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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Input Delay Functions

Each IOB has a programmable delay block that optionally 
delays the input signal. In Figure 6, the signal path has a 
coarse delay element that can be bypassed. The input 
signal then feeds a 6-tap delay line. The coarse and tap 
delays vary; refer to timing reports for specific delay values. 
All six taps are available via a multiplexer for use as an 
asynchronous input directly into the FPGA fabric. In this 
way, the delay is programmable in 12 steps. Three of the six 
taps are also available via a multiplexer to the D inputs of 
the synchronous storage elements. The delay inserted in 
the path to the storage element can be varied in six steps. 
The first, coarse delay element is common to both 
asynchronous and synchronous paths, and must be either 
used or not used for both paths.

The delay values are set up in the silicon once at 
configuration time—they are non-modifiable in device 
operation.

The primary use for the input delay element is to adjust the 
input delay path to ensure that there is no hold time 
requirement when using the input flip-flop(s) with a global 
clock. The default value is chosen automatically by the 
Xilinx software tools as the value depends on device size 
and the specific device edge where the flip-flop resides. The 
value set by the Xilinx ISE software is indicated in the Map 

report generated by the implementation tools, and the 
resulting effects on input timing are reported using the 
Timing Analyzer tool.

If the design uses a DCM in the clock path, then the delay 
element can be safely set to zero because the 
Delay-Locked Loop (DLL) compensation automatically 
ensures that there is still no input hold time requirement.

Both asynchronous and synchronous values can be 
modified, which is useful where extra delay is required on 
clock or data inputs, for example, in interfaces to various 
types of RAM.

These delay values are defined through the 
IBUF_DELAY_VALUE and the IFD_DELAY_VALUE 
parameters. The default IBUF_DELAY_VALUE is 0, 
bypassing the delay elements for the asynchronous input. 
The user can set this parameter to 0-12. The default 
IFD_DELAY_VALUE is AUTO. IBUF_DELAY_VALUE and 
IFD_DELAY_VALUE are independent for each input. If the 
same input pin uses both registered and non-registered 
input paths, both parameters can be used, but they must 
both be in the same half of the total delay (both either 
bypassing or using the coarse delay element).

X-Ref Target - Figure 6

Figure 6: Programmable Fixed Input Delay Elements
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HSTL and SSTL inputs use the Reference Voltage (VREF) to 
bias the input-switching threshold. Once a configuration 
data file is loaded into the FPGA that calls for the I/Os of a 
given bank to use HSTL/SSTL, a few specifically reserved 
I/O pins on the same bank automatically convert to VREF 

inputs. For banks that do not contain HSTL or SSTL, VREF 
pins remain available for user I/Os or input pins.

Differential standards employ a pair of signals, one the 
opposite polarity of the other. The noise canceling 
properties (for example, Common-Mode Rejection) of these 
standards permit exceptionally high data transfer rates. This 
subsection introduces the differential signaling capabilities 
of Spartan-3E devices. 

Each device-package combination designates specific I/O 
pairs specially optimized to support differential standards. A 
unique L-number, part of the pin name, identifies the 
line-pairs associated with each bank (see Module 4, Pinout 
Descriptions). For each pair, the letters P and N designate 
the true and inverted lines, respectively. For example, the 
pin names IO_L43P_3 and IO_L43N_3 indicate the true 
and inverted lines comprising the line pair L43 on Bank 3. 

VCCO provides current to the outputs and additionally 
powers the On-Chip Differential Termination. VCCO must be 
2.5V when using the On-Chip Differential Termination. The 
VREF lines are not required for differential operation. 

To further understand how to combine multiple 
IOSTANDARDs within a bank, refer to IOBs Organized into 
Banks, page 18.

On-Chip Differential Termination

Spartan-3E devices provide an on-chip ~120Ω differential 
termination across the input differential receiver terminals. 
The on-chip input differential termination in Spartan-3E 
devices potentially eliminates the external 100Ω termination 
resistor commonly found in differential receiver circuits. 
Differential termination is used for LVDS, mini-LVDS, and 
RSDS as applications permit.

On-chip Differential Termination is available in banks with 
VCCO = 2.5V and is not supported on dedicated input pins. 
Set the DIFF_TERM attribute to TRUE to enable Differential 
Termination on a differential I/O pin pair. 

The DIFF_TERM attribute uses the following syntax in the 
UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> 
DIFF_TERM = "<TRUE/FALSE>";

Table  7: Differential IOSTANDARD Bank Compatibility

Differential 
IOSTANDARD

VCCO Supply Input 
Requirements: 

VREF

Differential Bank 
Restriction(1)1.8V 2.5V 3.3V

LVDS_25 Input
Input,

On-chip Differential Termination,
Output

Input

VREF is not used for 
these I/O standards

Applies to Outputs 
Only

RSDS_25 Input
Input,

On-chip Differential Termination,
Output

Input Applies to Outputs 
Only

MINI_LVDS_25 Input
Input,

On-chip Differential Termination,
Output

Input Applies to Outputs 
Only

LVPECL_25 Input Input Input

No Differential Bank 
Restriction

(other I/O bank 
restrictions might 

apply)

BLVDS_25 Input Input,
Output Input

DIFF_HSTL_I_18 Input, 
Output Input Input

DIFF_HSTL_III_18 Input, 
Output Input Input

DIFF_SSTL18_I Input, 
Output Input Input

DIFF_SSTL2_I Input Input,
Output Input

Notes: 
1. Each bank can support any two of the following: LVDS_25 outputs, MINI_LVDS_25 outputs, RSDS_25 outputs.

http://www.xilinx.com
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Main Logic Paths

Central to the operation of each slice are two nearly 
identical data paths at the top and bottom of the slice. The 
description that follows uses names associated with the 
bottom path. (The top path names appear in parentheses.) 
The basic path originates at an interconnect switch matrix 
outside the CLB. See Interconnect for more information on 
the switch matrix and the routing connections.

