⁽³⁾	MHz
Input P	ulse Requirements								
CLKIN_	PULSE	CLKIN pulse width as a	F _{CLKIN} ≤ 150 MHz		40%	60%	40%	60%	-
		percentage of the CLKIN period	F _{CLKIN} > 150 MHz		45%	55%	45%	55%	-
Input C	lock Jitter Tolerance	and Delay Path Variation	(4)						
CLKIN_CYC_JITT_DLL_LF		Cycle-to-cycle jitter at the	F _{CLKIN} ≤	150 MHz	-	±300	-	±300	ps
CLKIN_	CLKIN_CYC_JITT_DLL_HF		F _{CLKIN} > 150 MHz		-	±150	-	±150	ps
CLKIN_PER_JITT_DLL Period jitter at the CLKIN input		-	±1	-	±1	ns			
CLKFB_	_DELAY_VAR_EXT	Allowable variation of off-c output to the CLKFB input	hip feedback dela	y from the DCM	-	±1	-	±1	ns

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 106.

3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.

4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

User I/Os by Bank

 Table 138 and Table 139 indicate how the 108 available

user-I/O pins are distributed between the four I/O banks on

the TQ144 package.

Table 138: User I/Os Per Bank for the XC3S100E in the TQ144 Package

Package	I/O Bank	Maximum I/O	All Possible I/O Pins by Type						
Edge	1/O Dalik		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾		
Тор	0	26	9	6	1	2	8		
Right	1	28	0	5	21	2	0(2)		
Bottom	2	26	0	4	20	2	0 ⁽²⁾		
Left	3	28	13	4	0	3	8		
TOTAL		108	22	19	42	9	16		

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 139: User I/Os Per Bank for the XC3S250E in TQ144 Package

Package	I/O Bank	ank Maximum I/O -	All Possible I/O Pins by Type					
Edge			I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾	
Тор	0	26	9	6	1	2	8	
Right	1	28	0	5	21	2	0(2)	
Bottom	2	26	0	4	20	2	0(2)	
Left	3	28	11	6	0	3	8	
TOTAL		108	20	21	42	9	16	

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Footprint Migration Differences

Table 140 summarizes any footprint and functionality differences between the XC3S100E and the XC3S250E FPGAs that may affect easy migration between devices. There are four such pins. All other pins not listed in Table 140 unconditionally migrate between Spartan-3E devices available in the TQ144 package.

The arrows indicate the direction for easy migration. For example, a left-facing arrow indicates that the pin on the XC3S250E unconditionally migrates to the pin on the XC3S100E. It may be possible to migrate the opposite direction depending on the I/O configuration. For example, an I/O pin (Type = I/O) can migrate to an input-only pin (Type = INPUT) if the I/O pin is configured as an input.

Tahle	140.	TO144	Footprint	Migration	Differences
Table	140.		1 OOtprint	wingration	Differences

TQ144 Pin	Bank	XC3S100E Type	Migration	XC3S250E Type
P10	3	I/O	÷	INPUT
P29	3	I/O	÷	INPUT
P31	3	VREF(INPUT)	\rightarrow	VREF(I/O)
P66	2	VREF(INPUT)	\rightarrow	VREF(I/O)
DIFFERENCES			4	

Legend:

This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction may be possible depending on how the pin is configured for the device on the right.

This pin can unconditionally migrate from the device on the right to the device on the left. Migration in the other direction may be possible depending on how the pin is configured for the device on the left.

Table 148: FG320 Package Pinout (Cont'd)

