E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

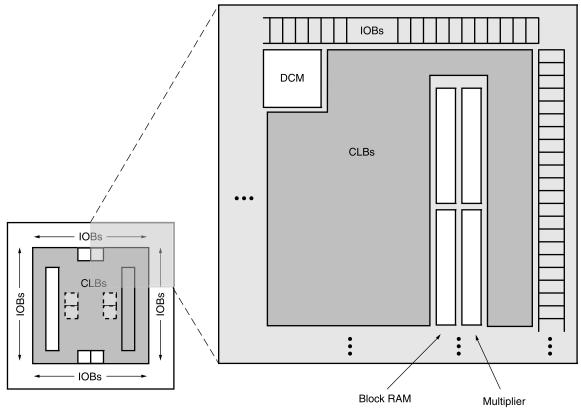
Details

Product Status	Active
Number of LABs/CLBs	240
Number of Logic Elements/Cells	2160
Total RAM Bits	73728
Number of I/O	66
Number of Gates	100000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s100e-4vqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Architectural Overview


The Spartan-3E family architecture consists of five fundamental programmable functional elements:

- **Configurable Logic Blocks (CLBs)** contain flexible Look-Up Tables (LUTs) that implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide variety of logical functions as well as store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Supports a variety of signal standards, including four high-performance differential standards. Double Data-Rate (DDR) registers are included.
- **Block RAM** provides data storage in the form of 18-Kbit dual-port blocks.
- **Multiplier Blocks** accept two 18-bit binary numbers as inputs and calculate the product.

• **Digital Clock Manager (DCM) Blocks** provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. Each device has two columns of block RAM except for the XC3S100E, which has one column. Each RAM column consists of several 18-Kbit RAM blocks. Each block RAM is associated with a dedicated multiplier. The DCMs are positioned in the center with two at the top and two at the bottom of the device. The XC3S100E has only one DCM at the top and bottom, while the XC3S1200E and XC3S1600E add two DCMs in the middle of the left and right sides.

The Spartan-3E family features a rich network of traces that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.

DS312_01_111904

Figure 1: Spartan-3E Family Architecture

Package Marking

Figure 2 provides a top marking example for Spartan-3E FPGAs in the quad-flat packages. Figure 3 shows the top marking for Spartan-3E FPGAs in BGA packages except the 132-ball chip-scale package (CP132 and CPG132). The markings for the BGA packages are nearly identical to those for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator. Figure 4 shows the top marking for Spartan-3E FPGAs in the CP132 and CPG132 packages. On the QFP and BGA packages, the optional numerical Stepping Code follows the Lot Code.

The "5C" and "4I" part combinations can have a dual mark of "5C/4I". Devices with a single mark are only guaranteed for the marked speed grade and temperature range. All "5C" and "4I" part combinations use the Stepping 1 production silicon.

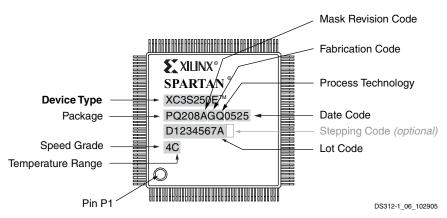
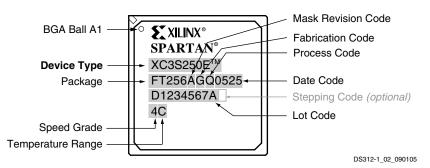



Figure 2: Spartan-3E QFP Package Marking Example

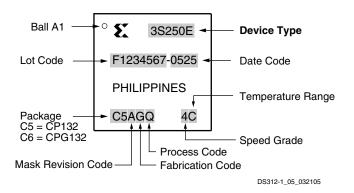
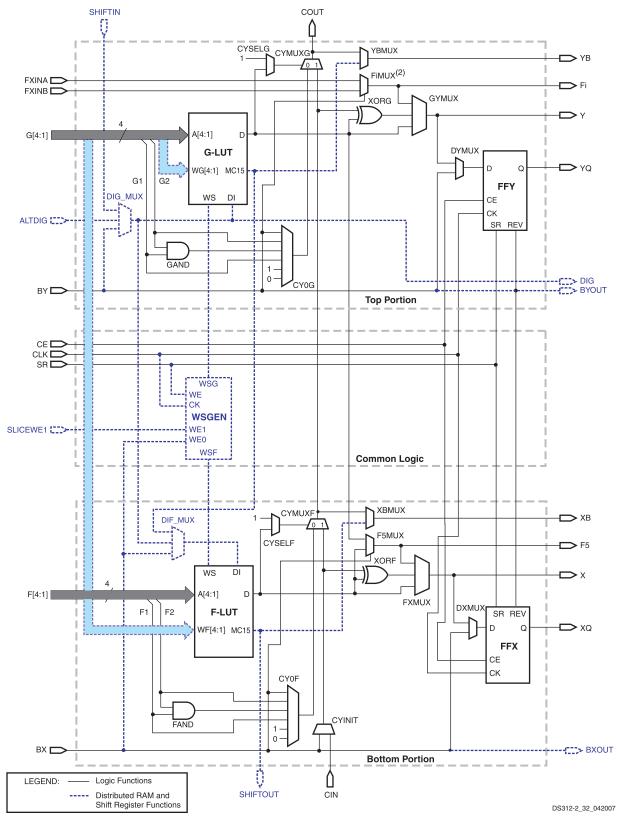



Figure 4: Spartan-3E CP132 and CPG132 Package Marking Example

Notes:

- 1. Options to invert signal polarity as well as other options that enable lines for various functions are not shown.
- 2. The index i can be 6, 7, or 8, depending on the slice. The upper SLICEL has an F8MUX, and the upper SLICEM has an F7MUX. The lower SLICEL and SLICEM both have an F6MUX.

