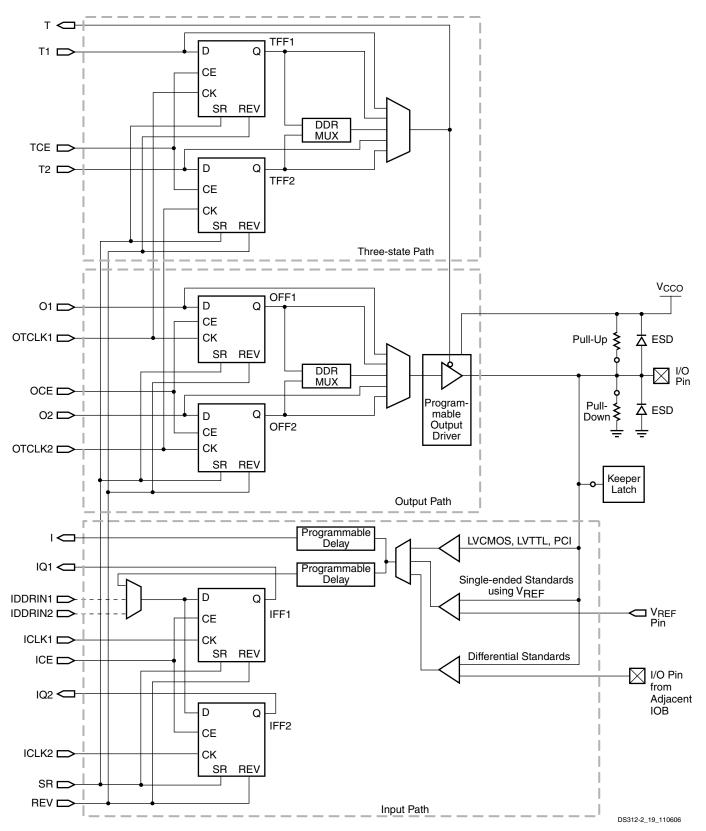


Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.


Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	2168
Number of Logic Elements/Cells	19512
Total RAM Bits	516096
Number of I/O	250
Number of Gates	1200000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	320-BGA
Supplier Device Package	320-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s1200e-5fg320c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

www.xilinx.com

Storage Element Functions

There are three pairs of storage elements in each IOB, one pair for each of the three paths. It is possible to configure each of these storage elements as an edge-triggered D-type flip-flop (FD) or a level-sensitive latch (LD).

The storage-element pair on either the Output path or the Three-State path can be used together with a special multiplexer to produce Double-Data-Rate (DDR) transmission. This is accomplished by taking data synchronized to the clock signal's rising edge and converting it to bits synchronized on both the rising and the falling edge. The combination of two registers and a multiplexer is referred to as a Double-Data-Rate D-type flip-flop (ODDR2).

Table 4 describes the signal paths associated with thestorage element.

Storage Element Signal	Description	Function
D	Data input	Data at this input is stored on the active edge of CK and enabled by CE. For latch operation when the input is enabled, data passes directly to the output Q.
Q	Data output	The data on this output reflects the state of the storage element. For operation as a latch in transparent mode, Q mirrors the data at D.
СК	Clock input	Data is loaded into the storage element on this input's active edge with CE asserted.
CE	Clock Enable input	When asserted, this input enables CK. If not connected, CE defaults to the asserted state.
SR	Set/Reset input	This input forces the storage element into the state specified by the SRHIGH/SRLOW attributes. The SYNC/ASYNC attribute setting determines if the SR input is synchronized to the clock or not. If both SR and REV are active at the same time, the storage element gets a value of 0.
REV	Reverse input	This input is used together with SR. It forces the storage element into the state opposite from what SR does. The SYNC/ASYNC attribute setting determines whether the REV input is synchronized to the clock or not. If both SR and REV are active at the same time, the storage element gets a value of 0.

Table 4: Storage Element Signal Description

As shown in Figure 5, the upper registers in both the output and three-state paths share a common clock. The OTCLK1 clock signal drives the CK clock inputs of the upper registers on the output and three-state paths. Similarly, OTCLK2 drives the CK inputs for the lower registers on the output and three-state paths. The upper and lower registers on the input path have independent clock lines: ICLK1 and ICLK2.

The OCE enable line controls the CE inputs of the upper and lower registers on the output path. Similarly, TCE

controls the CE inputs for the register pair on the three-state path and ICE does the same for the register pair on the input path.

The Set/Reset (SR) line entering the IOB controls all six registers, as is the Reverse (REV) line.

In addition to the signal polarity controls described in IOB Overview, each storage element additionally supports the controls described in Table 5.

Option Switch	Function	Specificity
FF/Latch	Chooses between an edge-triggered flip-flop or a level-sensitive latch	Independent for each storage element
SYNC/ASYNC	Determines whether the SR set/reset control is synchronous or asynchronous	Independent for each storage element
SRHIGH/SRLOW	Determines whether SR acts as a Set, which forces the storage element to a logic 1 (SRHIGH) or a Reset, which forces a logic 0 (SRLOW)	Independent for each storage element, except when using ODDR2. In the latter case, the selection for the upper element will apply to both elements.
INIT1/INIT0	When Global Set/Reset (GSR) is asserted or after configuration this option specifies the initial state of the storage element, either set (INIT1) or reset (INIT0). By default, choosing SRLOW also selects INIT0; choosing SRHIGH also selects INIT1.	Independent for each storage element, except when using ODDR2, which uses two IOBs. In the ODDR2 case, selecting INIT0 for one IOBs applies to both elements within the IOB, although INIT1 could be selected for the elements in the other IOB.

Table 5: Storage Element Options

Spartan-3E FPGAs provide additional input flexibility by allowing I/O standards to be mixed in different banks. For a particular V_{CCO} voltage, Table 6 and Table 7 list all of the

IOSTANDARDs that can be combined and if the IOSTANDARD is supported as an input only or can be used for both inputs and outputs.