Four lines, F1 through F4 (or G1 through G4 on the upper 
path), enter the slice and connect directly to the LUT. Once 
inside the slice, the lower 4-bit path passes through a LUT 
‘F’ (or ‘G’) that performs logic operations. The LUT Data 
output, ‘D’, offers five possible paths: 

1. Exit the slice via line “X” (or “Y”) and return to 
interconnect. 

2. Inside the slice, “X” (or “Y”) serves as an input to the 
DXMUX (or DYMUX) which feeds the data input, “D”, of 
the FFX (or FFY) storage element. The “Q” output of the 
storage element drives the line XQ (or YQ) which exits 
the slice. 

3. Control the CYMUXF (or CYMUXG) multiplexer on the 
carry chain. 

4. With the carry chain, serve as an input to the XORF (or 
XORG) exclusive-OR gate that performs arithmetic 
operations, producing a result on “X” (or “Y”). 

5. Drive the multiplexer F5MUX to implement logic 
functions wider than four bits. The “D” outputs of both 
the F-LUT and G-LUT serve as data inputs to this 
multiplexer. 

In addition to the main logic paths described above, there 
are two bypass paths that enter the slice as BX and BY. 
Once inside the FPGA, BX in the bottom half of the slice (or 
BY in the top half) can take any of several possible 
branches: 

1. Bypass both the LUT and the storage element, and 
then exit the slice as BXOUT (or BYOUT) and return to 
interconnect. 

2. Bypass the LUT, and then pass through a storage 
element via the D input before exiting as XQ (or YQ). 

3. Control the wide function multiplexer F5MUX (or 
FiMUX). 

4. Via multiplexers, serve as an input to the carry chain. 

5. Drive the DI input of the LUT. 

6. BY can control the REV inputs of both the FFY and FFX 
storage elements. See Storage Element Functions. 

7. Finally, the DIG_MUX multiplexer can switch BY onto 
the DIG line, which exits the slice. 

The control inputs CLK, CE, SR, BX and BY have 
programmable polarity. The LUT inputs do not need 
programmable polarity because their function can be 
inverted inside the LUT. 

The sections that follow provide more detail on individual 
functions of the slice. 

Look-Up Tables

The Look-Up Table or LUT is a RAM-based function 
generator and is the main resource for implementing logic 
functions. Furthermore, the LUTs in each SLICEM pair can 
be configured as Distributed RAM or a 16-bit shift register, 
as described later.

Each of the two LUTs (F and G) in a slice have four logic 
inputs (A1-A4) and a single output (D). Any four-variable 
Boolean logic operation can be implemented in one LUT. 
Functions with more inputs can be implemented by 
cascading LUTs or by using the wide function multiplexers 
that are described later. 

The output of the LUT can connect to the wide multiplexer 
logic, the carry and arithmetic logic, or directly to a CLB 
output or to the CLB storage element. See Figure 18.

SHIFTOUT SLICEM Bottom Output Shift data output from F-LUT RAM

CIN SLICEL/M Bottom Input Carry chain input

COUT SLICEL/M Top Output Carry chain output

X SLICEL/M Bottom Output Combinatorial output

Y SLICEL/M Top Output Combinatorial output

XB SLICEL/M Bottom Output Combinatorial output from carry or F-LUT SRL16 (SLICEM)

YB SLICEL/M Top Output Combinatorial output from carry or G-LUT SRL16 (SLICEM)

XQ SLICEL/M Bottom Output FFX output

YQ SLICEL/M Top Output FFY output

Table  10: Slice Inputs and Outputs (Cont’d)

Name Location Direction Description

http://www.xilinx.com
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Dedicated Multipliers
For additional information, refer to the “Using Embedded 
Multipliers” chapter in UG331.

The Spartan-3E devices provide 4 to 36 dedicated multiplier 
blocks per device. The multipliers are located together with 
the block RAM in one or two columns depending on device 
density. See Arrangement of RAM Blocks on Die for details 
on the location of these blocks and their connectivity.

Operation

The multiplier blocks primarily perform two’s complement 
numerical multiplication but can also perform some less 
obvious applications, such as simple data storage and 
barrel shifting. Logic slices also implement efficient small 
multipliers and thereby supplement the dedicated 
multipliers. The Spartan-3E dedicated multiplier blocks 
have additional features beyond those provided in 
Spartan-3 FPGAs.

Each multiplier performs the principle operation P = A × B, 
where ‘A’ and ‘B’ are 18-bit words in two’s complement 
form, and ‘P’ is the full-precision 36-bit product, also in two’s 
complement form. The 18-bit inputs represent values 
ranging from –131,07210 to +131,07110 with a resulting 

product ranging from –17,179,738,11210 to 
+17,179,869,18410. 

Implement multipliers with inputs less than 18 bits by 
sign-extending the inputs (i.e., replicating the 
most-significant bit). Wider multiplication operations are 
performed by combining the dedicated multipliers and 
slice-based logic in any viable combination or by 
time-sharing a single multiplier. Perform unsigned 
multiplication by restricting the inputs to the positive range. 
Tie the most-significant bit Low and represent the unsigned 
value in the remaining 17 lesser-significant bits.

Optional Pipeline Registers

As shown in Figure 36, each multiplier block has optional 
registers on each of the multiplier inputs and the output. The 
registers are named AREG, BREG, and PREG and can be 
used in any combination. The clock input is common to all 
the registers within a block, but each register has an 
independent clock enable and synchronous reset controls 
making them ideal for storing data samples and coefficients. 
When used for pipelining, the registers boost the multiplier 
clock rate, beneficial for higher performance applications.

Figure 36 illustrates the principle features of the multiplier 
block. 

Use the MULT18X18SIO primitive shown in Figure 37 to 
instantiate a multiplier within a design. Although high-level 
logic synthesis software usually automatically infers a 
multiplier, adding the pipeline registers might require the 
MULT18X18SIO primitive. Connect the appropriate signals 
to the MULT18X18SIO multiplier ports and set the individual 
AREG, BREG, and PREG attributes to ‘1’ to insert the 

associated register, or to 0 to remove it and make the signal 
path combinatorial.