Figure 15: Simplified Diagram of the Left-Hand SLICEM

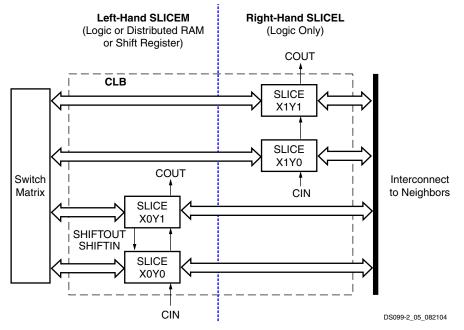
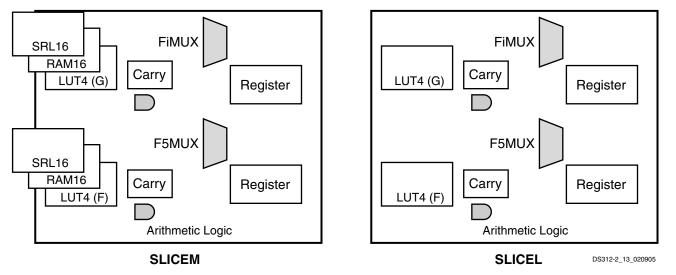
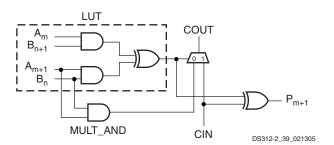


Figure 16: Arrangement of Slices within the CLB

Slice Location Designations


The Xilinx development software designates the location of a slice according to its X and Y coordinates, starting in the bottom left corner, as shown in Figure 14. The letter 'X' followed by a number identifies columns of slices, incrementing from the left side of the die to the right. The letter 'Y' followed by a number identifies the position of each slice in a pair as well as indicating the CLB row, incrementing from the bottom of the die. Figure 16 shows the CLB located in the lower left-hand corner of the die. The SLICEM always has an even 'X' number, and the SLICEL always has an odd 'X' number.

Slice Overview

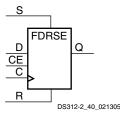

A slice includes two LUT function generators and two storage elements, along with additional logic, as shown in Figure 17.

Both SLICEM and SLICEL have the following elements in common to provide logic, arithmetic, and ROM functions:

- Two 4-input LUT function generators, F and G
- Two storage elements
- Two wide-function multiplexers, F5MUX and FiMUX
- Carry and arithmetic logic

Figure 24: Using the MULT_AND for Multiplication in Carry Logic

The MULT_AND is useful for small multipliers. Larger multipliers can be built using the dedicated 18x18 multiplier blocks (see Dedicated Multipliers).


Storage Elements

The storage element, which is programmable as either a D-type flip-flop or a level-sensitive transparent latch, provides a means for synchronizing data to a clock signal, among other uses. The storage elements in the top and bottom portions of the slice are called FFY and FFX, respectively. FFY has a fixed multiplexer on the D input selecting either the combinatorial output Y or the bypass signal BY. FFX selects between the combinatorial output X or the bypass signal BX.

The functionality of a slice storage element is identical to that described earlier for the I/O storage elements. All signals have programmable polarity; the default active-High function is described.

Signal	Description
D	Input. For a flip-flop data on the D input is loaded when R and S (or CLR and PRE) are Low and CE is High during the Low-to-High clock transition. For a latch, Q reflects the D input while the gate (G) input and gate enable (GE) are High and R and S (or CLR and PRE) are Low. The data on the D input during the High-to-Low gate transition is stored in the latch. The data on the Q output of the latch remains unchanged as long as G or GE remains Low.
Q	Output. Toggles after the Low-to-High clock transition for a flip-flop and immediately for a latch.
С	Clock for edge-triggered flip-flops.
G	Gate for level-sensitive latches.
CE	Clock Enable for flip-flops.
GE	Gate Enable for latches.
S	Synchronous Set (Q = High). When the S input is High and R is Low, the flip-flop is set, output High, during the Low-to-High clock (C) transition. A latch output is immediately set, output High.
R	Synchronous Reset (Q = Low); has precedence over Set.
PRE	Asynchronous Preset (Q = High). When the PRE input is High and CLR is Low, the flip-flop is set, output High, during the Low-to-High clock (C) transition. A latch output is immediately set, output High.
CLR	Asynchronous Clear (Q = Low); has precedence over Preset to reset Q output Low
SR	CLB input for R, S, CLR, or PRE
REV	CLB input for opposite of SR. Must be asynchronous or synchronous to match SR.

The control inputs R, S, CE, and C are all shared between the two flip-flops in a slice.

Figure 25: FD Flip-Flop Component with Synchronous Reset, Set, and Clock Enable

Table 16: FD Flip-Flop Functionality with SynchronousReset, Set, and Clock Enable

		Outputs			
R	S	CE	D C		Q
1	Х	Х	Х	↑	0
0	1	Х	Х	↑	1
0	0	0	Х	Х	No Change
0	0	1	1	↑	1
0	0	1	0	↑	0

Table 15: Storage Element Signals Simular

cancel out the clock skew. When the DLL phase-aligns the CLK0 signal with the CLKIN signal, it asserts the LOCKED output, indicating a lock on to the CLKIN signal.

DLL Attributes and Related Functions

The DLL unit has a variety of associated attributes as described in Table 29. Each attribute is described in detail in the sections that follow.

Table 29: DLL Attributes

EXILINX

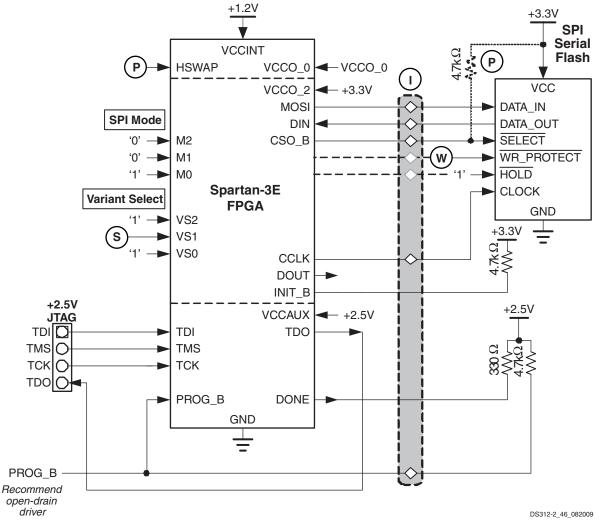
Attribute	Description	Values
CLK_FEEDBACK	Chooses either the CLK0 or CLK2X output to drive the CLKFB input	NONE, <u>1X</u> , 2X
CLKIN_DIVIDE_BY_2	Halves the frequency of the CLKIN signal just as it enters the DCM	<i>FALSE</i> , TRUE
CLKDV_DIVIDE	Selects the constant used to divide the CLKIN input frequency to generate the CLKDV output frequency	1.5, <u>2</u> , 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16
CLKIN_PERIOD	Additional information that allows the DLL to operate with the most efficient lock time and the best jitter tolerance	Floating-point value representing the CLKIN period in nanoseconds

