
AMD Xilinx - XC3S100E-4VQG100C Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs 240

Number of Logic Elements/Cells 2160

Total RAM Bits 73728

Number of I/O 66

Number of Gates 100000

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 100-TQFP

Supplier Device Package 100-VQFP (14x14)
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Ordering Information
Spartan-3E FPGAs are available in both standard and 
Pb-free packaging options for all device/package 
combinations. All devices are available in Pb-free packages, 
which adds a ‘G’ character to the ordering code. All devices 
are available in either Commercial (C) or Industrial (I) 

temperature ranges. Both the standard –4 and faster –5 
speed grades are available for the Commercial temperature 
range. However, only the –4 speed grade is available for the 
Industrial temperature range. See Table 2 for valid 
device/package combinations.

Production Stepping

The Spartan-3E FPGA family uses production stepping to 
indicate improved capabilities or enhanced features.

Stepping 1 is, by definition, a functional superset of 
Stepping 0. Furthermore, configuration bitstreams 
generated for any stepping are forward compatible. See 
Table 72 for additional details.

Xilinx has shipped both Stepping 0 and Stepping 1. Designs 
operating on the Stepping 0 devices perform similarly on a 
Stepping 1 device. Stepping 1 devices have been shipping 
since 2006. The faster speed grade (-5), Industrial (I grade), 
Automotive devices, and -4C devices with date codes 0901 
(2009) and later, are always Stepping 1 devices. Only -4C 
devices have shipped as Stepping 0 devices.

To specify only the later stepping for the -4C, append an S# 
suffix to the standard ordering code, where # is the stepping 
number, as indicated in Table 3.

The stepping level is optionally marked on the device using 
a single number character, as shown in Figure 2, Figure 3, 
and Figure 4.

Device Speed Grade Package Type / Number of Pins Temperature Range (TJ)

XC3S100E -4 Standard Performance VQ100
VQG100

100-pin Very Thin Quad Flat Pack (VQFP) C Commercial (0°C to 85°C)

XC3S250E -5 High Performance(1) CP132
CPG132

132-ball Chip-Scale Package (CSP) I Industrial (–40°C to 100°C)

XC3S500E(2) TQ144
TQG144

144-pin Thin Quad Flat Pack (TQFP)

XC3S1200E PQ208
PQG208

208-pin Plastic Quad Flat Pack (PQFP)

XC3S1600E FT256
FTG256

256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)

FG320
FGG320

320-ball Fine-Pitch Ball Grid Array (FBGA)

FG400
FGG400

400-ball Fine-Pitch Ball Grid Array (FBGA)

FG484
FGG484

484-ball Fine-Pitch Ball Grid Array (FBGA)

Notes: 
1. The -5 speed grade is exclusively available in the Commercial temperature range.
2. The XC3S500E VQG100 is available only in the -4 Speed Grade.
3. See DS635 for the XA Automotive Spartan-3E FPGAs.

XC3S250E -4 FT 256 C
Device Type

Speed Grade Temperature Range

Package Type

Example:

DS312_03_082409

S1 (optional code to specify Stepping 1)

Number of Pins

Table  3: Spartan-3E Optional Stepping Level Ordering

Stepping
Number Suffix Code Status

0 None or S0 Production

1 S1 Production

http://www.xilinx.com/support/documentation/data_sheets/ds635.pdf
http://www.xilinx.com
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HSTL and SSTL inputs use the Reference Voltage (VREF) to 
bias the input-switching threshold. Once a configuration 
data file is loaded into the FPGA that calls for the I/Os of a 
given bank to use HSTL/SSTL, a few specifically reserved 
I/O pins on the same bank automatically convert to VREF 

inputs. For banks that do not contain HSTL or SSTL, VREF 
pins remain available for user I/Os or input pins.

Differential standards employ a pair of signals, one the 
opposite polarity of the other. The noise canceling 
properties (for example, Common-Mode Rejection) of these 
standards permit exceptionally high data transfer rates. This 
subsection introduces the differential signaling capabilities 
of Spartan-3E devices. 

Each device-package combination designates specific I/O 
pairs specially optimized to support differential standards. A 
unique L-number, part of the pin name, identifies the 
line-pairs associated with each bank (see Module 4, Pinout 
Descriptions). For each pair, the letters P and N designate 
the true and inverted lines, respectively. For example, the 
pin names IO_L43P_3 and IO_L43N_3 indicate the true 
and inverted lines comprising the line pair L43 on Bank 3. 

VCCO provides current to the outputs and additionally 
powers the On-Chip Differential Termination. VCCO must be 
2.5V when using the On-Chip Differential Termination. The 
VREF lines are not required for differential operation. 

To further understand how to combine multiple 
IOSTANDARDs within a bank, refer to IOBs Organized into 
Banks, page 18.

On-Chip Differential Termination

Spartan-3E devices provide an on-chip ~120Ω differential 
termination across the input differential receiver terminals. 
The on-chip input differential termination in Spartan-3E 
devices potentially eliminates the external 100Ω termination 
resistor commonly found in differential receiver circuits. 
Differential termination is used for LVDS, mini-LVDS, and 
RSDS as applications permit.