Table 6: Single-Ended IOSTANDARD Bank Compatibility

		v _{cco} s	Supply/Comp	Input Requirements			
Single-Ended	1.2V	1.5V	1.8V	2.5V	3.3V	V _{REF}	Board Termination Voltage (V _{TT})
LVTTL	-	-	-	-	Input/ Output	N/R ⁽¹⁾	N/R
LVCMOS33	-	-	-	-	Input/ Output	N/R	N/R
LVCMOS25	-	-	-	Input/ Output	Input	N/R	N/R
LVCMOS18	-	-	Input/ Output	Input	Input	N/R	N/R
LVCMOS15	-	Input/ Output	Input	Input	Input	N/R	N/R
LVCMOS12	Input/ Output	Input	Input	Input	Input	N/R	N/R
PCI33_3	-	-	-	-	Input/ Output	N/R	N/R
PCI66_3	-	-	-	-	Input/ Output	N/R	N/R
HSTL_I_18	-	-	Input/ Output	Input	Input	0.9	0.9
HSTL_III_18	-	-	Input/ Output	Input	Input	1.1	1.8
SSTL18_I	-	-	Input/ Output	Input	Input	0.9	0.9
SSTL2_I	-	-	-	Input/ Output	Input	1.25	1.25

Notes:

1. N/R - Not required for input operation.

Supply Voltages for the IOBs

The IOBs are powered by three supplies:

- 1. The V_{CCO} supplies, one for each of the FPGA's I/O banks, power the output drivers. The voltage on the V_{CCO} pins determines the voltage swing of the output signal.
- 2. V_{CCINT} is the main power supply for the FPGA's internal logic.
- V_{CCAUX} is an auxiliary source of power, primarily to optimize the performance of various FPGA functions such as I/O switching.

I/O and Input-Only Pin Behavior During Power-On, Configuration, and User Mode

In this section, all behavior described for I/O pins also applies to input-only pins and dual-purpose I/O pins that are not actively involved in the currently-selected configuration mode.

All I/O pins have ESD clamp diodes to their respective V_{CCO} supply and from GND, as shown in Figure 5. The V_{CCINT} (1.2V), V_{CCAUX} (2.5V), and V_{CCO} supplies can be applied in any order. Before the FPGA can start its configuration process, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} must have reached their respective minimum recommended operating levels indicated in Table 74. At this time, all output drivers are in a high-impedance state. V_{CCO} Bank 2, V_{CCINT}, and V_{CCAUX} serve as inputs to the internal Power-On Reset circuit (POR).

A Low level applied to the HSWAP input enables pull-up resistors on user-I/O and input-only pins from power-on throughout configuration. A High level on HSWAP disables the pull-up resistors, allowing the I/Os to float. HSWAP contains an internal pull-up resistor and defaults to High if left floating. As soon as power is applied, the FPGA begins initializing its configuration memory. At the same time, the FPGA internally asserts the Global Set-Reset (GSR), which asynchronously resets all IOB storage elements to a default Low state. Also see Pin Behavior During Configuration.

Upon the completion of initialization and the beginning of configuration, INIT_B goes High, sampling the M0, M1, and M2 inputs to determine the configuration mode. Configuration data is then loaded into the FPGA. The I/O drivers remain in a high-impedance state (with or without pull-up resistors, as determined by the HSWAP input) throughout configuration.

At the end of configuration, the GSR net is released, placing the IOB registers in a Low state by default, unless the loaded design reverses the polarity of their respective SR inputs.

The Global Three State (GTS) net is released during Start-Up, marking the end of configuration and the

beginning of design operation in the User mode. After the GTS net is released, all user I/Os go active while all unused I/Os are pulled down (PULLDOWN). The designer can control how the unused I/Os are terminated after GTS is released by setting the Bitstream Generator (BitGen) option UnusedPin to PULLUP, PULLDOWN, or FLOAT.

One clock cycle later (default), the Global Write Enable (GWE) net is released allowing the RAM and registers to change states. Once in User mode, any pull-up resistors enabled by HSWAP revert to the user settings and HSWAP is available as a general-purpose I/O. For more information on PULLUP and PULLDOWN, see Pull-Up and Pull-Down Resistors.

Behavior of Unused I/O Pins After Configuration

By default, the Xilinx ISE development software automatically configures all unused I/O pins as input pins with individual internal pull-down resistors to GND.

This default behavior is controlled by the **UnusedPin** bitstream generator (BitGen) option, as described in Table 69.

JTAG Boundary-Scan Capability

All Spartan-3E IOBs support boundary-scan testing compatible with IEEE 1149.1/1532 standards. During boundary-scan operations such as EXTEST and HIGHZ the pull-down resistor is active. See JTAG Mode for more information on programming via JTAG.

Digital Clock Managers (DCMs)

For additional information, refer to the "Using Digital Clock Managers (DCMs)" chapter in $\underline{\text{UG331}}$.

Differences from the Spartan-3 Architecture

- Spartan-3E FPGAs have two, four, or eight DCMs, depending on device size.
- The variable phase shifting feature functions differently on Spartan-3E FPGAs than from Spartan-3 FPGAs.
- The Spartan-3E DLLs support lower input frequencies, down to 5 MHz. Spartan-3 DLLs support down to 18 MHz.

Overview

Spartan-3E FPGA Digital Clock Managers (DCMs) provide flexible, complete control over clock frequency, phase shift and skew. To accomplish this, the DCM employs a Delay-Locked Loop (DLL), a fully digital control system that uses feedback to maintain clock signal characteristics with a high degree of precision despite normal variations in operating temperature and voltage. This section provides a fundamental description of the DCM.

The XC3S100E FPGA has two DCMs, one at the top and one at the bottom of the device. The XC3S250E and XC3S500E FPGAs each include four DCMs, two at the top and two at the bottom. The XC3S1200E and XC3S1600E FPGAs contain eight DCMs with two on each edge (see also Figure 45). The DCM in Spartan-3E FPGAs is surrounded by CLBs within the logic array and is no longer located at the top and bottom of a column of block RAM as in the Spartan-3 architecture. The Digital Clock Manager is instantiated within a design using a "DCM" primitive.

The DCM supports three major functions:

- **Clock-skew Elimination:** Clock skew within a system occurs due to the different arrival times of a clock signal at different points on the die, typically caused by the clock signal distribution network. Clock skew increases setup and hold time requirements and increases clock-to-out times, all of which are undesirable in high frequency applications. The DCM eliminates clock skew by phase-aligning the output clock signal that it generates with the incoming clock signal. This mechanism effectively cancels out the clock distribution delays.
- **Frequency Synthesis:** The DCM can generate a wide range of different output clock frequencies derived from the incoming clock signal. This is accomplished by either multiplying and/or dividing the frequency of the input clock signal by any of several different factors.
- **Phase Shifting:** The DCM provides the ability to shift the phase of all its output clock signals with respect to the input clock signal.

Although a single design primitive, the DCM consists of four interrelated functional units: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), the Phase Shifter (PS), and the Status Logic. Each component has its associated signals, as shown in Figure 40.