X-Ref Target - Figure 36

Figure 36: Principle Ports and Functions of Dedicated Multiplier Blocks
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FIXED Phase Shift Mode 

The FIXED phase shift mode shifts the DCM outputs by a 
fixed amount (TPS), controlled by the user-specified 
PHASE_SHIFT attribute. The PHASE_SHIFT value (shown 
as P in Figure 44) must be an integer ranging from –255 to 
+255. PHASE_SHIFT specifies a phase shift delay as a 
fraction of the TCLKIN. The phase shift behavior is different 
between ISE 8.1, Service Pack 3 and prior software 
versions, as described below.

Design Note

Prior to ISE 8.1i, Service Pack 3, the FIXED phase shift 
feature operated differently than the Spartan-3 DCM design 
primitive and simulation model. Designs using software 
prior to ISE 8.1i, Service Pack 3 require recompilation using 
the latest ISE software release. The following Answer 
Record contains additional information:

http://www.xilinx.com/support/answers/23153.htm.

FIXED Phase Shift using ISE 8.1i, Service Pack 3 and 
later: See Equation 2. The value corresponds to a phase 
shift range of –360° to +360°, which matches behavior of 
the Spartan-3 DCM design primitive and simulation model.

Eq 2

FIXED Phase Shift prior to ISE 8.1i, Service Pack 3: See 
Equation 3. The value corresponds to a phase shift range of 
–180° to +180° degrees, which is different from the 
Spartan-3 DCM design primitive and simulation model. 
Designs created prior to ISE 8.1i, Service Pack 3 must be 
recompiled using the most recent ISE development 
software.

Eq 3

When the PHASE_SHIFT value is zero, CLKFB and CLKIN 
are in phase, the same as when the PS unit is disabled. 
When the PHASE_SHIFT value is positive, the DCM 
outputs are shifted later in time with respect to CLKIN input. 
When the attribute value is negative, the DCM outputs are 
shifted earlier in time with respect to CLKIN. 

Figure 44b illustrates the relationship between CLKFB and 
CLKIN in the Fixed Phase mode. In the Fixed Phase mode, 
the PSEN, PSCLK, and PSINCDEC inputs are not used 
and must be tied to GND.

Equation 2 or Equation 3 applies only to FIXED phase shift 
mode. The VARIABLE phase shift mode operates 
differently.

tPS
PHASESHIFT

256
---------------------------------------- 
  TCLKIN•=

tPS
PHASESHIFT

512
---------------------------------------- 
  TCLKIN•=

X-Ref Target - Figure 44

Figure 44: NONE and FIXED Phase Shifter Waveforms (ISE 8.1i, Service Pack 3 and later)
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Figure 57, page 82 demonstrates how to configure multiple 
FPGAs with different configurations, all stored in a single 
SPI Flash. The diagram uses standard SPI Flash memories 

but the same general technique applies for Atmel 
DataFlash.

X-Ref Target - Figure 54

Figure 54: Atmel SPI-based DataFlash Configuration Interface
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Voltage Compatibility

Available SPI Flash PROMs use a single 3.3V supply 
voltage. All of the FPGA’s SPI Flash interface signals are 
within I/O Bank 2. Consequently, the FPGA’s VCCO_2 
supply voltage must also be 3.3V to match the SPI Flash 
PROM.

Power-On Precautions if 3.3V Supply is Last in 
Sequence

Spartan-3E FPGAs have a built-in power-on reset (POR) 
circuit, as shown in Figure 66, page 102. The FPGA waits 

for its three power supplies — VCCINT, VCCAUX, and VCCO 
to I/O Bank 2 (VCCO_2) — to reach their respective 
power-on thresholds before beginning the configuration 
process.

The SPI Flash PROM is powered by the same voltage 
supply feeding the FPGA's VCCO_2 voltage input, typically 
3.3V. SPI Flash PROMs specify that they cannot be 
accessed until their VCC supply reaches its minimum data 
sheet voltage, followed by an additional delay. For some 
devices, this additional delay is as little as 10 µs as shown in 
Table 56. For other vendors, this delay is as much as 20 ms.

In many systems, the 3.3V supply feeding the FPGA's 
VCCO_2 input is valid before the FPGA's other VCCINT and 
VCCAUX supplies, and consequently, there is no issue. 
However, if the 3.3V supply feeding the FPGA's VCCO_2 

supply is last in the sequence, a potential race occurs 
between the FPGA and the SPI Flash PROM, as shown in 
Figure 55.

If the FPGA's VCCINT and VCCAUX supplies are already 
valid, then the FPGA waits for VCCO_2 to reach its 
minimum threshold voltage before starting configuration. 
This threshold voltage is labeled as VCCO2T in Table 74 of 
Module 3 and ranges from approximately 0.4V to 1.0V, 
substantially lower than the SPI Flash PROM's minimum 
voltage. Once all three FPGA supplies reach their 

respective Power On Reset (POR) thresholds, the FPGA 
starts the configuration process and begins initializing its 
internal configuration memory. Initialization requires 
approximately 1 ms (TPOR, minimum in Table 111 of 
Module 3, after which the FPGA de-asserts INIT_B, selects 
the SPI Flash PROM, and starts sending the appropriate 
read command. The SPI Flash PROM must be ready for 

Table  56: Example Minimum Power-On to Select Times for Various SPI Flash PROMs

Vendor SPI Flash PROM 
Part Number

Data Sheet Minimum Time from VCC min to Select = Low

Symbol Value Units

STMicroelectronics M25Pxx TVSL 10 μs

Spansion S25FLxxxA tPU 10 ms

NexFlash NX25xx TVSL 10 μs

Macronix MX25Lxxxx tVSL 10 μs

Silicon Storage Technology SST25LFxx TPU-READ 10 μs

Programmable Microelectronics 
Corporation Pm25LVxxx TVCS 50 μs

Atmel Corporation AT45DBxxxD tVCSL 30 μs

AT45DBxxxB 20 ms

X-Ref Target - Figure 55

Figure 55: SPI Flash PROM/FPGA Power-On Timing if 3.3V Supply is Last in Power-On Sequence
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support byte-wide data. However, after configuration, the 
FPGA supports either x8 or x16 modes. In x16 mode, up to 
eight additional user I/O pins are required for the upper data 
bits, D[15:8].