Bank	XC3S500E Pin Name	XC3S1200E Pin Name	XC3S1600E Pin Name	FG320 Ball	Туре
2	IP	10	IO	U6	500E: INPUT
					1200E: I/O
					1600E: I/O
2	IP	10	IO	U13	500E: INPUT
					1200E: 1/O
2	N.C. (�)	10	10	V7	500E: N.C.
					1200E: I/O
					1600E: I/O
2	IO/D5	IO/D5	IO/D5	R9	DUAL
2	IO/M1	IO/M1	IO/M1	V11	DUAL
2	IO/VREF_2	IO/VREF_2	IO/VREF_2	T15	VREF
2	IO/VREF_2	IO/VREF_2	IO/VREF_2	U5	VREF
2	IO_L01N_2/INIT_B	IO_L01N_2/INIT_B	IO_L01N_2/INIT_B	T3	DUAL
2	IO_L01P_2/CSO_B	IO_L01P_2/CSO_B	IO_L01P_2/CSO_B	U3	DUAL
2	IO_L03N_2/MOSI/CSI_B	IO_L03N_2/MOSI/CSI_B	IO_L03N_2/MOSI/CSI_B	T4	DUAL
2	IO_L03P_2/DOUT/BUSY	IO_L03P_2/DOUT/BUSY	IO_L03P_2/DOUT/BUSY	U4	DUAL
2	IO_L04N_2	IO_L04N_2	IO_L04N_2	T5	I/O
2	IO_L04P_2	IO_L04P_2	IO_L04P_2	R5	I/O
2	IO_L05N_2	IO_L05N_2	IO_L05N_2	P6	I/O
2	IO_L05P_2	IO_L05P_2	IO_L05P_2	R6	I/O
2	N.C. (�)	IO_L06N_2/VREF_2	IO_L06N_2/VREF_2	V6	500E: N.C.
					1200E: VREF
0					TOULE: VREF
2	N.C. (♥)	IU_L06P_2	IO_L06P_2	V5	1200F· 1/0
					1600E: I/O
2	IO_L07N_2	IO_L07N_2	IO_L07N_2	P7	I/O
2	IO_L07P_2	IO_L07P_2	IO_L07P_2	N7	I/O
2	IO_L09N_2	IO_L09N_2	IO_L09N_2	N8	I/O
2	IO_L09P_2	IO_L09P_2	IO_L09P_2	P8	I/O
2	IO_L10N_2	IO_L10N_2	IO_L10N_2	T8	I/O
2	IO_L10P_2	IO_L10P_2	IO_L10P_2	R8	I/O
2	IO_L12N_2/D6/GCLK13	IO_L12N_2/D6/GCLK13	IO_L12N_2/D6/GCLK13	M9	DUAL/GCLK
2	IO_L12P_2/D7/GCLK12	IO_L12P_2/D7/GCLK12	IO_L12P_2/D7/GCLK12	N9	DUAL/GCLK
2	IO_L13N_2/D3/GCLK15	IO_L13N_2/D3/GCLK15	IO_L13N_2/D3/GCLK15	V9	DUAL/GCLK
2	IO_L13P_2/D4/GCLK14	IO_L13P_2/D4/GCLK14	IO_L13P_2/D4/GCLK14	U9	DUAL/GCLK
2	IO_L15N_2/D1/GCLK3	IO_L15N_2/D1/GCLK3	IO_L15N_2/D1/GCLK3	P10	DUAL/GCLK
2	IO_L15P_2/D2/GCLK2	IO_L15P_2/D2/GCLK2	IO_L15P_2/D2/GCLK2	R10	DUAL/GCLK
2	IO_L16N_2/DIN/D0	IO_L16N_2/DIN/D0	IO_L16N_2/DIN/D0	N10	DUAL
2	IO_L16P_2/M0	IO_L16P_2/M0	IO_L16P_2/M0	M10	DUAL
2	IO_L18N_2	IO_L18N_2	IO_L18N_2	N11	I/O
2	IO_L18P_2	IO_L18P_2	IO_L18P_2	P11	I/O
2	IO_L19N_2/VREF_2	IO_L19N_2/VREF_2	IO_L19N_2/VREF_2	V13	VREF
2	IO_L19P_2	IO_L19P_2	IO_L19P_2	V12	I/O
2	IO_L20N_2	IO_L20N_2	IO_L20N_2	R12	I/O

Footprint Migration Differences

Table 151 summarizes any footprint and functionalitydifferences between the XC3S500E, the XC3S1200E, andthe XC3S1600E FPGAs that may affect easy migrationbetween devices available in the FG320 package. There are26 such balls. All other pins not listed in Table 151unconditionally migrate between Spartan-3E devicesavailable in the FG320 package.

The XC3S500E is duplicated on both the left and right sides of the table to show migrations to and from the XC3S1200E

and the XC3S1600E. The arrows indicate the direction for easy migration. A double-ended arrow $(\leftarrow \rightarrow)$ indicates that the two pins have identical functionality. A left-facing arrow (\leftarrow) indicates that the pin on the device on the right unconditionally migrates to the pin on the device on the left. It may be possible to migrate the opposite direction depending on the I/O configuration. For example, an I/O pin (Type = I/O) can migrate to an input-only pin (Type = INPUT) if the I/O pin is configured as an input.