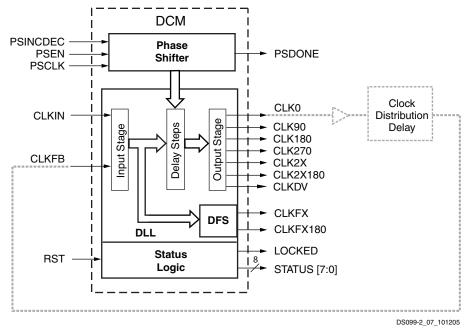


Figure 40: DCM Functional Blocks and Associated Signals

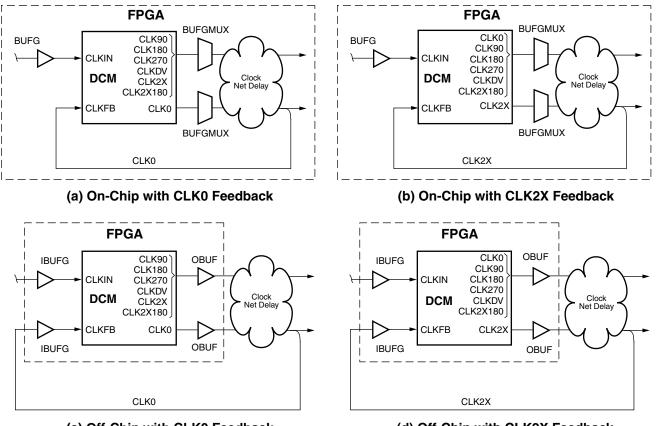
Table 30: Direct Clock Input Connections and Optional External Feedback to Associated DCMs