Connecting a Spartan-3E FPGA to a x8/x16 Flash PROM is 
simple, but does require a precaution. Various Flash PROM 
vendors use slightly different interfaces to support both x8 
and x16 modes. Some vendors (Intel, Micron, some 
STMicroelectronics devices) use a straightforward interface 
with pin naming that matches the FPGA connections. 
However, the PROM’s A0 pin is wasted in x16 applications 
and a separate FPGA user-I/O pin is required for the D15 
data line. Fortunately, the FPGA A0 pin is still available as a 
user I/O after configuration, even though it connects to the 
Flash PROM.

Other vendors (AMD, Atmel, Silicon Storage Technology, 
some STMicroelectronics devices) use a pin-efficient 
interface but change the function of one pin, called 
IO15/A-1, depending if the PROM is in x8 or x16 mode. In 
x8 mode, BYTE# = 0, this pin is the least-significant 
address line. The A0 address line selects the halfword 
location. The A-1 address line selects the byte location. 
When in x16 mode, BYTE# = 1, the IO15/A-1 pin becomes 
the most-significant data bit, D15 because byte addressing 
is not required in this mode. Check to see if the Flash 
PROM has a pin named “IO15/A-1” or “DQ15/A-1”. If so, be 
careful to connect x8/x16 Flash PROMs correctly, as shown 
in Table 63. Also, remember that the D[14:8] data 
connections require FPGA user I/O pins but that the D15 
data is already connected for the FPGA’s A0 pin.

Some x8/x16 Flash PROMs have a long setup time 
requirement on the BYTE# signal. For the FPGA to 
configure correctly, the PROM must be in x8 mode with 
BYTE# = 0 at power-on or when the FPGA’s PROG_B pin is 
pulsed Low. If required, extend the BYTE# setup time for a 
3.3V PROM using an external 680 Ω pull-down resistor on 
the FPGA’s LDC2 pin or by delaying assertion of the CSI_B 
select input to the FPGA.

Daisy-Chaining

If the application requires multiple FPGAs with different 
configurations, then configure the FPGAs using a daisy 
chain, as shown in Figure 59. Use BPI mode 
(M[2:0] = <0:1:0> or <0:1:1>) for the FPGA connected to 
the parallel NOR Flash PROM and Slave Parallel mode 
(M[2:0] = <1:1:0>) for all downstream FPGAs in the 
daisy-chain. If there are more than two FPGAs in the chain, 
then last FPGA in the chain can be from any Xilinx FPGA 
family. However, all intermediate FPGAs located in the 

chain between the first and last FPGAs must from either the 
Spartan-3E or Virtex®-5 FPGA families.

After the master FPGA—the FPGA on the left in the 
diagram—finishes loading its configuration data from the 
parallel Flash PROM, the master device continues 
generating addresses to the Flash PROM and asserts its 
CSO_B output Low, enabling the next FPGA in the 
daisy-chain. The next FPGA then receives parallel 
configuration data from the Flash PROM. The master 
FPGA’s CCLK output synchronizes data capture.

If HSWAP = 1, an external 4.7kΩ pull-up resistor must be 
added on the CSO_B pin. If HSWAP = 0, no external pull-up 
is necessary.

Design Note

BPI mode daisy chain software support is available starting 
in ISE 8.2i.

http://www.xilinx.com/support/answers/23061.htm

Table  63: FPGA Connections to Flash PROM with IO15/A-1 Pin

FPGA Pin Connection to Flash PROM with 
IO15/A-1 Pin

x8 Flash PROM Interface After 
FPGA Configuration

x16 Flash PROM Interface After 
FPGA Configuration

LDC2 BYTE# Drive LDC2 Low or leave 
unconnected and tie PROM BYTE# 
input to GND

Drive LCD2 High

LDC1 OE# Active-Low Flash PROM 
output-enable control

Active-Low Flash PROM 
output-enable control

LDC0 CS# Active-Low Flash PROM chip-select 
control

Active-Low Flash PROM chip-select 
control

HDC WE# Flash PROM write-enable control Flash PROM write-enable control

A[23:1] A[n:0] A[n:0] A[n:0]

A0 IO15/A-1 IO15/A-1 is the least-significant 
address input

IO15/A-1 is the most-significant data 
line, IO15

D[7:0] IO[7:0] IO[7:0] IO[7:0]

User I/O Upper data lines IO[14:8] not required 
unless used as x16 Flash interface after 
configuration

Upper data lines IO[14:8] not 
required

IO[14:8]

http://www.xilinx.com
http://www.xilinx.com/support/answers/23061.htm
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Stepping 0 Limitations when Reprogramming via 
JTAG if FPGA Set for BPI Configuration

The FPGA can always be reprogrammed via the JTAG port, 
regardless of the mode pin (M[2:0]) settings. However, 
Stepping 0 devices have a minor limitation. If a Stepping 0 
FPGA is set to configure in BPI mode and the FPGA is 
attached to a parallel memory containing a valid FPGA 

configuration file, then subsequent reconfigurations using 
the JTAG port will fail. Potential workarounds include setting 
the mode pins for JTAG configuration (M[2:0] = <1:0:1>) or 
offsetting the initial memory location in Flash by 0x2000.

Stepping 1 devices fully support JTAG configuration even 
when the FPGA mode pins are set for BPI mode.

In-System Programming Support

 In a production application, the parallel Flash PROM is 
usually preprogrammed before it is mounted on the printed 
circuit board. In-system programming support is available 
from third-party boundary-scan tool vendors and from some 
third-party PROM programmers using a socket adapter with 
attached wires. To gain access to the parallel Flash signals, 
drive the FPGA’s PROG_B input Low with an open-drain 
driver. This action places all FPGA I/O pins, including those 
attached to the parallel Flash, in high-impedance (Hi-Z). If 
the HSWAP input is Low, the I/Os have pull-up resistors to 
the VCCO input on their respective I/O bank. The external 
programming hardware then has direct access to the 
parallel Flash pins. The programming access points are 

highlighted in the gray boxes in Figure 58 and Figure 59.