On-chip Differential Termination is available in banks with 
VCCO = 2.5V and is not supported on dedicated input pins. 
Set the DIFF_TERM attribute to TRUE to enable Differential 
Termination on a differential I/O pin pair. 

The DIFF_TERM attribute uses the following syntax in the 
UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> 
DIFF_TERM = "<TRUE/FALSE>";

Table  7: Differential IOSTANDARD Bank Compatibility

Differential 
IOSTANDARD

VCCO Supply Input 
Requirements: 

VREF

Differential Bank 
Restriction(1)1.8V 2.5V 3.3V

LVDS_25 Input
Input,

On-chip Differential Termination,
Output

Input

VREF is not used for 
these I/O standards

Applies to Outputs 
Only

RSDS_25 Input
Input,

On-chip Differential Termination,
Output

Input Applies to Outputs 
Only

MINI_LVDS_25 Input
Input,

On-chip Differential Termination,
Output

Input Applies to Outputs 
Only

LVPECL_25 Input Input Input

No Differential Bank 
Restriction

(other I/O bank 
restrictions might 

apply)

BLVDS_25 Input Input,
Output Input

DIFF_HSTL_I_18 Input, 
Output Input Input

DIFF_HSTL_III_18 Input, 
Output Input Input

DIFF_SSTL18_I Input, 
Output Input Input

DIFF_SSTL2_I Input Input,
Output Input

Notes: 
1. Each bank can support any two of the following: LVDS_25 outputs, MINI_LVDS_25 outputs, RSDS_25 outputs.

http://www.xilinx.com
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The SLICEM pair supports two additional functions: 

• Two 16x1 distributed RAM blocks, RAM16

• Two 16-bit shift registers, SRL16

Each of these elements is described in more detail in the 
following sections.

Logic Cells

The combination of a LUT and a storage element is known 
as a “Logic Cell”. The additional features in a slice, such as 
the wide multiplexers, carry logic, and arithmetic gates, add 
to the capacity of a slice, implementing logic that would 
otherwise require additional LUTs. Benchmarks have 
shown that the overall slice is equivalent to 2.25 simple logic 
cells. This calculation provides the equivalent logic cell 
count shown in Table 9.

Slice Details

Figure 15 is a detailed diagram of the SLICEM. It represents 
a superset of the elements and connections to be found in 
all slices. The dashed and gray lines (blue when viewed in 
color) indicate the resources found only in the SLICEM and 
not in the SLICEL.

Each slice has two halves, which are differentiated as top 
and bottom to keep them distinct from the upper and lower 
slices in a CLB. The control inputs for the clock (CLK), Clock 

Enable (CE), Slice Write Enable (SLICEWE1), and 
Reset/Set (RS) are shared in common between the two 
halves.

The LUTs located in the top and bottom portions of the slice 
are referred to as “G” and “F”, respectively, or the “G-LUT” 
and the “F-LUT”. The storage elements in the top and 
bottom portions of the slice are called FFY and FFX, 
respectively. 

Each slice has two multiplexers with F5MUX in the bottom 
portion of the slice and FiMUX in the top portion. Depending 
on the slice, the FiMUX takes on the name F6MUX, 
F7MUX, or F8MUX, according to its position in the 
multiplexer chain. The lower SLICEL and SLICEM both 
have an F6MUX. The upper SLICEM has an F7MUX, and 
the upper SLICEL has an F8MUX. 

The carry chain enters the bottom of the slice as CIN and 
exits at the top as COUT. Five multiplexers control the chain: 
CYINIT, CY0F, and CYMUXF in the bottom portion and 
CY0G and CYMUXG in the top portion. The dedicated 
arithmetic logic includes the exclusive-OR gates XORF and 
XORG (bottom and top portions of the slice, respectively) 
as well as the AND gates FAND and GAND (bottom and top 
portions, respectively). 

See Table 10 for a description of all the slice input and 
output signals.

Table  10: Slice Inputs and Outputs

Name Location Direction Description

F[4:1] SLICEL/M Bottom Input F-LUT and FAND inputs

G[4:1] SLICEL/M Top Input G-LUT and GAND inputs or Write Address (SLICEM)

BX SLICEL/M Bottom Input Bypass to or output (SLICEM) or storage element, or control input to F5MUX, 
input to carry logic, or data input to RAM (SLICEM)

BY SLICEL/M Top Input Bypass to or output (SLICEM) or storage element, or control input to FiMUX, 
input to carry logic, or data input to RAM (SLICEM)

BXOUT SLICEM Bottom Output BX bypass output

BYOUT SLICEM Top Output BY bypass output

ALTDIG SLICEM Top Input Alternate data input to RAM

DIG SLICEM Top Output ALTDIG or SHIFTIN bypass output

SLICEWE1 SLICEM Common Input RAM Write Enable

F5 SLICEL/M Bottom Output Output from F5MUX; direct feedback to FiMUX

FXINA SLICEL/M Top Input Input to FiMUX; direct feedback from F5MUX or another FiMUX

FXINB SLICEL/M Top Input Input to FiMUX; direct feedback from F5MUX or another FiMUX

Fi SLICEL/M Top Output Output from FiMUX; direct feedback to another FiMUX

CE SLICEL/M Common Input FFX/Y Clock Enable

SR SLICEL/M Common Input FFX/Y Set or Reset or RAM Write Enable (SLICEM)

CLK SLICEL/M Common Input FFX/Y Clock or RAM Clock (SLICEM)

SHIFTIN SLICEM Top Input Data input to G-LUT RAM

http://www.xilinx.com
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The INIT attribute can be used to preload the memory with 
data during FPGA configuration. The default initial contents 
for RAM is all zeros. If the WE is held Low, the element can 
be considered a ROM. The ROM function is possible even 
in the SLICEL.