	Differen	ntial Pair	Differen	tial Pair					Differen	tial Pair	Differer	ntial Pair
Package	Ν	Р	N	Р				-	Ν	Р	Ν	Р
	Pin Number for Single-Ended Input							-	Pin Nu	mber for S	ingle-Ende	d Input
VQ100	P91	P90	P89	P88					P86	P85	P84	P83
CP132	B7	A7	C8	B8					A9	B9	C9	A10
TQ144	P131	P130	P129	P128					P126	P125	P123	P122
PQ208	P186	P185	P184	P183					P181	P180	P178	P177
FT256	D8	C8	B8	A8					A9	A10	F9	E9
FG320	D9	C9	B9	B8					A10	B10	E10	D10
FG400	A9	A10	G10	H10					E10	E11	G11	F11
FG484	B11	C11	H11	H12					C12	B12	E12	F12
	\mathbf{h}	↓	↓	\mathbf{h}	Assoc	ciated G	alobal B	Buffers	¥	\mathbf{h}	↓	\mathbf{h}
	GCLK11	GCLK10	GCLK9	GCLK8	10	Ŧ	10	1	GCLK7	GCLK6	GCLK5	GCLK
	XC3S100: N/A XC3S250E, XC3S500E: DCM_X0Y1 XC3S1200E, XC3S1600E: DCM_X1Y3			▲ BUFGMUX_X1Y10	▲ BUFGMUX_X1Y11	▲ BUFGMUX_X2Y10	▲ BUFGMUX_X2Y11	XC3S2		DCM_X0Y1 500E: DCM 1600E: DCI	L_X1Y1	
						•	•	•				
					ш	C		E				
					H	G	F	E				
					Cloc	k Line (see Tab	le 41)				
					Clock	k Line (s C	see Tab B	le 41) A				
					Clock D ↑	k Line (s C ↑	see Tab B ↑	le 41) A				
			Left DCM		Clock D ↑	k Line (s C ↑	see Tab B ↑	le 41) A			ight DCM	
	XC3S2	XC3S1	00: N/A	XOXO	Clock D ↑	k Line (s C ↑	see Tab B ↑	le 41) A		XC3S100:	DCM_X0Y0	
		XC3S1 250E, XC3S	00: N/A 500E: DCM		Clock D ↑	k Line (s C ↑	see Tab B ↑	le 41) A	XC3S2	XC3S100: 250E, XC3S	DCM_X0Y0 500E: DCM	_X1Y0
	XC3S12	XC3S1 250E, XC3S 200E, XC3S	00: N/A 500E: DCM 1600E: DCI	M_X1Y0	Clock D ↑	k Line (s C ↑	see Tab B ↑	le 41) A	XC3S2 XC3S12	XC3S100: 250E, XC3S 200E, XC3S	DCM_X0Y0 500E: DCM 1600E: DCI	I_X1Y0 M_X2Y0
		XC3S1 250E, XC3S 200E, XC3S GCLK13	00: N/A 500E: DCM 1600E: DCI GCLK14	W_X1Y0 GCLK15	BUFGMUX_X1Y0 → C	R Line (: ↑ BUFGMUX_X1Y1	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2	XC3S100: 250E, XC3S	DCM_X0Y0 500E: DCM 1600E: DCI GCLK2	I_X1Y0 M_X2Y0 GCLK
	XC3S12 GCLK12	XC3S1 250E, XC3S 200E, XC3S GCLK13 ↑	00: N/A 500E: DCM 1600E: DCI GCLK14	M_X1Y0 GCLK15 个	BUFGMUX_X1Y0 → C	k Line (s C ↑	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2 XC3S12 GCLK0 ↑	XC3S100: 250E, XC3S 200E, XC3S GCLK1 ♠	DCM_X0Y0 500E: DCM 1600E: DCI GCLK2	I_X1Y0 M_X2Y0 GCLK3
Paakago	XC3S12 GCLK12 ↑ Differen	XC3S1 250E, XC3S 200E, XC3S GCLK13 个 ntial Pair	00: N/A 500E: DCM 1600E: DCI GCLK14 ↑ Differen	M_X1Y0 GCLK15 ↑ tial Pair	BUFGMUX_X1Y0 → C	R Line (: ↑ BUFGMUX_X1Y1	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2 XC3S12 GCLK0 ↑ Differen	XC3S100: 250E, XC3S 200E, XC3S GCLK1 ↑ tial Pair	DCM_X0Y0 500E: DCM 1600E: DCI GCLK2 个 Differer	L_X1Y0 M_X2Y0 GCLK3 M tial Pair
Package	XC3S12 GCLK12 ↑ Differen P	XC3S1 250E, XC3S 200E, XC3S GCLK13 ↑ ntial Pair N	00: N/A 500E: DCM 1600E: DCI GCLK14 ↑ Differen P	M_X1Y0 GCLK15 ↑ tial Pair N	BUFGMUX_X1Y0 → C	R Line (: ↑ BUFGMUX_X1Y1	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2 XC3S12 GCLK0 T Differen P	XC3S100: 250E, XC3S 200E, XC3S GCLK1 ↑ tial Pair N	DCM_X0Y0 500E: DCM 1600E: DCI GCLK2 ↑ Differer P	L_X1Y0 M_X2Y0 GCLK ↑ ntial Pair N
	XC3S12 GCLK12 ↑ Differen P Pin Nu	XC3S1 250E, XC3S 200E, XC3S GCLK13 ↑ tial Pair N mber for S	00: N/A 500E: DCM 1600E: DCI GCLK14 ↑ Differen P ingle-Ende	M_X1Y0 GCLK15 ↑ tial Pair N d Input	BUFGMUX_X1Y0 → C	R Line (: ↑ BUFGMUX_X1Y1	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2 XC3S12 GCLK0 ↑ Differen P Pin Nu	XC3S100: 250E, XC3S 200E, XC3S GCLK1 ↑ tial Pair N mber for S	DCM_X0Y0 500E: DCM 1600E: DCI GCLK2 ↑ Differer P ingle-Ende	L_X1Y0 M_X2Y0 GCLK ↑ ntial Pair N d Input
VQ100	XC3S12 GCLK12 ↑ Differen P Pin Nu P32	XC3S1 250E, XC3S 200E, XC3S GCLK13 ↑ ntial Pair N mber for S	00: N/A 500E: DCM 1600E: DCI CCLK14 ↑ Differen P ingle-Ende P35	M_X1Y0 GCLK15 Tial Pair N d Input P36	BUFGMUX_X1Y0 → C	R Line (: ↑ BUFGMUX_X1Y1	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2 XC3S12 GCLK0 ↑ Differen P Pin Nu P38	XC3S100: 250E, XC3S 200E, XC3S COUE, X	DCM_X0Y0 500E: DCM 1600E: DCI GCLK2 M Differer P ingle-Ender P40	L_X1Y0 M_X2Y0 GCLK ↑ Itial Pair N d Input
/Q100 CP132	XC3S12 GCLK12 ↑ Differen P Pin Nu P32 M4	XC3S1 250E, XC3S 200E, XC3S GCLK13 Atial Pair N mber for S P33 N4	00: N/A 500E: DCM 1600E: DCI GCLK14 ↑ Differen P ingle-Ender P35 M5	M_X1Y0 GCLK15 ↑ tial Pair N d Input P36 N5	BUFGMUX_X1Y0 → C	R Line (: ↑ BUFGMUX_X1Y1	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2 XC3S12 GCLK0 ↑ Differen P Pin Nu P38 M6	XC3S100: 250E, XC3S 200E, XC3S GCLK1 ↑ tial Pair N mber for S P39 N6	DCM_X0Y0 500E: DCM 1600E: DCI GCLK2 T Differen P ingle-Enden P40 P6	A_X1Y0 M_X2Y0 GCLK ↑ ntial Pair N d Input P41 P7
VQ100 CP132 TQ144	XC3S12 GCLK12 ↑ Differen P Pin Nu P32 M4 P50	XC3S1 250E, XC3S 200E, XC3S 200E, XC3S GCLK13 ↑ ntial Pair N mber for S P33 N4 P51	00: N/A 500E: DCM 1600E: DCI CCLK14 ↑ Differen P ingle-Ende P35 M5 P53	M_X1Y0 GCLK15 ↑ tial Pair N d Input P36 N5 P54	BUFGMUX_X1Y0 → C	R Line (: ↑ BUFGMUX_X1Y1	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2 XC3S12 GCLK0 ↑ Differen P Pin Nu P38 M6 P56	XC3S100: 250E, XC3S 200E, XC3S CODE, X	DCM_X0Y0 500E: DCM 1600E: DCI GCLK2 ↑ Differer P ingle-Ender P40 P6 P58	A 22Y0 A 22Y0 A 22Y0 A 22Y0 A 22Y0 A 22Y A 2Y A 2Y
VQ100 CP132 FQ144 PQ208	XC3S12 GCLK12 ↑ Differen P Pin Nu P32 M4 P50 P74	XC3S1 250E, XC3S 200E, XC3S 200E, XC3S GCLK13 ↑ tial Pair N mber for S P33 N4 P51 P75	00: N/A 500E: DCM 1600E: DCI GCLK14 ↑ Differen P ingle-Ender P35 M5 P53 P77	M_X1Y0 GCLK15 ↑ tial Pair N d Input P36 N5 P54 P78	BUFGMUX_X1Y0 → C	R Line (: ↑ BUFGMUX_X1Y1	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2 XC3S12 GCLK0 ↑ Differen P Pin Nu P38 M6 P56 P80	XC3S100: 250E, XC3S 200E, XC3S GCLK1 ↑ tial Pair N mber for S P39 N6 P57 P81	DCM_X0Y0 500E: DCM 1600E: DCI GCLK2 ↑ Differer P ingle-Ender P40 P6 P58 P82	A 22Y0 A 22Y0 A 22Y0 A 22Y0 A 22Y0 A 22Y A 2Y A 2Y
VQ100 CP132 TQ144 PQ208 FT256	XC3S12 GCLK12 Differen P Pin Nu P32 M4 P50 P74 M8	XC3S1 250E, XC3S 200E, XC3S 200E, XC3S GCLK13 ↑ tial Pair N mber for S P33 N4 P51 P75 L8	00: N/A 500E: DCM 1600E: DCI GCLK14 Differen P ingle-Ende P35 M5 P53 P77 N8	M_X1Y0 GCLK15 A tial Pair N d Input P36 N5 P54 P78 P8	BUFGMUX_X1Y0 → C	R Line (: ↑ BUFGMUX_X1Y1	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2 XC3S12 GCLK0 ↑ Differen P Pin Nu P38 M6 P56 P80 T9	XC3S100: 250E, XC3S 200E, XC3S GCLK1 ↑ tial Pair N mber for S P39 N6 P57 P81 R9	DCM_X0Y0 500E: DCM 1600E: DCM 1600E: DCM CM COM CM CM CM CM CM CM CM CM CM C	×1Y0 M_X2Y0 GCLK ↑ ntial Pair N d Input P41 P7 P59 P83 N9
Package VQ100 CP132 TQ144 PQ208 FT256 FG320 FG320 FG400	XC3S12 GCLK12 ↑ Differen P Pin Nu P32 M4 P50 P74	XC3S1 250E, XC3S 200E, XC3S 200E, XC3S GCLK13 ↑ tial Pair N mber for S P33 N4 P51 P75	00: N/A 500E: DCM 1600E: DCI GCLK14 ↑ Differen P ingle-Ender P35 M5 P53 P77	M_X1Y0 GCLK15 ↑ tial Pair N d Input P36 N5 P54 P78	BUFGMUX_X1Y0 → C	R Line (: ↑ BUFGMUX_X1Y1	BUFGMUX_X2Y0	BUFGMUX_X2Y1 →	XC3S2 XC3S12 GCLK0 ↑ Differen P Pin Nu P38 M6 P56 P80	XC3S100: 250E, XC3S 200E, XC3S GCLK1 ↑ tial Pair N mber for S P39 N6 P57 P81	DCM_X0Y0 500E: DCM 1600E: DCI GCLK2 ↑ Differer P ingle-Ender P40 P6 P58 P82	A 22Y0 A 22Y0 A 22Y0 A 22Y0 A 22Y0 A 22Y A 2Y A 2Y

www.xilinx.com

DLL Clock Output and Feedback Connections

As many as four of the nine DCM clock outputs can simultaneously drive four of the BUFGMUX buffers on the same die edge. All DCM clock outputs can simultaneously drive general routing resources, including interconnect leading to OBUF buffers.