Table 1	51: FG3	20 Footprint	Migration	Differences

Pin	Bank	XC3S500E	Migration	XC3S1200E	Migration	XC3S1600E	Migration	XC3S500E
A7	0	INPUT	\rightarrow	I/O	\leftrightarrow	I/O	÷	INPUT
A12	0	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
D4	3	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
D6	0	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
D13	0	INPUT	\rightarrow	I/O	\leftrightarrow	I/O	÷	INPUT
E3	3	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
E4	3	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
E6	0	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
E15	1	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
E16	1	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
E17	1	I/O	÷	INPUT	\leftrightarrow	INPUT	\rightarrow	I/O
F4	3	I/O	÷	INPUT	\leftrightarrow	INPUT	\rightarrow	I/O
N12	2	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
N14	1	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
N15	1	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
P3	3	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
P4	3	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
P12	2	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
P15	1	I/O	÷	INPUT	\leftrightarrow	INPUT	\rightarrow	I/O
P16	1	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
R4	3	VREF(I/O)	÷	VREF(INPUT)	\leftrightarrow	VREF(INPUT)	\rightarrow	VREF(I/O)
U6	2	INPUT	\rightarrow	I/O	\leftrightarrow	I/O	÷	INPUT
U13	2	INPUT	\rightarrow	I/O	\leftrightarrow	I/O	÷	INPUT
V5	2	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
V6	2	N.C.	\rightarrow	VREF	\leftrightarrow	VREF	÷	N.C.
V7	2	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
	DIFFERE	NCES	26		0		26	

Legend:

 \leftrightarrow This pin is identical on the device on the left and the right.

+ This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction may be possible depending on how the pin is configured for the device on the right.

+ This pin can unconditionally migrate from the device on the right to the device on the left. Migration in the other direction may be possible depending on how the pin is configured for the device on the left.

Table 152: FG400 Package Pinout (Cont'd)

Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре
1	IP	L18	INPUT
1	IP	M20	INPUT
1	IP	N14	INPUT
1	IP	N20	INPUT
1	IP	P15	INPUT
1	IP	R16	INPUT
1	IP	R19	INPUT
1	IP/VREF_1	E19	VREF
1	IP/VREF_1	K18	VREF
1	VCCO_1	D19	VCCO
1	VCCO_1	G17	VCCO
1	VCCO_1	K15	VCCO
1	VCCO_1	K19	VCCO
1	VCCO_1	N17	VCCO
1	VCCO_1	T19	VCCO
2	10	P8	I/O
2	10	P13	I/O
2	10	R9	I/O
2	10	R13	I/O
2	10	W15	I/O
2	10	Y5	I/O
2	10	Y7	I/O
2	10	Y13	I/O
2	IO/D5	N11	DUAL
2	IO/M1	T11	DUAL
2	IO/VREF_2	Y3	VREF
2	IO/VREF_2	Y17	VREF
2	IO_L01N_2/INIT_B	V4	DUAL
2	IO_L01P_2/CSO_B	U4	DUAL
2	IO_L03N_2/MOSI/CSI_B	V5	DUAL
2	IO_L03P_2/DOUT/BUSY	U5	DUAL
2	IO_L04N_2	Y4	I/O
2	IO_L04P_2	W4	I/O
2	IO_L06N_2	T6	I/O
2	IO_L06P_2	T5	I/O
2	IO_L07N_2	U7	I/O
2	IO_L07P_2	V7	I/O
2	IO_L09N_2/VREF_2	R7	VREF
2	IO_L09P_2	T7	I/O
2	IO_L10N_2	V8	I/O
2	IO_L10P_2	W8	I/O
2	IO_L12N_2	U9	I/O
2	IO_L12P_2	V9	I/O

Table 152: FG400 Package Pinout (Cont'd)

Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре
2	IO_L13N_2	Y8	I/O
2	IO_L13P_2	Y9	I/O
2	IO_L15N_2/D6/GCLK13	W10	DUAL/ GCLK
2	IO_L15P_2/D7/GCLK12	W9	DUAL/ GCLK
2	IO_L16N_2/D3/GCLK15	P10	DUAL/ GCLK
2	IO_L16P_2/D4/GCLK14	R10	DUAL/ GCLK
2	IO_L18N_2/D1/GCLK3	V11	DUAL/ GCLK
2	IO_L18P_2/D2/GCLK2	V10	DUAL/ GCLK
2	IO_L19N_2/DIN/D0	Y12	DUAL
2	IO_L19P_2/M0	Y11	DUAL
2	IO_L21N_2	U12	I/O
2	IO_L21P_2	V12	I/O
2	IO_L22N_2/VREF_2	W12	VREF
2	IO_L22P_2	W13	I/O
2	IO_L24N_2	U13	I/O
2	IO_L24P_2	V13	I/O
2	IO_L25N_2	P14	I/O
2	IO_L25P_2	R14	I/O
2	IO_L27N_2/A22	Y14	DUAL
2	IO_L27P_2/A23	Y15	DUAL
2	IO_L28N_2	T15	I/O
2	IO_L28P_2	U15	I/O
2	IO_L30N_2/A20	V16	DUAL
2	IO_L30P_2/A21	U16	DUAL
2	IO_L31N_2/VS1/A18	Y18	DUAL
2	IO_L31P_2/VS2/A19	W18	DUAL
2	IO_L32N_2/CCLK	W19	DUAL
2	IO_L32P_2/VS0/A17	Y19	DUAL
2	IP	T16	INPUT
2	IP	W3	INPUT
2	IP_L02N_2	Y2	INPUT
2	IP_L02P_2	W2	INPUT
2	IP_L05N_2	V6	INPUT
2	IP_L05P_2	U6	INPUT
2	IP_L08N_2	Y6	INPUT
2	IP_L08P_2	W6	INPUT
2	IP_L11N_2	R8	INPUT
2	IP_L11P_2	Т8	INPUT
2	IP_L14N_2/VREF_2	T10	VREF

Table 154: FG484 Package Pinout (Cont'd)

Bank	XC3S1600E Pin Name	FG484 Ball	Туре
3	IO_L11N_3	H1	I/O
3	IO_L11P_3	J1	I/O
3	IO_L12N_3	J6	I/O
3	IO_L12P_3	J5	I/O
3	IO_L13N_3/VREF_3	JЗ	VREF
3	IO_L13P_3	K3	I/O
3	IO_L14N_3	J8	I/O
3	IO_L14P_3	K8	I/O
3	IO_L15N_3	K4	I/O
3	IO_L15P_3	K5	I/O
3	IO_L16N_3	K1	I/O
3	IO_L16P_3	L1	I/O
3	IO_L17N_3	L7	I/O
3	IO_L17P_3	K7	I/O
3	IO_L18N_3/LHCLK1	L5	LHCLK
3	IO_L18P_3/LHCLK0	M5	LHCLK
3	IO_L19N_3/LHCLK3/IRDY2	M8	LHCLK
3	IO_L19P_3/LHCLK2	L8	LHCLK
3	IO_L20N_3/LHCLK5	N1	LHCLK
3	IO_L20P_3/LHCLK4/TRDY2	M1	LHCLK
3	IO_L21N_3/LHCLK7	M4	LHCLK
3	IO_L21P_3/LHCLK6	М3	LHCLK
3	IO_L22N_3	N6	I/O
3	IO_L22P_3	N7	I/O
3	IO_L23N_3	P8	I/O
3	IO_L23P_3	N8	I/O
3	IO_L24N_3/VREF_3	N4	VREF
3	IO_L24P_3	N5	I/O
3	IO_L25N_3	P2	I/O
3	IO_L25P_3	P1	I/O
3	IO_L26N_3	R7	I/O
3	IO_L26P_3	P7	I/O
3	IO_L27N_3	P6	I/O
3	IO_L27P_3	P5	I/O
3	IO_L28N_3	R2	I/O
3	IO_L28P_3	R1	I/O
3	IO_L29N_3	R3	I/O
3	IO_L29P_3	R4	I/O
3	IO_L30N_3	T6	I/O
3	IO_L30P_3	R6	I/O
3	IO_L31N_3	U2	I/O
3	IO_L31P_3	U1	I/O
3	IO_L32N_3	T4	I/O
3	IO_L32P_3	T5	I/O

Table 154: FG484 Package Pinout (Cont'd)