The global write enable signal, GWE, is asserted 
automatically at the end of device configuration to enable all 
writable elements. The GWE signal guarantees that the 

X-Ref Target - Figure 26

Figure 26: RAM16X1D Dual-Port Usage
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X-Ref Target - Figure 27

Figure 27: Dual-Port RAM Component

Table  18: Dual-Port RAM Function

Inputs Outputs

WE (mode) WCLK D SPO DPO

0 (read) X X data_a data_d

1 (read) 0 X data_a data_d

1 (read) 1 X data_a data_d

1 (write) ↑ D D data_d

1 (read) ↓ X data_a data_d

Notes: 
1. data_a = word addressed by bits A3-A0.
2. data_d = word addressed by bits DPRA3-DPRA0.

RAM16X1D
WE SPO

D
WCLK

A0
A1
A2
A3

DPRA0
DPRA1
DPRA2
DPRA3

DPO

DS312-2_42_021305

Table  19: Distributed RAM Signals

Signal Description

WCLK The clock is used for synchronous writes. The 
data and the address input pins have setup 
times referenced to the WCLK pin. Active on 
the positive edge by default with built-in 
programmable polarity.

WE The enable pin affects the write functionality of 
the port. An inactive Write Enable prevents 
any writing to memory cells. An active Write 
Enable causes the clock edge to write the data 
input signal to the memory location pointed to 
by the address inputs. Active High by default 
with built-in programmable polarity.

A0, A1, A2, A3 
(A4, A5)

The address inputs select the memory cells for 
read or write. The width of the port determines 
the required address inputs.

D The data input provides the new data value to 
be written into the RAM.

O, SPO, and 
DPO

The data output O on single-port RAM or the 
SPO and DPO outputs on dual-port RAM 
reflects the contents of the memory cells 
referenced by the address inputs. Following an 
active write clock edge, the data out (O or 
SPO) reflects the newly written data.

http://www.xilinx.com
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initialized distributed RAM contents are not disturbed during 
the configuration process. 

The distributed RAM is useful for smaller amounts of 
memory. Larger memory requirements can use the 
dedicated 18Kbit RAM blocks (see Block RAM).

Shift Registers

For additional information, refer to the “Using Look-Up 
Tables as Shift Registers (SRL16)” chapter in UG331.

It is possible to program each SLICEM LUT as a 16-bit shift 
register (see Figure 28). Used in this way, each LUT can 
delay serial data anywhere from 1 to 16 clock cycles without 
using any of the dedicated flip-flops. The resulting 
programmable delays can be used to balance the timing of 
data pipelines.

The SLICEM LUTs cascade from the G-LUT to the F-LUT 
through the DIFMUX (see Figure 15). SHIFTIN and 
SHIFTOUT lines cascade a SLICEM to the SLICEM below 
to form larger shift registers. The four SLICEM LUTs of a 
single CLB can be combined to produce delays up to 64 
clock cycles. It is also possible to combine shift registers 
across more than one CLB. 

Each shift register provides a shift output MC15 for the last 
bit in each LUT, in addition to providing addressable access 
to any bit in the shift register through the normal D output. 
The address inputs A[3:0] are the same as the distributed 
RAM address lines, which come from the LUT inputs F[4:1] 
or G[4:1]. At the end of the shift register, the CLB flip-flop 
can be used to provide one more shift delay for the 
addressable bit. 

The shift register element is known as the SRL16 (Shift 
Register LUT 16-bit), with a ‘C’ added to signify a cascade 
ability (Q15 output) and ‘E’ to indicate a Clock Enable. See 
Figure 29 for an example of the SRLC16E component.

The functionality of the shift register is shown in Table 20. 
The SRL16 shifts on the rising edge of the clock input when 
the Clock Enable control is High. This shift register cannot 
be initialized either during configuration or during operation 
except by shifting data into it. The clock enable and clock 
inputs are shared between the two LUTs in a SLICEM. The 
clock enable input is automatically kept active if unused.

X-Ref Target - Figure 28

Figure 28: Logic Cell SRL16 Structure
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X-Ref Target - Figure 29

Figure 29: SRL16 Shift Register Component with 
Cascade and Clock Enable

Table  20: SRL16 Shift Register Function

Inputs Outputs

Am CLK CE D Q Q15

Am X 0 X Q[Am] Q[15]

Am ↑ 1 D Q[Am-1] Q[15]

Notes: 
1. m = 0, 1, 2, 3.