The feedback loop is essential for DLL operation. Either the CLK0 or CLK2X outputs feed back to the CLKFB input via a BUFGMUX global buffer to eliminate the clock distribution delay. The specific BUFGMUX buffer used to feed back the CLK0 or CLK2X signal is ideally one of the BUFGMUX buffers associated with a specific DCM, as shown in Table 30, Table 31, and Table 32.

The feedback path also phase-aligns the other seven DLL outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X, or CLK2X180. The CLK_FEEDBACK attribute value must agree with the physical feedback connection. Use "1X" for CLK0 feedback and "2X" for CLK2X feedback. If the DFS unit is used stand-alone, without the DLL, then no feedback is required and set the CLK_FEEDBACK attribute to "NONE".

Two basic cases determine how to connect the DLL clock outputs and feedback connections: on-chip synchronization and off-chip synchronization, which are illustrated in Figure 42a through Figure 42d.

In the on-chip synchronization case in Figure 42a and Figure 42b, it is possible to connect any of the DLL's seven output clock signals through general routing resources to the FPGA's internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock network. As shown in Figure 42a, the feedback loop is created by routing CLK0 (or CLK2X) in Figure 42b to a global clock net, which in turn drives the CLKFB input.

In the off-chip synchronization case in Figure 42c and Figure 42d, CLK0 (or CLK2X) plus any of the DLL's other output clock signals exit the FPGA using output buffers (OBUF) to drive an external clock network plus registers on the board. As shown in Figure 42c, the feedback loop is formed by feeding CLK0 (or CLK2X) in Figure 42d back into the FPGA, then to the DCM's CLKFB input via a Global Buffer Input, specified in Table 30.

(d) Off-Chip with CLK2X Feedback

DS099-2_09_082104

Figure 42: Input Clock, Output Clock, and Feedback Connections for the DLL

Status Logic

The Status Logic indicates the present state of the DCM and a means to reset the DCM to its initial known state. The Status Logic signals are described in Table 37.

In general, the Reset (RST) input is only asserted upon configuring the FPGA or when changing the CLKIN

Table 37: Status Logic Signals

frequency. The RST signal must be asserted for three or more CLKIN cycles. A DCM reset does not affect attribute values (for example, CLKFX_MULTIPLY and CLKFX_DIVIDE). If not used, RST is tied to GND.

The eight bits of the STATUS bus are described in Table 38.

Signal	Direction	Description
RST	Input	A High resets the entire DCM to its initial power-on state. Initializes the DLL taps for a delay of zero. Sets the LOCKED output Low. This input is asynchronous.
STATUS[7:0]	Output	The bit values on the STATUS bus provide information regarding the state of DLL and PS operation
LOCKED	Output	Indicates that the CLKIN and CLKFB signals are in phase by going High. The two signals are out-of-phase when Low.

Table 38: DCM Status Bus

Bit	Name	Description
0	Reserved	-
1	CLKIN Stopped	When High, indicates that the CLKIN input signal is not toggling. When Low, indicates CLKIN is toggling. This bit functions only when the CLKFB input is connected. ⁽¹⁾
2	CLKFX Stopped	When High, indicates that the CLKFX output is not toggling. When Low, indicates the CLKFX output is toggling. This bit functions only when the CLKFX or CLKFX180 output are connected.
3-6	Reserved	-

Notes:

1. When only the DFS clock outputs but none of the DLL clock outputs are used, this bit does not go High when the CLKIN signal stops.

Stabilizing DCM Clocks Before User Mode

The STARTUP_WAIT attribute shown in Table 39 optionally delays the end of the FPGA's configuration process until after the DCM locks to its incoming clock frequency. This option ensures that the FPGA remains in the Startup phase of configuration until all clock outputs generated by the DCM are stable. When all DCMs that have their STARTUP_WAIT attribute set to TRUE assert the LOCKED signal, then the FPGA completes its configuration process and proceeds to user mode. The associated bitstream generator (BitGen) option *LCK_cycle* specifies one of the six cycles in the Startup phase. The selected cycle defines the point at which configuration stalls until all the LOCKED outputs go High. See Start-Up, page 105 for more information.

Table 39: STARTUP_WAIT Attribute

Attribute	Description	Values
STARTUP_WAIT	When TRUE, delays transition from configuration to user mode until DCM locks to the input clock.	TRUE, <i>FALSE</i>

Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See <u>XAPP469</u>, *Spread-Spectrum Clocking Reception for Displays* for details. The connections for the bottom-edge BUFGMUX elements are similar to the top-edge connections (see Figure 46).

🐮 XILINX.

On the left and right edges, only two clock inputs feed each pair of BUFGMUX elements.

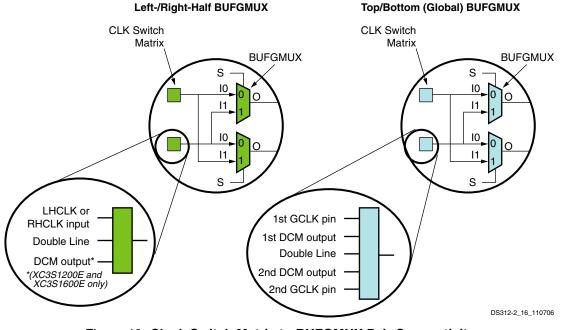


Figure 46: Clock Switch Matrix to BUFGMUX Pair Connectivity

Quadrant Clock Routing

The clock routing within the FPGA is quadrant-based, as shown in Figure 45. Each clock quadrant supports eight total clock signals, labeled 'A' through 'H' in Table 41 and Figure 47. The clock source for an individual clock line originates either from a global BUFGMUX element along the top and bottom edges or from a BUFGMUX element along the associated edge, as shown in Figure 47. The clock lines feed the synchronous resource elements (CLBs, IOBs, block RAM, multipliers, and DCMs) within the quadrant.

The four quadrants of the device are:

- Top Right (TR)
- Bottom Right (BR)
- Bottom Left (BL)
- Top Left (TL)

Note that the quadrant clock notation (TR, BR, BL, TL) is separate from that used for similar IOB placement constraints.

To estimate the quadrant location for a particular I/O, see the footprint diagrams in Module 4, Pinout Descriptions. For exact quadrant locations, use the floorplanning tool. In the QFP packages (VQ100, TQ144 and PQ208) the quadrant borders fall in the middle of each side of the package, at a GND pin. The clock inputs fall on the quadrant boundaries, as indicated in Table 42.