Bank	XC3S1600E Pin Name	FG484 Ball	Туре
3	IO_L33N_3	W1	I/O
3	IO_L33P_3	V1	I/O
3	IO_L34N_3	U4	I/O
3	IO_L34P_3	U3	I/O
3	IO_L35N_3	V4	I/O
3	IO_L35P_3	V3	I/O
3	IO_L36N_3/VREF_3	W3	VREF
3	IO_L36P_3	W2	I/O
3	IO_L37N_3	Y2	I/O
3	IO_L37P_3	Y1	I/O
3	IO_L38N_3	AA1	I/O
3	IO_L38P_3	AA2	I/O
3	IP	F2	INPUT
3	IP	F5	INPUT
3	IP	G3	INPUT
3	IP	H7	INPUT
3	IP	J7	INPUT
3	IP	K2	INPUT
3	IP	K6	INPUT
3	IP	M2	INPUT
3	IP	M6	INPUT
3	IP	N3	INPUT
3	IP	P3	INPUT
3	IP	R8	INPUT
3	IP	T1	INPUT
3	IP	T7	INPUT
3	IP	U5	INPUT
3	IP	W4	INPUT
3	IP/VREF_3	L3	VREF
3	IP/VREF_3	Т3	VREF
3	VCCO_3	E2	VCCO
3	VCCO_3	H6	VCCO
3	VCCO_3	J2	VCCO
3	VCCO_3	M7	VCCO
3	VCCO_3	N2	VCCO
3	VCCO_3	R5	VCCO
3	VCCO_3	V2	VCCO
GND	GND	A1	GND
GND	GND	A11	GND
GND	GND	A22	GND
GND	GND	B7	GND
GND	GND	B16	GND
GND	GND	C3	GND
GND	GND	C20	GND

Table 154: FG484 Package Pinout (Cont'd)

Bank	XC3S1600E Pin Name	FG484 Ball	Туре
GND	GND	E10	GND
GND	GND	E13	GND
GND	GND	F6	GND
GND	GND	F17	GND
GND	GND	G2	GND
GND	GND	G21	GND
GND	GND	J4	GND
GND	GND	J9	GND
GND	GND	J12	GND
GND	GND	J14	GND
GND	GND	J19	GND
GND	GND	K10	GND
GND	GND	K12	GND
GND	GND	L2	GND
GND	GND	L6	GND
GND	GND	L9	GND
GND	GND	L13	GND
GND	GND	M10	GND
GND	GND	M14	GND
GND	GND	M17	GND
GND	GND	M21	GND
GND	GND	N11	GND
GND	GND	N13	GND
GND	GND	P4	GND
GND	GND	P9	GND
GND	GND	P11	GND
GND	GND	P14	GND
GND	GND	P19	GND
GND	GND	T2	GND
GND	GND	T21	GND
GND	GND	U6	GND
GND	GND	U17	GND
GND	GND	V10	GND
GND	GND	V13	GND
GND	GND	Y3	GND
GND	GND	Y20	GND
GND	GND	AA7	GND
GND	GND	AA16	GND

Table 154: FG484 Package Pinout (Cont'd)

Bank	XC3S1600E Pin Name	FG484 Ball	Туре
GND	GND	AB1	GND
GND	GND	AB12	GND
GND	GND	AB22	GND
VCCAUX	DONE	AA21	CONFIG
VCCAUX	PROG_B	B1	CONFIG
VCCAUX	TCK	E17	JTAG
VCCAUX	TDI	B2	JTAG
VCCAUX	TDO	B20	JTAG
VCCAUX	TMS	D19	JTAG
VCCAUX	VCCAUX	D12	VCCAUX
VCCAUX	VCCAUX	E5	VCCAUX
VCCAUX	VCCAUX	E18	VCCAUX
VCCAUX	VCCAUX	K14	VCCAUX
VCCAUX	VCCAUX	L4	VCCAUX
VCCAUX	VCCAUX	M19	VCCAUX
VCCAUX	VCCAUX	N9	VCCAUX
VCCAUX	VCCAUX	V5	VCCAUX
VCCAUX	VCCAUX	V18	VCCAUX
VCCAUX	VCCAUX	W11	VCCAUX
VCCINT	VCCINT	J10	VCCINT
VCCINT	VCCINT	K9	VCCINT
VCCINT	VCCINT	K11	VCCINT
VCCINT	VCCINT	K13	VCCINT
VCCINT	VCCINT	L10	VCCINT
VCCINT	VCCINT	L11	VCCINT
VCCINT	VCCINT	L12	VCCINT
VCCINT	VCCINT	L14	VCCINT
VCCINT	VCCINT	M9	VCCINT
VCCINT	VCCINT	M11	VCCINT
VCCINT	VCCINT	M12	VCCINT
VCCINT	VCCINT	M13	VCCINT
VCCINT	VCCINT	N10	VCCINT
VCCINT	VCCINT	N12	VCCINT
VCCINT	VCCINT	N14	VCCINT
VCCINT	VCCINT	P13	VCCINT

User I/Os by Bank

Table 155 indicates how the 304 available user-I/O pins are distributed between the four I/O banks on the FG484 package.