The FPGA itself can also be used as a parallel Flash PROM 
programmer during development and test phases. Initially, 
an FPGA-based programmer is downloaded into the FPGA 
via JTAG. Then the FPGA performs the Flash PROM 
programming algorithms and receives programming data 
from the host via the FPGA’s JTAG interface. See the 
Embedded System Tools Reference Manual.

Dynamically Loading Multiple Configuration 
Images Using MultiBoot Option

For additional information, refer to the “Reconfiguration and 
MultiBoot” chapter in UG332.

X-Ref Target - Figure 59

Figure 59: Daisy-Chaining from BPI Flash Mode
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Slave Serial Mode

For additional information, refer to the “Slave Serial Mode” 
chapter in UG332.

In Slave Serial mode (M[2:0] = <1:1:1>), an external host 
such as a microprocessor or microcontroller writes serial 
configuration data into the FPGA, using the synchronous 
serial interface shown in Figure 63. The serial configuration 
data is presented on the FPGA’s DIN input pin with 
sufficient setup time before each rising edge of the 
externally generated CCLK clock input.

The intelligent host starts the configuration process by 
pulsing PROG_B and monitoring that the INIT_B pin goes 
High, indicating that the FPGA is ready to receive its first 
data. The host then continues supplying data and clock 
signals until either the DONE pin goes High, indicating a 
successful configuration, or until the INIT_B pin goes Low, 
indicating a configuration error. The configuration process 
requires more clock cycles than indicated from the 
configuration file size. Additional clocks are required during 
the FPGA’s start-up sequence, especially if the FPGA is 
programmed to wait for selected Digital Clock Managers 
(DCMs) to lock to their respective clock inputs (see 
Start-Up, page 105).

X-Ref Target - Figure 62

Figure 62: Daisy-Chaining using Slave Parallel Mode
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The mode select pins, M[2:0], are sampled when the 
FPGA’s INIT_B output goes High and must be at defined 
logic levels during this time. After configuration, when the 
FPGA’s DONE output goes High, the mode pins are 
available as full-featured user-I/O pins.

 Similarly, the FPGA’s HSWAP pin must be Low to 
enable pull-up resistors on all user-I/O pins or High to 
disable the pull-up resistors. The HSWAP control must 
remain at a constant logic level throughout FPGA 
configuration. After configuration, when the FPGA’s DONE 
output goes High, the HSWAP pin is available as 
full-featured user-I/O pin and is powered by the VCCO_0 
supply.

Voltage Compatibility

 Most Slave Serial interface signals are within the 
FPGA’s I/O Bank 2, supplied by the VCCO_2 supply input. 
The VCCO_2 voltage can be 3.3V, 2.5V, or 1.8V to match 
the requirements of the external host, ideally 2.5V. Using 
3.3V or 1.8V requires additional design considerations as 
the DONE and PROG_B pins are powered by the FPGA’s 
2.5V VCCAUX supply. See XAPP453: The 3.3V 
Configuration of Spartan-3 FPGAs for additional 
information.

Daisy-Chaining

If the application requires multiple FPGAs with different 
configurations, then configure the FPGAs using a daisy 
chain, as shown in Figure 64. Use Slave Serial mode 
(M[2:0] = <1:1:1>) for all FPGAs in the daisy-chain. After 
the lead FPGA is filled with its configuration data, the lead 

X-Ref Target - Figure 63

Figure 63: Slave Serial Configuration
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Maximum Bitstream Size for Daisy-Chains

The maximum bitstream length supported by Spartan-3E 
FPGAs in serial daisy-chains is 4,294,967,264 bits 
(4 Gbits), roughly equivalent to a daisy-chain with 720 
XC3S1600E FPGAs. This is a limit only for serial 
daisy-chains where configuration data is passed via the 
FPGA’s DOUT pin. There is no such limit for JTAG chains.

Configuration Sequence 

For additional information including I/O behavior before and 
during configuration, refer to the “Sequence of Events” 
chapter in UG332.

The Spartan-3E configuration process is three-stage 
process that begins after the FPGA powers on (a POR 
event) or after the PROG_B input is asserted. Power-On 
Reset (POR) occurs after the VCCINT, VCCAUX, and the 
VCCO Bank 2 supplies reach their respective input threshold 
levels. After either a POR or PROG_B event, the 
three-stage configuration process begins.

1. The FPGA clears (initializes) the internal configuration 
memory.

2. Configuration data is loaded into the internal memory.

3. The user-application is activated by a start-up process. 

Figure 66 is a generalized block diagram of the Spartan-3E 
configuration logic, showing the interaction of different 
device inputs and Bitstream Generator (BitGen) options. A 
flow diagram for the configuration sequence of the Serial 
and Parallel modes appears in Figure 66. Figure 67 shows 
the Boundary-Scan or JTAG configuration sequence.

Initialization

Configuration automatically begins after power-on or after 
asserting the FPGA PROG_B pin, unless delayed using the 
FPGA’s INIT_B pin. The FPGA holds the open-drain INIT_B 
signal Low while it clears its internal configuration memory. 
Externally holding the INIT_B pin Low forces the 
configuration sequencer to wait until INIT_B again goes 
High.

The FPGA signals when the memory-clearing phase is 
complete by releasing the open-drain INIT_B pin, allowing 
the pin to go High via the external pull-up resistor to 
VCCO_2.

Loading Configuration Data

After initialization, configuration data is written to the 
FPGA’s internal memory. The FPGA holds the Global 
Set/Reset (GSR) signal active throughout configuration, 
holding all FPGA flip-flops in a reset state. The FPGA 
signals when the entire configuration process completes by 
releasing the DONE pin, allowing it to go High.