DLL Clock Input Connections

For best results, an external clock source enters the FPGA via a Global Clock Input (GCLK). Each specific DCM has four possible direct, optimal GCLK inputs that feed the DCM's CLKIN input, as shown in Table 30. Table 30 also provides the specific pin numbers by package for each GCLK input. The two additional DCM's on the XC3S1200E and XC3S1600E have similar optimal connections from the left-edge LHCLK and the right-edge RHCLK inputs, as described in Table 31 and Table 32.

 The DCM supports differential clock inputs (for example, LVDS, LVPECL_25) via a pair of GCLK inputs that feed an internal single-ended signal to the DCM's CLKIN input.

Design Note


Avoid using global clock input GCLK1 as it is always shared with the M2 mode select pin. Global clock inputs GCLK0, GCLK2, GCLK3, GCLK12, GCLK13, GCLK14, and GCLK15 have shared functionality in some configuration modes.

SPI Serial Flash Mode

For additional information, refer to the "Master SPI Mode" chapter in UG332.

In SPI Serial Flash mode (M[2:0] = <0:0:1>), the Spartan-3E FPGA configures itself from an attached industry-standard SPI serial Flash PROM, as illustrated in Figure 53 and Figure 54. The FPGA supplies the CCLK output clock from its internal oscillator to the clock input of the attached SPI Flash PROM.

(S) Although SPI is a standard four-wire interface, various available SPI Flash PROMs use different command protocols. The FPGA's variant select pins, VS[2:0], define how the FPGA communicates with the SPI Flash, including which SPI Flash command the FPGA issues to start the read operation and the number of dummy bytes inserted before the FPGA expects to receive valid data from the SPI Flash. Table 53 shows the available SPI Flash PROMs expected to operate with Spartan-3E FPGAs. Other compatible devices might work but have not been tested for suitability with Spartan-3E FPGAs. All other VS[2:0] values are reserved for future use. Consult the data sheet for the desired SPI Flash device to determine its suitability. The basic timing requirements and waveforms are provided in

Serial Peripheral Interface (SPI) Configuration Timing in Module 3.

Figure 53 shows the general connection diagram for those SPI Flash PROMs that support the 0x03 READ command or the 0x0B FAST READ commands.

Figure 54 shows the connection diagram for Atmel DataFlash serial PROMs, which also use an SPI-based protocol. 'B'-series DataFlash devices are limited to FPGA applications operating over the commercial temperature range. Industrial temperature range applications must use 'C'- or 'D'-series DataFlash devices, which have a shorter DataFlash select setup time, because of the faster FPGA CCLK frequency at cold temperatures. can also be eliminated from the interface. However, RDWR_B must remain Low during configuration.

After configuration, all of the interface pins except DONE and PROG_B are available as user I/Os. Alternatively, the bidirectional SelectMAP configuration interface is available after configuration. To continue using SelectMAP mode, set the **Persist** bitstream generator option to **Yes**. The external host can then read and verify configuration data. The Persist option will maintain A20-A23 as configuration pins although they are not used in SelectMAP mode.

The Slave Parallel mode is also used with BPI mode to create multi-FPGA daisy-chains. The lead FPGA is set for BPI mode configuration; all the downstream daisy-chain FPGAs are set for Slave Parallel configuration, as highlighted in Figure 59.

Pin Name	ame FPGA Direction Description Dur		During Configuration	After Configuration	
HSWAP	Input	User I/O Pull-Up Control . When Low during configuration, enables pull-up resistors in all I/O pins to respective I/O bank V _{CCO} input. 0: Pull-ups during configuration	during configuration, enables up resistors in all I/O pins to pective I/O bank V _{CCO} input. ull-ups during configuration		
		1: No pull-ups			
M[2:0]	Input	Iode Select. Selects the FPGA onfiguration mode. See Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins.M2 = 1, M1 = 1, M0 = 0 Sampled when INIT_B goes High.U		User I/O	
D[7:0]	Input	Data Input.			
BUSY	Output	Busy Indicator. If CCLK frequency is < 50 MHz, this pin may be ignored. When High, indicates that the FPGA is not ready to receive additional configuration data. Host must hold data an additional clock cycle.		User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.	
CSI_B	Input	Chip Select Input. Active Low.	Must be Low throughout configuration.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.	
RDWR_B	Input	Read/Write Control . Active Low write enable.	Must be Low throughout configuration.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.	
CCLK	Input	Configuration Clock . If CCLK PCB trace is long or has multiple connections, terminate this output to maintain signal integrity. See CCLK Design Considerations.	External clock.	User I/O If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.	
CSO_B	Output	Chip Select Output. Active Low.	Not used in single FPGA applications. In a daisy-chain configuration, this pin connects to the CSI_B pin of the next FPGA in the chain. Actively drives.	User I/O	

Table 65: Slave Parallel Mode Connections

Pin Name	FPGA Direction	Description	During Configuration	After Configuration
INIT_B	Open-drain bidirectional I/O	Initialization Indicator . Active Low. Goes Low at the start of configuration during the Initialization memory clearing process. Released at the end of memory clearing, when mode select pins are sampled. In daisy-chain applications, this signal requires an external 4.7 k Ω pull-up resistor to VCCO_2.	Active during configuration. If CRC error detected during configuration, FPGA drives INIT_B Low.	User I/O. If unused in the application, drive INIT_B High.
DONE	Open-drain bidirectional I/O	FPGA Configuration Done . Low during configuration. Goes High when FPGA successfully completes configuration. Requires external 330 Ω pull-up resistor to 2.5V.	Low indicates that the FPGA is not yet configured.	Pulled High via external pull-up. When High, indicates that the FPGA successfully configured.
PROG_B	Input	Program FPGA . Active Low. When asserted Low for 500 ns or longer, forces the FPGA to restart its configuration process by clearing configuration memory and resetting the DONE and INIT_B pins once PROG_B returns High. Recommend external 4.7 k Ω pull-up resistor to 2.5V. Internal pull-up value may be weaker (see Table 78). If driving externally with a 3.3V output, use an open-drain or open-collector driver or use a current limiting series resistor.	Must be High to allow configuration to start.	Drive PROG_B Low and release to reprogram FPGA.