SRLC16E
D Q

CE
CLK

A0
A1
A2
A3

Q15

DS312-2_43_021305

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
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The BCIN and BCOUT ports have associated dedicated 
routing that connects adjacent multipliers within the same 
column. Via the cascade connection, the BCOUT port of 
one multiplier block drives the BCIN port of the multiplier 
block directly above it. There is no connection to the BCIN 
port of the bottom-most multiplier block in a column or a 
connection from the BCOUT port of the top-most block in a 
column. As an example, Figure 39 shows the multiplier 
cascade capability within the XC3S100E FPGA, which has 
a single column of multiplier, four blocks tall. For clarity, the 
figure omits the register control inputs.
 

When using the BREG register, the cascade connection 
forms a shift register structure typically used in DSP 
algorithms such as direct-form FIR filters. When the BREG 
register is omitted, the cascade structure essentially feeds 
the same input value to more than one multiplier. This 
parallel connection serves to create wide-input multipliers, 
implement transpose FIR filters, and is used in any 
application that requires that several multipliers have the 
same input value.

X-Ref Target - Figure 39

Figure 39: Multiplier Cascade Connection
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FIXED Phase Shift Mode 

The FIXED phase shift mode shifts the DCM outputs by a 
fixed amount (TPS), controlled by the user-specified 
PHASE_SHIFT attribute. The PHASE_SHIFT value (shown 
as P in Figure 44) must be an integer ranging from –255 to 
+255. PHASE_SHIFT specifies a phase shift delay as a 
fraction of the TCLKIN. The phase shift behavior is different 
between ISE 8.1, Service Pack 3 and prior software 
versions, as described below.

Design Note

Prior to ISE 8.1i, Service Pack 3, the FIXED phase shift 
feature operated differently than the Spartan-3 DCM design 
primitive and simulation model. Designs using software 
prior to ISE 8.1i, Service Pack 3 require recompilation using 
the latest ISE software release. The following Answer 
Record contains additional information:

http://www.xilinx.com/support/answers/23153.htm.

FIXED Phase Shift using ISE 8.1i, Service Pack 3 and 
later: See Equation 2. The value corresponds to a phase 
shift range of –360° to +360°, which matches behavior of 
the Spartan-3 DCM design primitive and simulation model.

Eq 2

FIXED Phase Shift prior to ISE 8.1i, Service Pack 3: See 
Equation 3. The value corresponds to a phase shift range of 
–180° to +180° degrees, which is different from the 
Spartan-3 DCM design primitive and simulation model. 
Designs created prior to ISE 8.1i, Service Pack 3 must be 
recompiled using the most recent ISE development 
software.

Eq 3

When the PHASE_SHIFT value is zero, CLKFB and CLKIN 
are in phase, the same as when the PS unit is disabled. 
When the PHASE_SHIFT value is positive, the DCM 
outputs are shifted later in time with respect to CLKIN input. 
When the attribute value is negative, the DCM outputs are 
shifted earlier in time with respect to CLKIN. 

Figure 44b illustrates the relationship between CLKFB and 
CLKIN in the Fixed Phase mode. In the Fixed Phase mode, 
the PSEN, PSCLK, and PSINCDEC inputs are not used 
and must be tied to GND.

Equation 2 or Equation 3 applies only to FIXED phase shift 
mode. The VARIABLE phase shift mode operates 
differently.

tPS
PHASESHIFT

256
---------------------------------------- 
  TCLKIN•=

tPS
PHASESHIFT

512
---------------------------------------- 
  TCLKIN•=

X-Ref Target - Figure 44

Figure 44: NONE and FIXED Phase Shifter Waveforms (ISE 8.1i, Service Pack 3 and later)

DS312-2_61_021606

CLKIN

CLKFB

* TCLKIN
P

256

b. CLKOUT_PHASE_SHIFT = FIXED

Shift Range over all P Values: –255 +2550

CLKIN

CLKFB

a. CLKOUT_PHASE_SHIFT = NONE

(via CLK0 or CLK2X feedback)

(via CLK0 or CLK2X feedback)

http://www.xilinx.com
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Voltage Compatibility

The PROM’s VCCINT supply must be either 3.3V for the 
serial XCFxxS Platform Flash PROMs or 1.8V for the 
serial/parallel XCFxxP PROMs.

 The FPGA’s VCCO_2 supply input and the Platform 
Flash PROM’s VCCO supply input must be the same 
voltage, ideally +2.5V. Both devices also support 1.8V and 
3.3V interfaces but the FPGA’s PROG_B and DONE pins 
require special attention as they are powered by the FPGA’s 
VCCAUX supply, nominally 2.5V. See application note 
XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for 
additional information.

Supported Platform Flash PROMs

Table 51 shows the smallest available Platform Flash 
PROM to program one Spartan-3E FPGA. A multiple-FPGA 
daisy-chain application requires a Platform Flash PROM 
large enough to contain the sum of the various FPGA file 
sizes.

The XC3S1600E requires an 8 Mbit PROM. Two solutions 
are possible: either a single 8 Mbit XCF08P parallel/serial 
PROM or two 4 Mbit XCF04S serial PROMs cascaded. The 
two XCF04S PROMs use a 3.3V VCCINT supply while the 
XCF08P requires a 1.8V VCCINT supply. If the board does 
not already have a 1.8V supply available, the two cascaded 
XCF04S PROM solution is recommended.