Table 42: QFP Package Clock Quadrant Locations

Clock Pins	Quadrant
GCLK[3:0]	BR
GCLK[7:4]	TR
GCLK[11:8]	TL
GCLK[15:12]	BL
RHCLK[3:0]	BR
RHCLK[7:4]	TR
LHCLK[3:0]	TL
LHCLK[7:4]	BL

In a few cases, a dedicated input is physically in one quadrant of the device but connects to a different clock quadrant:

- FT256, H16 is in clock quadrant BR
- FG320, K2 is in clock quadrant BL
- FG400, L8 is in clock quadrant TL and the I/O at N11 is in clock quadrant BL
- FG484, M2 is in clock quadrant TL and L15 is in clock quadrant BR

Table 46: Pin Behavior during Configuration (Cont'd)

Pin Name	Master Serial	SPI (Serial Flash)	BPI (Parallel NOR Flash)	JTAG	Slave Parallel	Slave Serial	I/O Bank ⁽³⁾
D0/DIN	DIN	DIN	D0		D0	DIN	2
RDWR_B			RDWR_B		RDWR_B		2
A23			A23				2
A22			A22				2
A21			A21				2
A20			A20				2
A19/VS2		VS2	A19				2
A18/VS1		VS1	A18				2
A17/VS0		VS0	A17				2
A16			A16				1
A15			A15				1
A14			A14				1
A13			A13				1
A12			A12				1
A11			A11				1
A10			A10				1
A9			A9				1
A8			A8				1
A7			A7				1
A6			A6				1
A5			A5				1
A4			A4				1
A3			A3				1
A2			A2				1
A1			A1				1
A0			A0				1
LDC0			LDC0				1
LDC1			LDC1				1
LDC2			LDC2				1
HDC			HDC				1

Notes:

1. Gray shaded cells represent pins that are in a high-impedance state (Hi-Z, floating) during configuration. These pins have an optional internal pull-up resistor to their respective V_{CCO} supply pin that is active throughout configuration if the HSWAP input is Low.

2. Yellow shaded cells represent pins with an internal pull-up resistor to its respective voltage supply rail that is active during configuration, regardless of the HSWAP pin.

3. Note that dual-purpose outputs are supplied by V_{CCO} , and configuration inputs are supplied by V_{CCAUX} .

The HSWAP pin itself has a pull-up resistor enabled during configuration. However, the VCCO_0 supply voltage must be applied before the pull-up resistor becomes active. If the VCCO_0 supply ramps after the VCCO_2 power supply, do not let HSWAP float; tie HSWAP to the desired logic level externally.

Spartan-3E FPGAs have only six dedicated configuration pins, including the DONE and PROG_B pins, and the four JTAG boundary-scan pins: TDI, TDO, TMS, and TCK. All other configuration pins are dual-purpose I/O pins and are available to the FPGA application after the DONE pin goes High. See <u>Start-Up</u> for additional information. Table 47 shows the default I/O standard setting for the various configuration pins during the configuration process. The configuration interface is designed primarily for 2.5V operation when the VCCO_2 (and VCCO_1 in BPI mode) connects to 2.5V.

Table 47: Default I/O Standard Setting During Con	ıfig-
uration (VCCO_2 = 2.5V)	

Pin(s)	I/O Standard	Output Drive	Slew Rate
All, including CCLK	LVCMOS25	8 mA	Slow

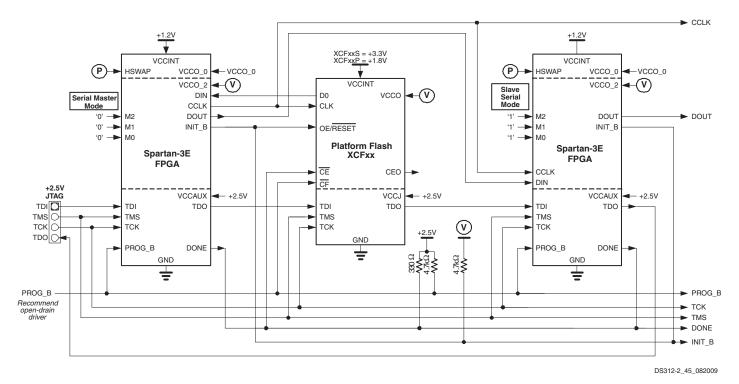


Figure 52: Daisy-Chaining from Master Serial Mode

Daisy-Chaining

If the application requires multiple FPGAs with different configurations, then configure the FPGAs using a daisy chain, as shown in Figure 52. Use Master Serial mode $(M[2:0] = \langle 0:0:0 \rangle)$ for the FPGA connected to the Platform Flash PROM and Slave Serial mode $(M[2:0] = \langle 1:1:1 \rangle)$ for all other FPGAs in the daisy-chain. After the master FPGA—the FPGA on the left in the diagram—finishes loading its configuration data from the Platform Flash, the master device supplies data using its DOUT output pin to the next device in the daisy-chain, on the falling CCLK edge.

JTAG Interface

Both the Spartan-3E FPGA and the Platform Flash PROM have a four-wire IEEE 1149.1/1532 JTAG port. Both devices share the TCK clock input and the TMS mode select input. The devices may connect in either order on the JTAG chain with the TDO output of one device feeding the TDI input of the following device in the chain. The TDO output of the last device in the JTAG chain drives the JTAG connector.

The JTAG interface on Spartan-3E FPGAs is powered by the 2.5V V_{CCAUX} supply. Consequently, the PROM's V_{CCJ} supply input must also be 2.5V. To create a 3.3V JTAG interface, please refer to application note <u>XAPP453</u>: *The 3.3V Configuration of Spartan-3 FPGAs* for additional information.

In-System Programming Support

Both the FPGA and the Platform Flash PROM are in-system programmable via the JTAG chain. Download support is provided by the Xilinx iMPACT programming software and the associated Xilinx <u>Parallel Cable IV</u> or <u>Platform Cable</u> <u>USB</u> programming cables.

Storing Additional User Data in Platform Flash

After configuration, the FPGA application can continue to use the Master Serial interface pins to communicate with the Platform Flash PROM. If desired, use a larger Platform Flash PROM to hold additional non-volatile application data, such as MicroBlaze processor code, or other user data such as serial numbers and Ethernet MAC IDs. The FPGA first configures from Platform Flash PROM. Then using FPGA logic after configuration, the FPGA copies MicroBlaze code from Platform Flash into external DDR SDRAM for code execution.

See <u>XAPP694</u>: Reading User Data from Configuration PROMs and <u>XAPP482</u>: MicroBlaze Platform Flash/PROM Boot Loader and User Data Storage for specific details on how to implement such an interface.

Daisy-Chaining

If the application requires multiple FPGAs with different configurations, then configure the FPGAs using a daisy chain, as shown in Figure 57. Daisy-chaining from a single SPI serial Flash PROM is supported in Stepping 1 devices. It is not supported in Stepping 0 devices. Use SPI Flash mode (M[2:0] = <0:0:1>) for the FPGA connected to the Platform Flash PROM and Slave Serial mode (M[2:0] = <1:1:1>) for all other FPGAs in the daisy-chain. After the master FPGA—the FPGA on the left in the diagram—finishes loading its configuration data from the SPI Flash PROM, the master device uses its DOUT output pin to supply data to the next device in the daisy-chain, on the falling CCLK edge.