Table 65: Slave Parallel Mode Connections (Cont'd)

Voltage Compatibility

W Most Slave Parallel interface signals are within the FPGA's I/O Bank 2, supplied by the VCCO_2 supply input. The VCCO_2 voltage can be 1.8V, 2.5V, or 3.3V to match the requirements of the external host, ideally 2.5V. Using 1.8V or 3.3V requires additional design considerations as the DONE and PROG_B pins are powered by the FPGA's 2.5V V_{CCAUX} supply. See <u>XAPP453</u>: *The 3.3V Configuration of Spartan-3 FPGAs* for additional information.

Daisy-Chaining

If the application requires multiple FPGAs with different configurations, then configure the FPGAs using a daisy chain. Use Slave Parallel mode (M[2:0] = <1:1:0>) for all FPGAs in the daisy-chain. The schematic in Figure 62 is optimized for FPGA downloading and does not support the SelectMAP read interface. The FPGA's RDWR_B pin must be Low during configuration.

After the lead FPGA is filled with its configuration data, the lead FPGA enables the next FPGA in the daisy-chain by asserting is chip-select output, CSO_B.

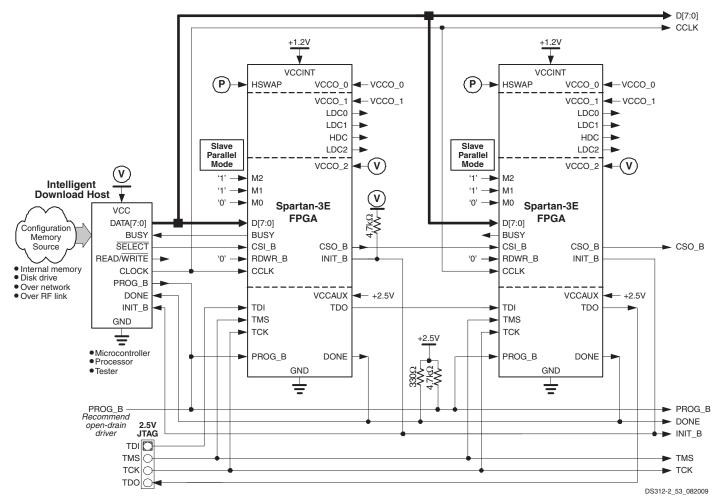


Figure 62: Daisy-Chaining using Slave Parallel Mode

Slave Serial Mode

For additional information, refer to the "Slave Serial Mode" chapter in UG332.

In Slave Serial mode (M[2:0] = <1:1:1>), an external host such as a microprocessor or microcontroller writes serial configuration data into the FPGA, using the synchronous serial interface shown in Figure 63. The serial configuration data is presented on the FPGA's DIN input pin with sufficient setup time before each rising edge of the externally generated CCLK clock input. The intelligent host starts the configuration process by pulsing PROG_B and monitoring that the INIT_B pin goes High, indicating that the FPGA is ready to receive its first data. The host then continues supplying data and clock signals until either the DONE pin goes High, indicating a successful configuration, or until the INIT_B pin goes Low, indicating a configuration error. The configuration process requires more clock cycles than indicated from the configuration file size. Additional clocks are required during the FPGA's start-up sequence, especially if the FPGA is programmed to wait for selected Digital Clock Managers (DCMs) to lock to their respective clock inputs (see Start-Up, page 105).

E XILINX.

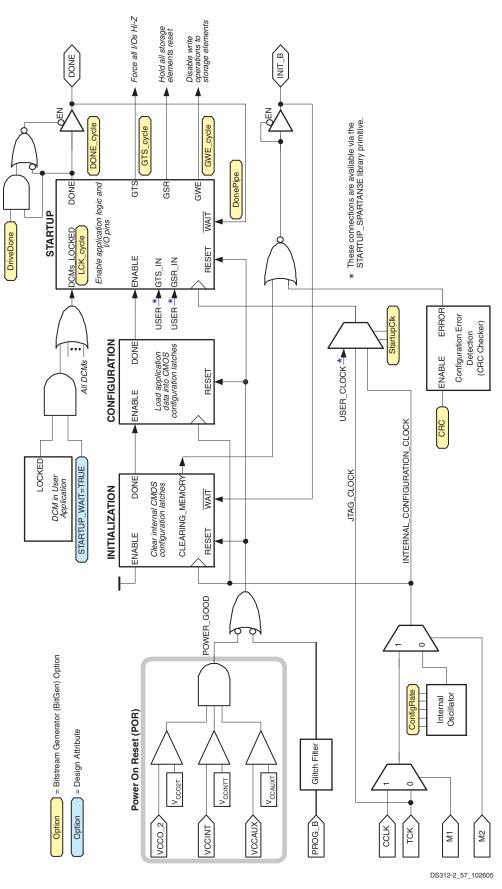


Figure 66: Generalized Spartan-3E FPGA Configuration Logic Block Diagram

Differential I/O Standards

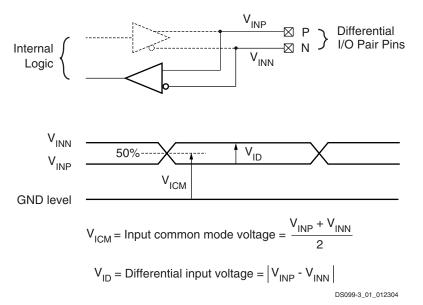


Figure 69: Differential Input Voltages

Table 82: Recommended O	perating Conditions for Use	r I/Os Using Differentia	Signal Standards
	peruang contantene for coo	i woo oonig binoronda	orginal otariaarao