CCLK Frequency

In Master Serial mode, the FPGA’s internal oscillator 
generates the configuration clock frequency. The FPGA 
provides this clock on its CCLK output pin, driving the 
PROM’s CLK input pin. The FPGA starts configuration at its 
lowest frequency and increases its frequency for the 
remainder of the configuration process if so specified in the 
configuration bitstream. The maximum frequency is 
specified using the ConfigRate bitstream generator option. 
Table 52 shows the maximum ConfigRate settings, 
approximately equal to MHz, for various Platform Flash 
devices and I/O voltages. For the serial XCFxxS PROMs, 
the maximum frequency also depends on the interface 
voltage.

Table  51: Number of Bits to Program a Spartan-3E 
FPGA and Smallest Platform Flash PROM

Spartan-3E 
FPGA

Number of 
Configuration Bits

Smallest Available 
Platform Flash

XC3S100E 581,344 XCF01S

XC3S250E 1,353,728 XCF02S

XC3S500E 2,270,208 XCF04S

XC3S1200E 3,841,184 XCF04S

XC3S1600E 5,969,696 XCF08P
or 2 x XCF04S

V

Table  52: Maximum ConfigRate Settings for Platform 
Flash

Platform Flash 
Part Number

I/O Voltage 
(VCCO_2, VCCO)

Maximum 
ConfigRate 

Setting

XCF01S
XCF02S
XCF04S

3.3V or 2.5V 25

1.8V 12

XCF08P
XCF16P
XCF32P

3.3V, 2.5V, or 1.8V 25

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf
http://www.xilinx.com/products/silicon_solutions/proms/pfp/
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WRITER NOTE: Many of the URLs in this table are obsolete or 
otherwise broken. 

Table  53: Variant Select Codes for Various SPI Serial Flash PROMs

VS2 VS1 VS0 SPI Read Command Dummy 
Bytes SPI Serial Flash Vendor SPI Flash Family

iMPACT 
Programming 

Support

1 1 1
FAST READ (0x0B)
(see Figure 53)

1

STMicroelectronics (ST)
M25Pxx
M25PExx/M45PExx

Yes

Atmel

AT45DB ‘D’-Series Data 
Flash Yes

AT26 / AT25(1)

Intel S33

Spansion (AMD, Fujitsu) S25FLxxxA

Winbond (NexFlash) NX25 / W25

Macronix MX25Lxxxx

Silicon Storage Technology 
(SST)

SST25LFxxxA
SST25VFxxxA

Programmable 
Microelectronics Corp. 
(PMC)

Pm25LVxxx

AMIC Technology A25L

Eon Silicon Solution, Inc. EN25

1 0 1
READ (0x03)
(see Figure 53)

0

STMicroelectronics (ST)
M25Pxx
M25PExx/M45PExx

Yes

Spansion (AMD, Fujitsu) S25FLxxxA

Winbond (NexFlash) NX25 / W25

Macronix MX25Lxxxx

Silicon Storage Technology 
(SST)

SST25LFxxxA
SST25VFxxxA
SST25VFxxx

Programmable 
Microelectronics Corp. 
(PMC)

Pm25LVxxx

1 1 0 READ ARRAY (0xE8)
(see Figure 54) 4 Atmel Corporation

AT45DB DataFlash
(use only ‘C’ or ‘D’ 
Series for Industrial 
temperature range)

Yes

Others Reserved

Notes: 
1. See iMPACT documentation for specific device support.

http://www.xilinx.com
http://www.st.com/stonline/products/families/memories/fl_ser/sf_code.htm
http://www.st.com/stonline/products/families/memories/fl_ser/sf_data.htm
http://www.atmel.com/products/DataFlash/overview.asp
http://www.intel.com/design/flcomp/products/s33/techdocs.htm
http://www.spansion.com/flash_memory_products/serial_interface.html
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.macronix.com/QuickPlace/hq/PageLibrary48256F55002C90A5.nsf/h_Toc/B9F4CC53671F91C148256F55004206F9/?OpenDocument
http://www.sst.com/products.xhtml/serial_flash/25/
http://www.sst.com/products.xhtml/serial_flash/25/
http://www.pmcflash.com/products/spi.cfm
http://www.amictechnology.com/
http://www.eonsdi.com/essl2-1.htm
http://www.st.com/stonline/products/families/memories/fl_ser/sf_code.htm
http://www.st.com/stonline/products/families/memories/fl_ser/sf_data.htm
http://www.spansion.com/flash_memory_products/serial_interface.html
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.macronix.com/QuickPlace/hq/PageLibrary48256F55002C90A5.nsf/h_Toc/B9F4CC53671F91C148256F55004206F9/?OpenDocument
http://www.sst.com/products.xhtml/serial_flash/25/
http://www.sst.com/products.xhtml/serial_flash/25/
http://www.sst.com/products.xhtml/serial_flash/25/
http://www.pmcflash.com/products/spi.cfm
http://www.atmel.com/products/DataFlash/overview.asp
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read operations at this time. Spartan-3E FPGAs issue the 
read command just once. If the SPI Flash is not ready, then 
the FPGA does not properly configure.