Design Note

SPI mode daisy chains are supported only in Stepping 1 silicon versions.

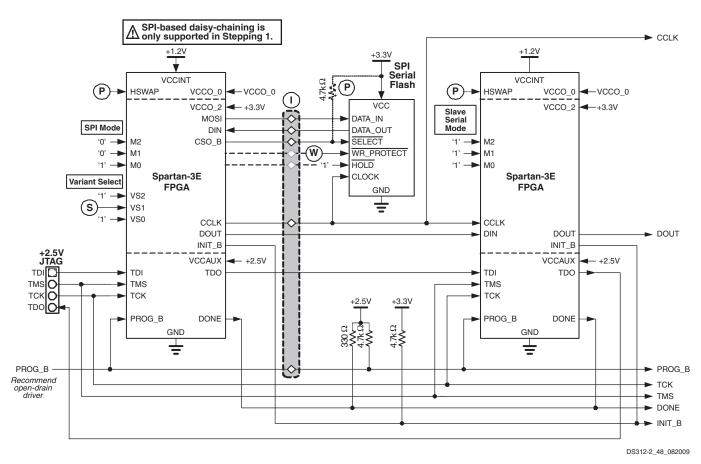
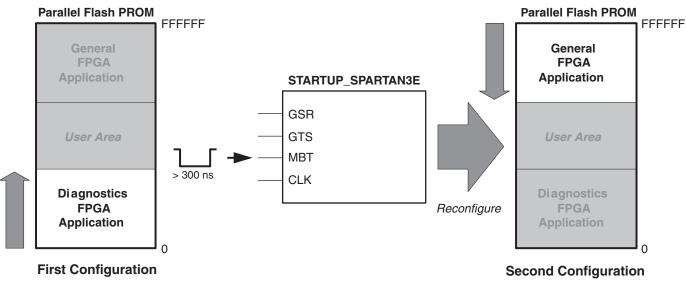


Figure 57: Daisy-Chaining from SPI Flash Mode (Stepping 1)

Programming Support

For successful daisy-chaining, the **DONE_cycle** configuration option must be set to cycle 5 or sooner. The default cycle is 4. See Table 69 and the Start-Up section for additional information.


U In production applications, the SPI Flash PROM is usually pre-programmed before it is mounted on the printed circuit board. The <u>Xilinx ISE development software</u> produces industry-standard programming files that can be used with third-party gang programmers. Consult your specific SPI Flash vendor for recommended production programming solutions. In-system programming support is available from some third-party PROM programmers using a socket adapter with attached wires. To gain access to the SPI Flash signals, drive the FPGA's PROG_B input Low with an open-drain driver. This action places all FPGA I/O pins, including those attached to the SPI Flash, in high-impedance (Hi-Z). If the HSWAP input is Low, the I/Os have pull-up resistors to the V_{CCO} input on their respective I/O bank. The external programming hardware then has direct access to the SPI Flash pins. The programming access points are highlighted in the gray box in Figure 53, Figure 54, and Figure 57.

Beginning with the Xilinx ISE 8.2i software release, the iMPACT programming utility provides direct, in-system prototype programming support for STMicro M25P-series

After the FPGA configures itself using BPI mode from one end of the parallel Flash PROM, then the FPGA can trigger a MultiBoot event and reconfigure itself from the opposite end of the parallel Flash PROM. MultiBoot is only available when using BPI mode and only for applications with a single Spartan-3E FPGA.

By default, MultiBoot mode is disabled. To trigger a MultiBoot event, assert a Low pulse lasting at least 300 ns on the MultiBoot Trigger (MBT) input to the STARTUP_SPARTAN3E library primitive. When the MBT signal returns High after the 300 ns or longer pulse, the FPGA automatically reconfigures from the opposite end of the parallel Flash memory. Figure 60 shows an example usage. At power up, the FPGA loads itself from the attached parallel Flash PROM. In this example, the M0 mode pin is Low so the FPGA starts at address 0 and increments through the Flash PROM memory locations. After the FPGA completes configuration, the application initially loaded into the FPGA performs a board-level or system test using FPGA logic. If the test is successful, the FPGA then triggers a MultiBoot event, causing the FPGA to reconfigure from the opposite end of the Flash PROM memory. This second configuration contains the FPGA application for normal operation.

Similarly, the general FPGA application could trigger another MultiBoot event at any time to reload the diagnostics design, and so on.

DS312-2_51_103105

Figure 60: Use MultiBoot to Load Alternate Configuration Images

In another potential application, the initial design loaded into the FPGA image contains a "golden" or "fail-safe" configuration image, which then communicates with the outside world and checks for a newer image. If there is a new configuration revision and the new image verifies as good, the "golden" configuration triggers a MultiBoot event to load the new image.

When a MultiBoot event is triggered, the FPGA then again drives its configuration pins as described in Table 59. However, the FPGA does not assert the PROG_B pin. The system design must ensure that no other device drives on these same pins during the reconfiguration process. The FPGA's DONE, LDC[2:0], or HDC pins can temporarily disable any conflicting drivers during reconfiguration.

Asserting the PROG_B pin Low overrides the MultiBoot feature and forces the FPGA to reconfigure starting from the end of memory defined by the mode pins, shown in Table 58.

Table 97: Recommended Number of SimultaneouslySwitching Outputs per V_{CCO}/GND Pair

			VQ TQ PQ CP FG3 100 144 208 132 FG4				
Signal Si (IOSTAN	andaro DARD)	d)					FT256 FG320 FG400 FG484
Single-Ended Standards							
LVTTL	Slow	2	34	20	19	52	60
		4	17	10	10	26	41
		6	17	10	7	26	29
		8	8	6	6	13	22
		12	8	6	5	13	13
		16	5	5	5	6	11
	Fast	2	17	17	17	26	34
		4	9	9	9	13	20
		6	7	7	7	13	15
		8	6	6	6	6	12
		12	5	5	5	6	10
		16	5	5	5	5	9
LVCMOS33	Slow	2	34	20	20	52	76
		4	17	10	10	26	46
		6	17	10	7	26	27
		8	8	6	6	13	20
		12	8	6	5	13	13
		16	5	5	5	6	10
	Fast	2	17	17	17	26	44
		4	8	8	8	13	26
		6	8	6	6	13	16
		8	6	6	6	6	12
		12	5	5	5	6	10
		16	8	8	5	5	8
LVCMOS25	Slow	2	28	16	16	42	76
		4	13	10	10	19	46
		6	13	7	7	19	33
		8	6	6	6	9	24
		12	6	6	6	9	18
	Fast	2	17	16	16	26	42
		4	9	9	9	13	20
		6	9	7	7	13	15
		8	6	6	6	6	13
		12	5	5	5	6	11
LVCMOS18	Slow	2	19	11	8	29	64
	0.000	4	13	7	6	19	34
		6	6	5	5	9	22
		8	6	4	4	9	18
	Fast	0 2	13	8	8	9 19	36
	1 251	2		о 5	о 5	19	21
			8		5 4		13
		6		4		6	
		8	4	4	4	6	10