IOSTANDARD	V _{CCO} for Drivers ⁽¹⁾			V _{ID}			V _{ICM}		
Attribute	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)
LVDS_25	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20
BLVDS_25	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20
MINI_LVDS_25	2.375	2.50	2.625	200	-	600	0.30	-	2.2
LVPECL_25 ⁽²⁾		Inputs Only		100	800	1000	0.5	1.2	2.0
RSDS_25	2.375	2.50	2.625	100	200	-	0.3	1.20	1.4
DIFF_HSTL_I_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_HSTL_III_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_SSTL18_I	1.7	1.8	1.9	100	-	-	0.7	-	1.1
DIFF_SSTL2_I	2.3	2.5	2.7	100	-	-	1.0	-	1.5

Notes:

1. The V_{CCO} rails supply only differential output drivers, not input circuits.

2. V_{REF} inputs are not used for any of the differential I/O standards.

Table 94: Output Timing Adjustments for IOB

Convert O LVCMOS25 w Fast Slew Ra	ith 12mA C	Add Adjus Be	Units		
Signal Standa			Speed	Grade	-
		_	-5	-4	
Single-Ended	Standards	5		r	1
LVTTL	Slow	2 mA	5.20	5.41	ns
		4 mA	2.32	2.41	ns
		6 mA	1.83	1.90	ns
		8 mA	0.64	0.67	ns
		12 mA	0.68	0.70	ns
		16 mA	0.41	0.43	ns
	Fast	2 mA	4.80	5.00	ns
		4 mA	1.88	1.96	ns
		6 mA	1.39	1.45	ns
		8 mA	0.32	0.34	ns
		12 mA	0.28	0.30	ns
		16 mA	0.28	0.30	ns
LVCMOS33	Slow	2 mA	5.08	5.29	ns
		4 mA	1.82	1.89	ns
		6 mA	1.00	1.04	ns
		8 mA	0.66	0.69	ns
		12 mA	0.40	0.42	ns
		16 mA	0.41	0.43	ns
	Fast	2 mA	4.68	4.87	ns
		4 mA	1.46	1.52	ns
		6 mA	0.38	0.39	ns
		8 mA	0.33	0.34	ns
		12 mA	0.28	0.30	ns
		16 mA	0.28	0.30	ns
LVCMOS25	Slow	2 mA	4.04	4.21	ns
		4 mA	2.17	2.26	ns
		6 mA	1.46	1.52	ns
		8 mA	1.04	1.08	ns
		12 mA	0.65	0.68	ns
	Fast	2 mA	3.53	3.67	ns
		4 mA	1.65	1.72	ns
		6 mA	0.44	0.46	ns
		8 mA	0.20	0.21	ns
		12 mA	0	0	ns

Table 94: Output Timing Adjustments for IOB (Cont'd)

Convert Output Time from LVCMOS25 with 12mA Drive and Fast Slew Rate to the Following			Adjus Bel	the tment ow Grade	Units	
Signal Standa	Signal Standard (IOSTANDARD)				-	
			-5	-4		
LVCMOS18	Slow	2 mA	5.03	5.24	ns	
		4 mA	3.08	3.21	ns	
		6 mA	2.39	2.49	ns	
		8 mA	1.83	1.90	ns	
	Fast	2 mA	3.98	4.15	ns	
		4 mA	2.04	2.13	ns	
		6 mA	1.09	1.14	ns	
		8 mA	0.72	0.75	ns	
LVCMOS15	Slow	2 mA	4.49	4.68	ns	
		4 mA	3.81	3.97	ns	
		6 mA	2.99	3.11	ns	
	Fast	2 mA	3.25	3.38	ns	
		4 mA	2.59	2.70	ns	
		6 mA	1.47	1.53	ns	
LVCMOS12	Slow	2 mA	6.36	6.63	ns	
	Fast	2 mA	4.26	4.44	ns	
HSTL_I_18			0.33	0.34	ns	
HSTL_III_18			0.53	0.55	ns	
PCI33_3			0.44	0.46	ns	
PCI66_3			0.44	0.46	ns	
SSTL18_I			0.24	0.25	ns	
SSTL2_I			-0.20	-0.20	ns	
Differential Sta	ndards		1			
LVDS_25			-0.55	-0.55	ns	
BLVDS_25			0.04	0.04	ns	
MINI_LVDS_25			-0.56	-0.56	ns	
LVPECL_25			Input	Only	ns	
RSDS_25		-0.48	-0.48	ns		
DIFF_HSTL_I_	18	0.42	0.42	ns		
DIFF_HSTL_III	_18	0.53	0.55	ns		
DIFF_SSTL18_	I		0.40	0.40	ns	
DIFF_SSTL2_I			0.44	0.44	ns	

Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in Table 77, Table 80, and Table 82.
- 2. These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