If the 3.3V supply is last in the sequence and does not ramp 
fast enough, or if the SPI Flash PROM cannot be ready 
when required by the FPGA, delay the FPGA configuration 
process by holding either the FPGA's PROG_B input or 
INIT_B input Low, as highlighted in Figure 54. Release the 
FPGA when the SPI Flash PROM is ready. For example, a 
simple R-C delay circuit attached to the INIT_B pin forces 
the FPGA to wait for a preselected amount of time. 
Alternately, a Power Good signal from the 3.3V supply or a 
system reset signal accomplishes the same purpose. Use 
an open-drain or open-collector output when driving 
PROG_B or INIT_B.

SPI Flash PROM Density Requirements

Table 57 shows the smallest usable SPI Flash PROM to 
program a single Spartan-3E FPGA. Commercially 
available SPI Flash PROMs range in density from 1 Mbit to 
128 Mbits. A multiple-FPGA daisy-chained application 
requires a SPI Flash PROM large enough to contain the 
sum of the FPGA file sizes. An application can also use a 
larger-density SPI Flash PROM to hold additional data 
beyond just FPGA configuration data. For example, the SPI 
Flash PROM can also store application code for a 
MicroBlaze™ RISC processor core integrated in the 
Spartan-3E FPGA. See Using the SPI Flash Interface after 
Configuration.

CCLK Frequency

In SPI Flash mode, the FPGA’s internal oscillator generates 
the configuration clock frequency. The FPGA provides this 
clock on its CCLK output pin, driving the PROM’s clock input 
pin. The FPGA starts configuration at its lowest frequency 
and increases its frequency for the remainder of the 
configuration process if so specified in the configuration 
bitstream. The maximum frequency is specified using the 
ConfigRate bitstream generator option. The maximum 
frequency supported by the FPGA configuration logic 
depends on the timing for the SPI Flash device. Without 
examining the timing for a specific SPI Flash PROM, use 
ConfigRate = 12 or lower. SPI Flash PROMs that support 
the FAST READ command support higher data rates. Some 

such PROMs support up to ConfigRate = 25 and beyond 
but require careful data sheet analysis. See Serial 
Peripheral Interface (SPI) Configuration Timing for more 
detailed timing analysis.

Using the SPI Flash Interface after Configuration

After the FPGA successfully completes configuration, all of 
the pins connected to the SPI Flash PROM are available as 
user-I/O pins.

If not using the SPI Flash PROM after configuration, drive 
CSO_B High to disable the PROM. The MOSI, DIN, and 
CCLK pins are then available to the FPGA application.

Because all the interface pins are user I/O after 
configuration, the FPGA application can continue to use the 
SPI Flash interface pins to communicate with the SPI Flash 
PROM, as shown in Figure 56. SPI Flash PROMs offer 
random-accessible, byte-addressable, read/write, 
non-volatile storage to the FPGA application.

SPI Flash PROMs are available in densities ranging from 
1 Mbit up to 128 Mbits. However, a single Spartan-3E 
FPGA requires less than 6 Mbits. If desired, use a larger 
SPI Flash PROM to contain additional non-volatile 
application data, such as MicroBlaze processor code, or 
other user data such as serial numbers and Ethernet MAC 
IDs. In the example shown in Figure 56, the FPGA 
configures from SPI Flash PROM. Then using FPGA logic 
after configuration, the FPGA copies MicroBlaze code from 
SPI Flash into external DDR SDRAM for code execution. 
Similarly, the FPGA application can store non-volatile 
application data within the SPI Flash PROM.

The FPGA configuration data is stored starting at location 0. 
Store any additional data beginning in the next available SPI 
Flash PROM sector or page. Do not mix configuration data 
and user data in the same sector or page.

Similarly, the SPI bus can be expanded to additional SPI 
peripherals. Because SPI is a common industry-standard 
interface, various SPI-based peripherals are available, such 
as analog-to-digital (A/D) converters, digital-to-analog (D/A) 
converters, CAN controllers, and temperature sensors. 
However, if sufficient I/O pins are available in the 
application, Xilinx recommends creating a separate SPI bus 
to control peripherals. Creating a second port reduces the 
loading on the CCLK and DIN pins, which are crucial for 
configuration.

The MOSI, DIN, and CCLK pins are common to all SPI 
peripherals. Connect the select input on each additional SPI 
peripheral to one of the FPGA user I/O pins. If HSWAP = 0 
during configuration, the FPGA holds the select line High. If 
HSWAP = 1, connect the select line to +3.3V via an external 
4.7 kΩ pull-up resistor to avoid spurious read or write 
operations. After configuration, drive the select line Low to 
select the desired SPI peripheral.

Table  57: Number of Bits to Program a Spartan-3E 
FPGA and Smallest SPI Flash PROM

Device Number of 
Configuration Bits

Smallest Usable SPI 
Flash PROM

XC3S100E 581,344 1 Mbit

XC3S250E 1,353,728 2 Mbit

XC3S500E 2,270,208 4 Mbit

XC3S1200E 3,841,184 4 Mbit

XC3S1600E 5,969,696 8 Mbit

http://www.xilinx.com
http://www.xilinx.com/microblaze
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During the configuration process, CCLK is controlled by the 
FPGA and limited to the frequencies generated by the 
FPGA. After configuration, the FPGA application can use 

other clock signals to drive the CCLK pin and can further 
optimize SPI-based communication.