The FPGA configuration sequence can also be initiated by 
asserting PROG_B. Once released, the FPGA begins 
clearing its internal configuration memory, and progresses 
through the remainder of the configuration process.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
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Table  81: DC Characteristics of User I/Os Using 
Single-Ended Standards

IOSTANDARD 
Attribute

Test 
Conditions

Logic Level 
Characteristics

IOL
(mA)

IOH
(mA)

VOL
Max (V)

VOH
Min (V)

LVTTL(3) 2 2 –2 0.4 2.4

4 4 –4

6 6 –6

8 8 –8

12 12 –12

16 16 –16

LVCMOS33(3) 2 2 –2 0.4 VCCO – 0.4

4 4 –4

6 6 –6

8 8 –8

12 12 –12

16 16 –16

LVCMOS25(3) 2 2 –2 0.4 VCCO – 0.4

4 4 –4

6 6 –6

8 8 –8

12 12 –12

LVCMOS18(3) 2 2 –2 0.4 VCCO – 0.4

4 4 –4

6 6 –6

8 8 –8

LVCMOS15(3) 2 2 –2 0.4 VCCO – 0.4

4 4 –4

6 6 –6

LVCMOS12(3) 2 2 –2 0.4 VCCO – 0.4

PCI33_3(4) 1.5 –0.5 10% VCCO 90% VCCO

PCI66_3(4) 1.5 –0.5 10% VCCO 90% VCCO

HSTL_I_18 8 –8 0.4 VCCO – 0.4

HSTL_III_18 24 –8 0.4 VCCO – 0.4

SSTL18_I 6.7 –6.7 VTT – 0.475 VTT + 0.475

SSTL2_I 8.1 –8.1 VTT – 0.61 VTT + 0.61

Notes: 
1. The numbers in this table are based on the conditions set forth in 

Table 77 and Table 80.
2. Descriptions of the symbols used in this table are as follows:

IOL – the output current condition under which VOL is tested
IOH – the output current condition under which VOH is tested
VOL – the output voltage that indicates a Low logic level
VOH – the output voltage that indicates a High logic level
VCCO – the supply voltage for output drivers
VTT – the voltage applied to a resistor termination

3. For the LVCMOS and LVTTL standards: the same VOL and VOH 
limits apply for both the Fast and Slow slew attributes.

4. Tested according to the relevant PCI specifications. For 
information on PCI IP solutions, see www.xilinx.com/pci. The 
PCIX IOSTANDARD is available and has equivalent 
characteristics but no PCI-X IP is supported. 

Table  81: DC Characteristics of User I/Os Using 
Single-Ended Standards (Cont’d)

IOSTANDARD 
Attribute

Test 
Conditions

Logic Level 
Characteristics

IOL
(mA)

IOH
(mA)

VOL
Max (V)

VOH
Min (V)

http://www.xilinx.com
http://www.xilinx.com/products/design_resources/conn_central/protocols/pci_pcix.htm
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Phase Shifter (PS)

Miscellaneous DCM Timing

Table  108: Recommended Operating Conditions for the PS in Variable Phase Mode

Symbol Description

Speed Grade

Units-5 -4

Min Max Min Max

Operating Frequency Ranges

PSCLK_FREQ 
(FPSCLK)

Frequency for the PSCLK input 1 167 1 167 MHz

Input Pulse Requirements

PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period 40% 60% 40% 60% -

Table  109: Switching Characteristics for the PS in Variable Phase Mode

Symbol Description Equation Units

Phase Shifting Range

MAX_STEPS(2) Maximum allowed number of DCM_DELAY_STEP steps 
for a given CLKIN clock period, where T = CLKIN clock 
period in ns. If using CLKIN_DIVIDE_BY_2 = TRUE, 
double the effective clock period.(3)

CLKIN < 60 MHz ±[INTEGER(10 • 
(TCLKIN – 3 ns))]

steps

CLKIN ≥ 60 MHz ±[INTEGER(15 • 
(TCLKIN – 3 ns))]

steps

FINE_SHIFT_RANGE_MIN Minimum guaranteed delay for variable phase shifting ±[MAX_STEPS • 
DCM_DELAY_STEP_MIN]

ns

FINE_SHIFT_RANGE_MAX Maximum guaranteed delay for variable phase shifting ±[MAX_STEPS • 
DCM_DELAY_STEP_MAX]

ns

Notes: 
1. The numbers in this table are based on the operating conditions set forth in Table 77 and Table 108.
2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, i.e., the 

PHASE_SHIFT attribute is set to 0.
3. The DCM_DELAY_STEP values are provided at the bottom of Table 105.

Table  110: Miscellaneous DCM Timing

Symbol Description Min Max Units

DCM_RST_PW_MIN(1) Minimum duration of a RST pulse width 3 - CLKIN
cycles

DCM_RST_PW_MAX(2) Maximum duration of a RST pulse width N/A N/A seconds

DCM_CONFIG_LAG_TIME(3) Maximum duration from VCCINT applied to FPGA configuration 
successfully completed (DONE pin goes High) and clocks 
applied to DCM DLL

N/A N/A minutes

Notes: 
1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). 

The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.
2. This specification is equivalent to the Virtex-4 DCM_RESET specfication.This specification does not apply for Spartan-3E FPGAs. 
3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3E FPGAs.

http://www.xilinx.com
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Byte Peripheral Interface (BPI) Configuration Timing
X-Ref Target - Figure 77

Figure 77: Waveforms for Byte-wide Peripheral Interface (BPI) Configuration (BPI-DN mode shown)

Table  120: Timing for Byte-wide Peripheral Interface (BPI) Configuration Mode

Symbol Description Minimum Maximum Units

TCCLK1 Initial CCLK clock period See Table 112

TCCLKn CCLK clock period after FPGA loads ConfigRate setting See Table 112

TMINIT Setup time on CSI_B, RDWR_B, and M[2:0] mode pins before the rising edge of 
INIT_B

50 - ns

TINITM Hold time on CSI_B, RDWR_B, and M[2:0] mode pins after the rising edge of 
INIT_B

0 - ns

TINITADDR Minimum period of initial A[23:0] address cycle; LDC[2:0] 
and HDC are asserted and valid

BPI-UP:
(M[2:0] = <0:1:0>)

5 5 TCCLK1 
cycles

BPI-DN:
(M[2:0] = <0:1:1>)

2 2

TCCO Address A[23:0] outputs valid after CCLK falling edge See Table 116

TDCC Setup time on D[7:0] data inputs before CCLK rising edge See Table 116

TCCD Hold time on D[7:0] data inputs after CCLK rising edge See Table 116

(Input)
HSWAP must be stable before INIT_B goes High and constant throughout the configuration process.