Table 105: Switching Characteristics for the DLL

	Description			Speed Grade				
Symbol			Device	-5		-4		Units
				Min	Max	Min	Мах	
Output Frequency Ranges								
CLKOUT_FREQ_CLK0	Frequency for the CLK0 and CLK180 outputs	Stepping 0	XC3S100E XC3S250E XC3S500E XC3S1600E	N/A	N/A	5	90	MHz
			XC3S1200E				200	MHz
		Stepping 1	All	5	275		240	MHz
CLKOUT_FREQ_CLK90	Frequency for the CLK90 and CLK270 outputs	Stepping 0	XC3S100E XC3S250E XC3S500E XC3S1600E	N/A	N/A	5	90	MHz
			XC3S1200E				167	MHz
		Stepping 1	All	5	200		200	MHz
CLKOUT_FREQ_2X	Frequency for the CLK2X and CLK2X180 outputs	Stepping 0	XC3S100E XC3S250E XC3S500E XC3S1600E	N/A	N/A	10	180	MHz
			XC3S1200E				311	MHz
		Stepping 1	All	10	333		311	MHz
CLKOUT_FREQ_DV	Frequency for the CLKDV output	Stepping 0	XC3S100E XC3S250E XC3S500E XC3S1600E	N/A	N/A	0.3125	60	MHz
			XC3S1200E				133	MHz
		Stepping 1	All	0.3125	183		160	MHz
Output Clock Jitter ^(2,3,4)								
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output		All	-	±100	-	±100	ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output	ıt		-	±150	-	±150	ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 outp	out		-	±150	-	±150	ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 outp	out		-	±150	-	±150	ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and C	Period jitter at the CLK2X and CLK2X180 outputs		-	±[1% of CLKIN period + 150]	-	±[1% of CLKIN period + 150]	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output when performing integer division			-	±150	-	±150	ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output when performing non-integer division			-	±[1% of CLKIN period + 200]	-	±[1% of CLKIN period + 200]	ps
Duty Cycle ⁽⁴⁾								
CLKOUT_DUTY_CYCLE_DLL	Duty cycle variation for the CLK CLK180, CLK270, CLK2X, CLK CLKDV outputs, including the E clock tree duty-cycle distortion	<2X180, and	All	-	±[1% of CLKIN period + 400]	-	±[1% of CLKIN period + 400]	ps

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
03/01/05	1.0	Initial Xilinx release.
11/23/05	2.0	Added AC timing information and additional DC specifications.
03/22/06	3.0	Upgraded data sheet status to Preliminary. Finalized production timing parameters. All speed grades for all Spartan-3E FPGAs are now Production status using the v1.21 speed files, as shown in Table 84. Expanded description in Note 2, Table 78. Updated pin-to-pin and clock-to-output timing based on final characterization, shown in Table 86. Updated system-synchronous input setup and hold times based on final characterization, shown in Table 87 and Table 88. Updated other I/O timing in Table 90. Provided input and output adjustments for LVPECL_25, DIFF_SSTL and DIFF_HSTL I/O standards that supersede the v1.21 speed file values, in Table 91 and Table 94. Reduced I/O three-state and set/reset delays in Table 93. Added XC3S100E FPGA in CP132 package to Table 96. Increased T _{AS} slice flip-flop timing by 100 ps in Table 98. Updated distributed RAM timing in Table 99 and SRL16 timing in Table 100. Updated global clock timing, removed left/right clock buffer limits in Table 101. Updated block RAM timing in Table 103. Added DCM parameters for remainder of Step 0 device; added improved Step 1 DCM performance to Table 104, Table 105, Table 106, and Table 107. Added minimum INIT_B pulse width specification, T _{INIT} , in Table 111. Increased data hold time for Slave Parallel mode to 1.0 ns (T _{SMCCD}) in Table 106, and Table 107. Corrected links in Table 118 and Table 120. Added MultiBoot timing specifications to Table 122.
04/07/06	3.1	Improved SSO limits for LVDS_25, MINI_LVDS_25, and RSDS_25 I/O standards in the QFP packages (Table 97). Removed potentially confusing Note 2 from Table 78.
05/19/06	3.2	Clarified that 100 mV of hysteresis applies to LVCMOS33 and LVCMOS25 I/O standards (Note 4, Table 80). Other minor edits.
05/30/06	3.2.1	Corrected various typos and incorrect links.
11/09/06	3.4	Improved absolute maximum voltage specifications in Table 73, providing additional overshoot allowance. Widened the recommended voltage range for PCI and PCI-X standards in Table 80. Clarified Note 2, Table 83. Improved various timing specifications for v1.26 speed file. Added Table 85 to summarize the history of speed file releases after which time all devices became Production status. Added absolute minimum values for Table 86, Table 92, and Table 93. Updated pin-to-pin setup and hold timing based on default IFD_DELAY_VALUE settings in Table 87, Table 88, and Table 90. Added Table 89 about source-synchronous input capture sample window. Promoted Module 3 to Production status. Synchronized all modules to v3.4.
03/16/07	3.5	Based on extensive 90 nm production data, improved (reduced) the maximum quiescent current limits for the I_{CCINTQ} , I_{CCAUXQ} , and I_{CCOQ} specifications in Table 79 by an average of 50%.
05/29/07	3.6	Added note to Table 74 and Table 75 regarding HSWAP in step 0 devices. Updated t _{RPW_CLB} in Table 98 to match value in speed file. Improved CLKOUT_FREQ_CLK90 to 200 MHz for Stepping 1 in Table 105.
04/18/08	3.7	Clarified that Stepping 0 was offered only for -4C and removed Stepping 0 -5 specifications. Added reference to XAPP459 in Table 73 and Table 77. Improved recommended max V_{CCO} to 3.465V (3.3V + 5%) in Table 77. Removed minimum input capacitance from Table 78. Updated Recommended Operating Conditions for LVCMOS and PCI I/O standards in Table 80. Removed Absolute Minimums from Table 86, Table 92 and Table 93 and added footnote recommending use of Timing Analyzer for minimum values. Updated T _{PSFD} and T _{PHFD} in Table 87 to match current speed file. Update T _{RPW_IOB} in Table 88 to match current speed file and CLB equivalent spec. Added XC3S500E VQG100 to Table 96. Replaced T _{MULCKID} with T _{MSCKD} for A, B, and P registers in Table 102. Updated CLKOUT_PER_JITT_FX in Table 107. Updated MAX_STEPS equation in Table 109. Updated Figure 77 and Table 120 to correct CCLK active edge. Updated links.

Date	Version	Revision
08/26/09	3.8	Added reference to XAPP459 in Table 73 note 2. Updated BPI timing in Figure 77, Table 119, and Table 120. Removed V _{REF} requirements for differential HSTL and differential SSTL in Table 95. Added Spread Spectrum paragraph. Revised hold times for $T_{IOICKPD}$ in Table 88 and setup times for T_{DICK} in Table 98. Added note 4 to Table 106 and note 3 to Table 107, and updated note 6 for Table 107 to add input jitter.
10/29/12	4.0	Added Notice of Disclaimer. This product is not recommended for new designs. Revised note 2 in Table 73. Revised note 2 and $V_{\rm IN}$ description in Table 77, and added note 5. Added note 3 to Table 78.