Refer to the individual SPI peripheral data sheet for specific 
interface and communication protocol requirements.

X-Ref Target - Figure 56

Figure 56: Using the SPI Flash Interface After Configuration
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SPI serial Flash PROMs and the Atmel AT45DB-series 
Data Flash PROMs using the Platform Cable USB, Xilinx 
Parallel IV, or other compatible programming cable.

Byte-Wide Peripheral Interface (BPI) Parallel 
Flash Mode

For additional information, refer to the “Master BPI Mode” 
chapter in UG332.

In Byte-wide Peripheral Interface (BPI) mode 
(M[2:0] = <0:1:0> or <0:1:1>), a Spartan-3E FPGA 
configures itself from an industry-standard parallel NOR 
Flash PROM, as illustrated in Figure 58. The FPGA 
generates up to a 24-bit address lines to access an 
attached parallel Flash. Only 20 address lines are 
generated for Spartan-3E FPGAs in the TQ144 package. 
Similarly, the XC3S100E FPGA in the CP132 package only 
has 20 address lines while the XC3S250E and XC3S500E 
FPGAs in the same package have 24 address lines. When 
using the VQ100 package, the BPI mode is not available 
when using parallel NOR Flash, but is supported using 
parallel Platform Flash (XCFxxP).

The BPI configuration interface is primarily designed for 
standard parallel NOR Flash PROMs and supports both 
byte-wide (x8) and byte-wide/halfword (x8/x16) PROMs. 
The interface functions with halfword-only (x16) PROMs, 
but the upper byte in a portion of the PROM remains 
unused. For configuration, the BPI interface does not 
require any specific Flash PROM features, such as boot 
block or a specific sector size.

The BPI interface also functions with Xilinx parallel Platform 
Flash PROMs (XCFxxP), although the FPGA’s address 
lines are left unconnected.

The BPI interface also works equally wells with other 
asynchronous memories that use a similar SRAM-style 
interface such as SRAM, NVRAM, EEPROM, EPROM, or 
masked ROM.

NAND Flash memory is commonly used in memory cards 
for digital cameras. Spartan-3E FPGAs do not configure 
directly from NAND Flash memories.

The FPGA’s internal oscillator controls the interface timing 
and the FPGA supplies the clock on the CCLK output pin. 
However, the CCLK signal is not used in single FPGA 
applications. Similarly, the FPGA drives three pins Low 
during configuration (LDC[2:0]) and one pin High during 
configuration (HDC) to the PROM’s control inputs.

http://www.xilinx.com
http://www.xilinx.com/products/devkits/HW-USB-II-G.htm
http://www.xilinx.com/products/devkits/HW-PC4.htm
http://www.xilinx.com/products/devkits/HW-PC4.htm
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
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Table  90: Propagation Times for the IOB Input Path

Symbol Description Conditions
IFD_

DELAY_
VALUE=

Device

Speed Grade

Units-5 -4

Min Min

Propagation Times

TIOPLI The time it takes for data to travel 
from the Input pin through the 
IFF latch to the I output with no 
input delay programmed

LVCMOS25(2),
IFD_DELAY_VALUE = 0

0 All 1.96 2.25 ns

TIOPLID The time it takes for data to travel 
from the Input pin through the 
IFF latch to the I output with the 
input delay programmed

LVCMOS25(2),
IFD_DELAY_VALUE = 
default software setting

2 XC3S100E 5.40 5.97 ns

3 All Others 6.30 7.20

Notes: 
1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in 

Table 77 and Table 80.
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is 

true, add the appropriate Input adjustment from Table 91.

Table  91: Input Timing Adjustments by IOSTANDARD

Convert Input Time from 
LVCMOS25 to the 

Following Signal Standard 
(IOSTANDARD)

Add the 
Adjustment Below

UnitsSpeed Grade

-5 -4

Single-Ended Standards

LVTTL 0.42 0.43 ns

LVCMOS33 0.42 0.43 ns

LVCMOS25 0 0 ns

LVCMOS18 0.96 0.98 ns

LVCMOS15 0.62 0.63 ns

LVCMOS12 0.26 0.27 ns

PCI33_3 0.41 0.42 ns

PCI66_3 0.41 0.42 ns

HSTL_I_18 0.12 0.12 ns

HSTL_III_18 0.17 0.17 ns

SSTL18_I 0.30 0.30 ns

SSTL2_I 0.15 0.15 ns

Differential Standards

LVDS_25 0.48 0.49 ns

BLVDS_25 0.39 0.39 ns

MINI_LVDS_25 0.48 0.49 ns

LVPECL_25 0.27 0.27 ns

RSDS_25 0.48 0.49 ns

DIFF_HSTL_I_18 0.48 0.49 ns

DIFF_HSTL_III_18 0.48 0.49 ns

DIFF_SSTL18_I 0.30 0.30 ns

DIFF_SSTL2_I 0.32 0.32 ns

Notes: 
1. The numbers in this table are tested using the methodology 

presented in Table 95 and are based on the operating conditions 
set forth in Table 77, Table 80, and Table 82.