Data DataData

Address

Data

Address

Byte 0

000_0000

INIT_B

<0:1:0>
M[2:0]

TMINIT TINITM

LDC[2:0]

HDC

CSO_B

Byte 1

000_0001

CCLK

A[23:0]

D[7:0]

TDCC
TCCDTAVQV

TCCLK1

(Input)

TINITADDR
TCCLKnTCCLK1

TCCO

HSWAP

New ConfigRate active 

Pin initially pulled High by internal pull-up resistor if HSWAP input is Low.

Pin initially high-impedance (Hi-Z) if HSWAP input is High.

Mode input pins M[2:0] are sampled when INIT_B goes High.  After this point,
input values do not matter until DONE goes High, at which point the mode pins
become user-I/O pins.

(Input)

PROG_B
(Input)

DS312-3_08_032409

(Open-Drain)

Shaded values indicate specifications on attached parallel NOR Flash PROM.

Address

http://www.xilinx.com
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Table  121: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol Description Requirement Units

TCE (tELQV) Parallel NOR Flash PROM chip-select 
time

ns

TOE (tGLQV) Parallel NOR Flash PROM 
output-enable time

ns

TACC (tAVQV) Parallel NOR Flash PROM read 
access time

ns

TBYTE (tFLQV, tFHQV) For x8/x16 PROMs only: BYTE# to 
output valid time(3)

ns

Notes: 
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA provides the CCLK frequency. The post 

configuration timing can be different to support the specific needs of the application loaded int o the FPGA and the resulting clock source.
2. Subtract additional printed circuit board routing delay as required by the application.
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor 

value also depends on whether the FPGA’s HSWAP pin is High or Low.

Table  122: MultiBoot Trigger (MBT) Timing

Symbol Description Minimum Maximum Units

TMBT MultiBoot Trigger (MBT) Low pulse width required to initiate MultiBoot 
reconfiguration

300 ∞ ns

Notes: 
1. MultiBoot re-configuration starts on the rising edge after MBT is Low for at least the prescribed minimum period.

TCE TINITADDR≤

TOE TINITADDR≤

TACC 0.5TCCLKn min( ) TCCO TDCC PCB–––≤

TBYTE TINITADDR≤

http://www.xilinx.com
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User I/Os by Bank 

Table 132 indicates how the 66 available user-I/O pins are 
distributed between the four I/O banks on the VQ100 
package.

Footprint Migration Differences

The production XC3S100E, XC3S250E, and XC3S500E 
FPGAs have identical footprints in the VQ100 package. 
Designs can migrate between the devices without further 
consideration.

Table  132: User I/Os Per Bank for XC3S100E, XC3S250E, and XC3S500E in the VQ100 Package

Package 
Edge I/O Bank Maximum 

I/O
All Possible I/O Pins by Type

I/O INPUT DUAL VREF(1) CLK(2)

Top 0 15 5 0 1 1 8

Right 1 15 6 0 0 1 8

Bottom 2 19 0 0 18 1 0(2)

Left 3 17 5 1 2 1 8

TOTAL 66 16 1 21 4 24

Notes: 
1. Some VREF and CLK pins are on INPUT pins.
2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.
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2 N.C. () IO_L08P_2/A23 N9 100E: N.C.
Others: DUAL

2 N.C. () IO_L09N_2/A20 M10 100E: N.C.
Others: DUAL

2 N.C. () IO_L09P_2/A21 N10 100E: N.C.
Others: DUAL

2 IO_L10N_2/VS1/A18 IO_L10N_2/VS1/A18 M11 DUAL

2 IO_L10P_2/VS2/A19 IO_L10P_2/VS2/A19 N11 DUAL

2 IO_L11N_2/CCLK IO_L11N_2/CCLK N12 DUAL

2 IO_L11P_2/VS0/A17 IO_L11P_2/VS0/A17 P12 DUAL

2 IP/VREF_2 IP/VREF_2 N3 VREF

2 IP_L05N_2/M2/GCLK1 IP_L05N_2/M2/GCLK1 N6 DUAL/GCLK

2 IP_L05P_2/RDWR_B/GCLK0 IP_L05P_2/RDWR_B/GCLK0 M6 DUAL/GCLK

2 VCCO_2 VCCO_2 M8 VCCO

2 VCCO_2 VCCO_2 P3 VCCO

3 IO IO J3 I/O

3 IP/VREF_3 IO/VREF_3 K3 100E: VREF(INPUT)
Others: VREF(I/O)

3 IO_L01N_3 IO_L01N_3 B1 I/O

3 IO_L01P_3 IO_L01P_3 B2 I/O

3 IO_L02N_3 IO_L02N_3 C2 I/O

3 IO_L02P_3 IO_L02P_3 C3 I/O

3 N.C. () IO_L03N_3 D1 100E: N.C.
Others: I/O

3 IO IO_L03P_3 D2 I/O

3 IO_L04N_3/LHCLK1 IO_L04N_3/LHCLK1 F2 LHCLK

3 IO_L04P_3/LHCLK0 IO_L04P_3/LHCLK0 F3 LHCLK

3 IO_L05N_3/LHCLK3/IRDY2 IO_L05N_3/LHCLK3/IRDY2 G1 LHCLK

3 IO_L05P_3/LHCLK2 IO_L05P_3/LHCLK2 F1 LHCLK

3 IO_L06N_3/LHCLK5 IO_L06N_3/LHCLK5 H1 LHCLK

3 IO_L06P_3/LHCLK4/TRDY2 IO_L06P_3/LHCLK4/TRDY2 G3 LHCLK

3 IO_L07N_3/LHCLK7 IO_L07N_3/LHCLK7 H3 LHCLK

3 IO_L07P_3/LHCLK6 IO_L07P_3/LHCLK6 H2 LHCLK

3 IO_L08N_3 IO_L08N_3 L2 I/O

3 IO_L08P_3 IO_L08P_3 L1 I/O

3 IO_L09N_3 IO_L09N_3 M1 I/O

3 IO_L09P_3 IO_L09P_3 L3 I/O

3 IP/VREF_3 IP/VREF_3 E2 VREF

3 VCCO_3 VCCO_3 E1 VCCO

3 VCCO_3 VCCO_3 J2 VCCO

GND N.C. (GND) GND A4 GND

GND GND GND A8 GND

GND N.C. (GND) GND C1 GND

GND GND GND C7 GND

Table  133: CP132 Package Pinout (Cont’d)

Bank XC3S100E
Pin Name

XC3S250E
XC3S500E
Pin Name

CP132 Ball Type
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FT256: 256-ball Fine-pitch, Thin Ball Grid Array
The 256-ball fine-pitch, thin ball grid array package, FT256, 
supports three different Spartan-3E FPGAs, including the 
XC3S250E, the XC3S500E, and the XC3S1200E.