Notice of Disclaimer

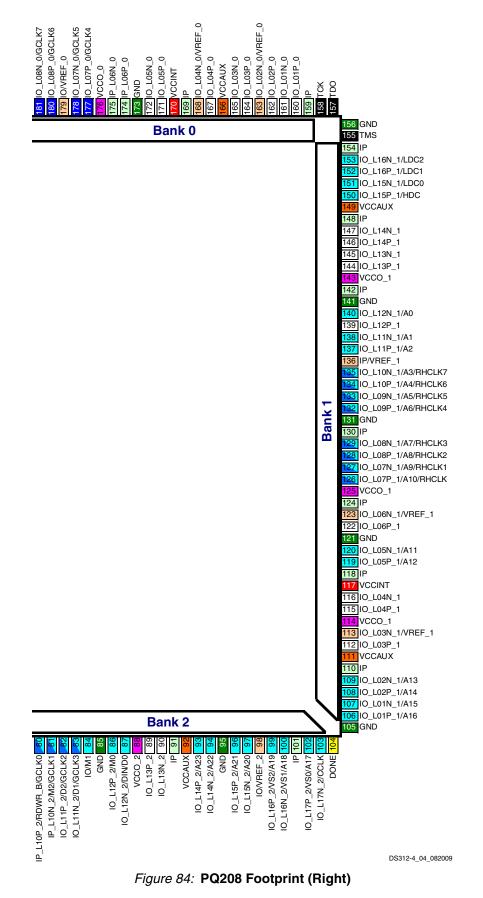
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.


Table 141: PQ208 Package Pinout (Cont'd)

Bank	XC3S250E XC3S500E Pin Name	PQ208 Pin	Туре
3	IO_L14P_3	P41	I/O
3	IO_L15N_3	P48	I/O
3	IO_L15P_3	P47	I/O
3	IO_L16N_3	P50	I/O
3	IO_L16P_3	P49	I/O
3	IP	P6	INPUT
3	IP	P14	INPUT
3	IP	P26	INPUT
3	IP	P32	INPUT
3	IP	P43	INPUT
3	IP	P51	INPUT
3	IP/VREF_3	P20	VREF
3	VCCO_3	P21	VCCO
3	VCCO_3	P38	VCCO
3	VCCO_3	P46	VCCO
GND	GND	P10	GND
GND	GND	P17	GND
GND	GND	P27	GND
GND	GND	P37	GND
GND	GND	P52	GND
GND	GND	P53	GND
GND	GND	P70	GND
GND	GND	P79	GND
GND	GND	P85	GND
GND	GND	P95	GND
GND	GND	P105	GND
GND	GND	P121	GND
GND	GND	P131	GND
GND	GND	P141	GND
GND	GND	P156	GND
GND	GND	P173	GND
GND	GND	P182	GND
GND	GND	P188	GND
GND	GND	P198	GND
GND	GND	P208	GND
VCCAUX	DONE	P104	CONFIG
VCCAUX	PROG_B	P1	CONFIG
VCCAUX	тск	P158	JTAG
VCCAUX	TDI	P207	JTAG
VCCAUX	TDO	P157	JTAG
VCCAUX	TMS	P155	JTAG
VCCAUX	VCCAUX	P7	VCCAUX
VCCAUX	VCCAUX	P44	VCCAUX

Table 141: PQ208 Package Pinout (Cont'd)

Bank	XC3S250E XC3S500E Pin Name	PQ208 Pin	Туре
VCCAUX	VCCAUX	P66	VCCAUX
VCCAUX	VCCAUX	P92	VCCAUX
VCCAUX	VCCAUX	P111	VCCAUX
VCCAUX	VCCAUX	P149	VCCAUX
VCCAUX	VCCAUX	P166	VCCAUX
VCCAUX	VCCAUX	P195	VCCAUX
VCCINT	VCCINT	P13	VCCINT
VCCINT	VCCINT	P67	VCCINT
VCCINT	VCCINT	P117	VCCINT
VCCINT	VCCINT	P170	VCCINT

PQ208 Footprint (Right)

Table 148: FG320 Package Pinout (Cont'd)

Bank	XC3S500E Pin Name	XC3S1200E Pin Name	XC3S1600E Pin Name	FG320 Ball	Туре
1	IO_L17N_1	IO_L17N_1	IO_L17N_1	H15	I/O
1	IO_L17P_1	IO_L17P_1	IO_L17P_1	H14	I/O
1	IO_L18N_1	IO_L18N_1	IO_L18N_1	G16	I/O
1	IO_L18P_1	IO_L18P_1	IO_L18P_1	G15	I/O
1	IO_L19N_1	IO_L19N_1	IO_L19N_1	F17	I/O
1	IO_L19P_1	IO_L19P_1	IO_L19P_1	F18	I/O
1	IO_L20N_1	IO_L20N_1	IO_L20N_1	G13	I/O
1	IO_L20P_1	IO_L20P_1	IO_L20P_1	G14	I/O
1	IO_L21N_1	IO_L21N_1	IO_L21N_1	F14	I/O
1	IO_L21P_1	IO_L21P_1	IO_L21P_1	F15	I/O
1	N.C. (♦)	IO_L22N_1	IO_L22N_1	E16	500E: N.C. 1200E: I/O 1600E: I/O
1	N.C. (�)	IO_L22P_1	IO_L22P_1	E15	500E: N.C. 1200E: I/O 1600E: I/O
1	IO_L23N_1/LDC0	IO_L23N_1/LDC0	IO_L23N_1/LDC0	D16	DUAL
1	IO_L23P_1/HDC	IO_L23P_1/HDC	IO_L23P_1/HDC	D17	DUAL
1	IO_L24N_1/LDC2	IO_L24N_1/LDC2	IO_L24N_1/LDC2	C17	DUAL
1	IO_L24P_1/LDC1	IO_L24P_1/LDC1	IO_L24P_1/LDC1	C18	DUAL
1	IP	IP	IP	B18	INPUT
1	Ю	IP	IP	E17	500E: I/O 1200E: INPUT 1600E: INPUT
1	IP	IP	IP	E18	INPUT
1	IP	IP	IP	G18	INPUT
1	IP	IP	IP	H13	INPUT
1	IP	IP	IP	K17	INPUT
1	IP	IP	IP	K18	INPUT
1	IP	IP	IP	L13	INPUT
1	IP	IP	IP	L14	INPUT
1	IP	IP	IP	N17	INPUT
1	Ю	IP	IP	P15	500E: I/O 1200E: INPUT 1600E: INPUT
1	IP	IP	IP	R17	INPUT
1	IP/VREF_1	IP/VREF_1	IP/VREF_1	D18	VREF
1	IP/VREF_1	IP/VREF_1	IP/VREF_1	H18	VREF
1	VCCO_1	VCCO_1	VCCO_1	F16	VCCO
1	VCCO_1	VCCO_1	VCCO_1	H12	VCCO
1	VCCO_1	VCCO_1	VCCO_1	J18	VCCO
1	VCCO_1	VCCO_1	VCCO_1	L12	VCCO
1	VCCO_1	VCCO_1	VCCO_1	N16	VCCO
2	IO	Ю	IO	P9	I/O
2	10	10	IO	R11	I/O