2. These adjustments are used to convert input path times originally 
specified for the LVCMOS25 standard to times that correspond to 
other signal standards. 

Table  91: Input Timing Adjustments by IOSTANDARD (Cont’d)

Convert Input Time from 
LVCMOS25 to the 

Following Signal Standard 
(IOSTANDARD)

Add the 
Adjustment Below

UnitsSpeed Grade

-5 -4

http://www.xilinx.com
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Table  93: Timing for the IOB Three-State Path

Symbol Description Conditions Device

Speed Grade

Units-5 -4

Max Max

Synchronous Output Enable/Disable Times

TIOCKHZ Time from the active transition at the OTCLK input 
of the Three-state Flip-Flop (TFF) to when the 
Output pin enters the high-impedance state

LVCMOS25, 12 mA 
output drive, Fast 
slew rate

All 1.49 1.71 ns

TIOCKON
(2) Time from the active transition at TFF’s OTCLK 

input to when the Output pin drives valid data
All 2.70 3.10 ns

Asynchronous Output Enable/Disable Times

TGTS Time from asserting the Global Three State (GTS) 
input on the STARTUP_SPARTAN3E primitive to 
when the Output pin enters the high-impedance 
state

LVCMOS25, 12 mA 
output drive, Fast 
slew rate

All 8.52 9.79 ns

Set/Reset Times

TIOSRHZ Time from asserting TFF’s SR input to when the 
Output pin enters a high-impedance state

LVCMOS25, 12 mA 
output drive, Fast 
slew rate

All 2.11 2.43 ns

TIOSRON
(2) Time from asserting TFF’s SR input at TFF to when 

the Output pin drives valid data
All 3.32 3.82 ns

Notes: 
1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in 

Table 77 and Table 80.
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data 

Output. When this is true, add the appropriate Output adjustment from Table 94.
3. For minimum delays use the values reported by the Timing Analyzer.

http://www.xilinx.com
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Clock Timing

TCCH The High pulse width at the CCLK input pin 5 - ns

TCCL The Low pulse width at the CCLK input pin 5 - ns

FCCPAR Frequency of the clock signal 
at the CCLK input pin

No bitstream 
compression

Not using the BUSY pin(2) 0 50 MHz

Using the BUSY pin 0 66 MHz

With bitstream compression 0 20 MHz

Notes: 
1. The numbers in this table are based on the operating conditions set forth in Table 77.
2. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.
3. Some Xilinx documents refer to Parallel modes as “SelectMAP” modes.

Table  117: Timing for the Slave Parallel Configuration Mode (Cont’d)

Symbol Description
All Speed Grades

Units
Min Max

http://www.xilinx.com
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FT256 Footprint
X-Ref Target - Figure 85

Figure 85: FT256 Package Footprint (top view)
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I/O     
VREF_2

VCCO_2 I/O     
L06P_2

INPUT  
L08P_2

GND
 

   
       

I/O     
L14N_2   
VREF_2   


I/O     
L16P_2   

A23
VCCO_2

I/O     
L19N_2   

VS1      
A18

I/O     
L20N_2   
CCLK

I/O     
L01N_1   

A15

I/O     
L01P_1   

A16

T GND INPUT INPUT  
L02P_2

I/O     
L04P_2

I/O     
L04N_2

VCCAUX
INPUT  
L08N_2   
VREF_2

I/O     
D5

 
   

 
I/O     
M1

VCCAUX
INPUT  


I/O     
L19P_2   

VS2      
A19

INPUT DONE GND

B
an

k
3

B
an

k
1

Bank 0

Bank 2

I/O     
L12N_1

3       
RHCLK7

A

I/O     
L12P_1

RHCLK6
A4       

I/O     
L10N_1

A
RHCLK3

7       

TRDY1

I/O    
L11N_1

A5       
RHCLK5

I/O    
L10P_1

A8       
RHCLK2

I/O     
L11P_1

6       
RHCLK4

IRDY1

A

I/O    
L09N_1

A9       
RHCLK1

I/O    
L09P_1

A10
RHCLK0

I/O     
L09P_2

D7       
GCLK12

I/O     
L09N_2

GCLK13
D6       

I/O     
L10P_2

D4       
GCLK14

I/O     
L12N_2

D1       
GCLK3

I/O     
L10N_2

D3       
GCLK15

I/O     
L12P_2

D2       
GCLK2

GCLK1
M2

INPUT 
L11N_2

GCLK0
RDWR_B 
L11P_2
INPUT 

DS312-4_05_101805

2 CONFIG: Dedicated configuration 
pins 4 JTAG:  Dedicated JTAG port pins 8 VCCINT: Internal core supply 

voltage (+1.2V)

28 GND: Ground 16 VCCO: Output voltage supply for 
bank 8 VCCAUX:  Auxiliary supply voltage 

(+2.5V)

6
�¯�˘

Migration Difference: For flexible 
package migration, use these pins 
as inputs.

18
(�� )

Unconnected pins on XC3S250E

http://www.xilinx.com