Table 143 lists all the package pins. They are sorted by 
bank number and then by pin name of the largest device. 
Pins that form a differential I/O pair appear together in the 
table. The table also shows the pin number for each pin and 
the pin type, as defined earlier.

The highlighted rows indicate pinout differences between 
the XC3S250E, the XC3S500E, and the XC3S1200E 
FPGAs. The XC3S250E has 18 unconnected balls, 
indicated as N.C. (No Connection) in Table 143 and with the 
black diamond character () in Table 143 and Figure 83.

If the table row is highlighted in tan, then this is an instance 
where an unconnected pin on the XC3S250E FPGA maps 

to a VREF pin on the XC3S500E and XC3S1200E FPGA. If 
the FPGA application uses an I/O standard that requires a 
VREF voltage reference, connect the highlighted pin to the 
VREF voltage supply, even though this does not actually 
connect to the XC3S250E FPGA. This VREF connection on 
the board allows future migration to the larger devices 
without modifying the printed-circuit board.

All other balls have nearly identical functionality on all three 
devices. Table 147 summarizes the Spartan-3E footprint 
migration differences for the FT256 package.

An electronic version of this package pinout table and 
footprint diagram is available for download from the Xilinx 
web site at:

http://www.xilinx.com/support/documentation/data_sheets
/s3e_pin.zip

Pinout Table

Table  143: FT256 Package Pinout

Bank XC3S250E Pin Name XC3S500E Pin Name XC3S1200E Pin Name FT256 
Ball Type

0 IO IO IO A7 I/O

0 IO IO IO A12 I/O

0 IO IO IO B4 I/O

0 IP IP IO B6 250E: INPUT
500E: INPUT
1200E: I/O

0 IP IP IO B10 250E: INPUT
500E: INPUT
1200E: I/O

0 IO/VREF_0 IO/VREF_0 IO/VREF_0 D9 VREF

0 IO_L01N_0 IO_L01N_0 IO_L01N_0 A14 I/O

0 IO_L01P_0 IO_L01P_0 IO_L01P_0 B14 I/O

0 IO_L03N_0/VREF_0 IO_L03N_0/VREF_0 IO_L03N_0/VREF_0 A13 VREF

0 IO_L03P_0 IO_L03P_0 IO_L03P_0 B13 I/O

0 IO_L04N_0 IO_L04N_0 IO_L04N_0 E11 I/O

0 IO_L04P_0 IO_L04P_0 IO_L04P_0 D11 I/O

0 IO_L05N_0/VREF_0 IO_L05N_0/VREF_0 IO_L05N_0/VREF_0 B11 VREF

0 IO_L05P_0 IO_L05P_0 IO_L05P_0 C11 I/O

0 IO_L06N_0 IO_L06N_0 IO_L06N_0 E10 I/O

0 IO_L06P_0 IO_L06P_0 IO_L06P_0 D10 I/O

0 IO_L08N_0/GCLK5 IO_L08N_0/GCLK5 IO_L08N_0/GCLK5 F9 GCLK

0 IO_L08P_0/GCLK4 IO_L08P_0/GCLK4 IO_L08P_0/GCLK4 E9 GCLK

0 IO_L09N_0/GCLK7 IO_L09N_0/GCLK7 IO_L09N_0/GCLK7 A9 GCLK

0 IO_L09P_0/GCLK6 IO_L09P_0/GCLK6 IO_L09P_0/GCLK6 A10 GCLK

0 IO_L11N_0/GCLK11 IO_L11N_0/GCLK11 IO_L11N_0/GCLK11 D8 GCLK

0 IO_L11P_0/GCLK10 IO_L11P_0/GCLK10 IO_L11P_0/GCLK10 C8 GCLK

0 IO_L12N_0 IO_L12N_0 IO_L12N_0 F8 I/O

http://www.xilinx.com/support/documentation/data_sheets/s3e_pin.zip
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VCCAUX VCCAUX VCCAUX VCCAUX A11 VCCAUX

VCCAUX VCCAUX VCCAUX VCCAUX F1 VCCAUX

VCCAUX VCCAUX VCCAUX VCCAUX F16 VCCAUX

VCCAUX VCCAUX VCCAUX VCCAUX L1 VCCAUX

VCCAUX VCCAUX VCCAUX VCCAUX L16 VCCAUX

VCCAUX VCCAUX VCCAUX VCCAUX T6 VCCAUX

VCCAUX VCCAUX VCCAUX VCCAUX T11 VCCAUX

VCCINT VCCINT VCCINT VCCINT D4 VCCINT

VCCINT VCCINT VCCINT VCCINT D13 VCCINT

VCCINT VCCINT VCCINT VCCINT E5 VCCINT

VCCINT VCCINT VCCINT VCCINT E12 VCCINT

VCCINT VCCINT VCCINT VCCINT M5 VCCINT

VCCINT VCCINT VCCINT VCCINT M12 VCCINT

VCCINT VCCINT VCCINT VCCINT N4 VCCINT

VCCINT VCCINT VCCINT VCCINT N13 VCCINT

Table  143: FT256 Package Pinout (Cont’d)

Bank XC3S250E Pin Name XC3S500E Pin Name XC3S1200E Pin Name FT256 
Ball Type
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