Table 154: FG484 Package Pinout (Cont'd)

Table 154	4: FG484 Package Pinout (Cont'd)		Ta
Bank	XC3S1600E Pin Name	FG484 Ball	Туре	
2	IO_L19N_2/D6/GCLK13	U11	DUAL/ GCLK	
2	IO_L19P_2/D7/GCLK12	V11	DUAL/ GCLK	
2	IO_L20N_2/D3/GCLK15	T11	DUAL/ GCLK	
2	IO_L20P_2/D4/GCLK14	R11	DUAL/ GCLK	
2	IO_L22N_2/D1/GCLK3	W12	DUAL/ GCLK	
2	IO_L22P_2/D2/GCLK2	Y12	DUAL/ GCLK	
2	IO_L23N_2/DIN/D0	U12	DUAL	
2	IO_L23P_2/M0	V12	DUAL	
2	IO_L25N_2	Y13	I/O	
2	IO_L25P_2	W13	I/O	
2	IO_L26N_2/VREF_2	U14	VREF	
2	IO_L26P_2	U13	I/O	
2	IO_L27N_2	T14	I/O	
2	IO_L27P_2	R14	I/O	
2	IO_L28N_2	Y14	I/O	
2	IO_L28P_2	AA14	I/O	
2	IO_L29N_2	W14	I/O	
2	IO_L29P_2	V14	I/O	
2	IO_L30N_2	AB15	I/O	
2	IO_L30P_2	AA15	I/O	
2	IO_L32N_2	W15	I/O	
2	IO_L32P_2	Y15	I/O	_
2	IO_L33N_2	U16	I/O	
2	IO_L33P_2	V16	I/O	
2	IO_L35N_2/A22	AB17	DUAL	
2	IO_L35P_2/A23	AA17	DUAL	
2	IO_L36N_2	W17	I/O	
2	IO_L36P_2	Y17	I/O	
2	IO_L38N_2/A20	Y18	DUAL	
2	IO_L38P_2/A21	W18	DUAL	
2	IO_L39N_2/VS1/A18	AA20	DUAL	
2	IO_L39P_2/VS2/A19	AB20	DUAL	
2	IO_L40N_2/CCLK	W19	DUAL	
2	IO_L40P_2/VS0/A17	Y19	DUAL	
2	IP	V17	INPUT	\vdash
2	IP	AB2	INPUT	\vdash
2	IP_L02N_2	AA4	INPUT	\vdash
2	IP_L02P_2	Y4	INPUT	\vdash
2	IP_L05N_2	Y6	INPUT	\vdash
2	IP_L05P_2	AA6	INPUT	\vdash
<u> </u>		7.710		

Table 154: FG484 Package Pinout (Cont'd)

Bank	XC3S1600E Pin Name	FG484 Ball	Туре
2	IP_L08N_2	AB7	INPUT
2	IP_L08P_2	AB6	INPUT
2	IP_L15N_2	Y10	INPUT
2	IP_L15P_2	W10	INPUT
2	IP_L18N_2/VREF_2	AA11	VREF
2	IP_L18P_2	Y11	INPUT
2	IP_L21N_2/M2/GCLK1	P12	DUAL/ GCLK
2	IP_L21P_2/RDWR_B/ GCLK0	R12	DUAL/ GCLK
2	IP_L24N_2	R13	INPUT
2	IP_L24P_2	T13	INPUT
2	IP_L31N_2/VREF_2	T15	VREF
2	IP_L31P_2	U15	INPUT
2	IP_L34N_2	Y16	INPUT
2	IP_L34P_2	W16	INPUT
2	IP_L37N_2	AA19	INPUT
2	IP_L37P_2	AB19	INPUT
2	VCCO_2	T12	VCCO
2	VCCO_2	U9	VCCO
2	VCCO_2	V15	VCCO
2	VCCO_2	AA5	VCCO
2	VCCO_2	AA9	VCCO
2	VCCO_2	AA13	VCCO
2	VCCO_2	AA18	VCCO
3	IO_L01N_3	C1	I/O
3	IO_L01P_3	C2	I/O
3	IO_L02N_3/VREF_3	D2	VREF
3	IO_L02P_3	D3	I/O
3	IO_L03N_3	E3	I/O
3	IO_L03P_3	E4	I/O
3	IO_L04N_3	E1	I/O
3	IO_L04P_3	D1	I/O
3	IO_L05N_3	F4	I/O
3	IO_L05P_3	F3	I/O
3	IO_L06N_3	G5	I/O
3	IO_L06P_3	G4	I/O
3	IO_L07N_3	F1	I/O
3	IO_L07P_3	G1	I/O
3	IO_L08N_3/VREF_3	G6	VREF
3	IO_L08P_3	G7	I/O
3	IO_L09N_3	H4	I/O
3	IO_L09P_3	H5	I/O
3	IO_L10N_3	H2	I/O
3	IO_L10P_3	H3	I/O