Table 97: Recommended Number of SimultaneouslySwitching Outputs per V_{CCO}/GND Pair (Cont'd)

				Pa	ackage	Туре	
Signal Sta (IOSTAN)	VQ 100	TQ 144	PQ 208	CP 132	FT256 FG320 FG400 FG484		
LVCMOS15	Slow	2	16	10	10	19	55
		4	8	7	7	9	31
		6	6	5	5	9	18
	Fast	2	9	9	9	13	25
		4	7	7	7	7	16
		6	5	5	5	5	13
LVCMOS12	Slow	2	17	11	11	16	55
	Fast	2	10	10	10	10	31
PCI33_3			8	8	8	16	16
PCI66_3			8	8	8	13	13
PCIX			7	7	7	11	11
HSTL_I_18			10	10	10	16	17
HSTL_III_18			10	10	10	16	16
SSTL18_I			9	9	9	15	15
SSTL2_I			12	12	12	18	18
Differential	Standa	rds	(Numb	er of I/	O Pairs	or Cha	innels)
LVDS_25			6	6	6	12	20
BLVDS_25			4	4	4	4	4
MINI_LVDS_2	25		6	6	6	12	20
LVPECL_25					Input O	nly	
RSDS_25			6	6	6	12	20
DIFF_HSTL_I	_18		5	5	5	8	8
DIFF_HSTL_I	III_18		5	5	5	8	8
DIFF_SSTL18	3_I		4	4	4	7	7
DIFF_SSTL2_	_		6	6	6	9	8

Notes:

- The numbers in this table are recommendations that assume sound board layout practice. This table assumes the following parasitic factors: combined PCB trace and land inductance per VCCO and GND pin of 1.0 nH, receiver capacitive load of 15 pF. Test limits are the VIL/VIH voltage limits for the respective I/O standard.
- 2. The PQ208 results are based on physical measurements of a PQ208 package soldered to a typical printed circuit board. All other results are based on worst-case simulation and an interpolation of the PQ208 physical results.
- 3. If more than one signal standard is assigned to the I/Os of a given bank, refer to XAPP689: Managing Ground Bounce in Large FPGAs for information on how to perform weighted average SSO calculations.

Table 107: Switching Characteristics for the DFS

					Speed	Grade		
Symbol	Description Device		Device	-5		-4		Units
				Min	Max	Min	Max	
Output Frequency Range	S							<u></u>
CLKOUT_FREQ_FX_LF	Frequency for the CLKFX and CLKFX180 outputs, low frequencies	Stepping 0	XC3S100E XC3S250E XC3S500E	N/A	N/A	5	90	MHz
CLKOUT_FREQ_FX_HF	Frequency for the CLKFX and CLKFX180 outputs, high frequencies	-	XC3S1600E			220	307	MHz
CLKOUT_FREQ_FX	Frequency for the CLKFX and	Stepping 0	XC3S1200E			5	307	MHz
	CLKFX180 outputs	Stepping 1	All	5	333		311	MHz
Output Clock Jitter ^(2,3)								
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and		All	Тур	Max	Тур	Max	
	CLKFX180 outputs.	CLKIN ≤ 20 MHz	-		Note 6			ps
		CLKIN > 20 MHz	-	±[1% of CLKFX period	CLKFX period	±[1% of CLKFX period	CLKFX period	ps
				+ 100]	+ 200]	+ 200] + 100]	+ 200]	
Duty Cycle ^(4,5)			i					
CLKOUT_DUTY_CYCLE_FX	Duty cycle precision for the CLKF outputs, including the BUFGMUX duty-cycle distortion		All	-	±[1% of CLKFX period + 400]	-	±[1% of CLKFX period + 400]	ps
Phase Alignment ⁽⁵⁾					I			1
CLKOUT_PHASE_FX	Phase offset between the DFS CL DLL CLK0 output when both the used		All	-	±200	-	±200	ps
CLKOUT_PHASE_FX180	Phase offset between the DFS CL the DLL CLK0 output when both th used		All	-	±[1% of CLKFX period + 300]	-	±[1% of CLKFX period + 300]	ps
Lock Time					1			
LOCK_FX ⁽²⁾	The time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output.	$\begin{array}{l} 5 \text{ MHz} \leq \text{F}_{\text{CLKIN}} \\ \leq 15 \text{ MHz} \end{array}$	All	-	5	-	5	ms
	The DFS asserts LOCKED butput. The CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time.	F _{CLKIN} > 15 MHz		-	450	-	450	μs

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 77 and Table 106.
- 2. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
- Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching). Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.
- 4. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
- Some duty-cycle and alignment specifications include 1% of the CLKFX output period or 0.01 UI.
 Example: The data sheet specifies a maximum jitter of ±[1% of CLKFX period + 300]. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 300 ps] = ±400 ps.
- 6. Use the Spartan-3A Jitter Calculator (www.xilinx.com/support/documentation/data_sheets/s3a_jitter_calc.zip) to estimate DFS output jitter. Use the Clocking Wizard to determine jitter for a specific design.

Table 124: Types of Pins on Spartan-3E FPGAs (Cont'd)

Type / Color Code	Description	Pin Name(s) in Type ⁽¹⁾
VCCAUX	Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package used. All must be connected to +2.5V. See the Powering Spartan-3E FPGAs section in Module 2 for details.	VCCAUX
VCCINT	Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the package used. All must be connected to +1.2V. See the Powering Spartan-3E FPGAs section in Module 2 for details.	VCCINT
VCCO	Along with all the other VCCO pins in the same bank, this pin supplies power to the output buffers within the I/O bank and sets the input threshold voltage for some I/O standards. See the Powering Spartan-3E FPGAs section in Module 2 for details.	VCCO_#
N.C.	This package pin is not connected in this specific device/package combination but may be connected in larger devices in the same package.	N.C.

Notes:

- 1. # = I/O bank number, an integer between 0 and 3.
- 2. IRDY/TRDY designations are for PCI designs; refer to PCI documentation for details.

Differential Pair Labeling

I/Os with Lxxy_# are part of a differential pair. 'L' indicates differential capability. The 'xx' field is a two-digit integer, unique to each bank that identifies a differential pin-pair. The 'y' field is either 'P' for the true signal or 'N' for the inverted signal in the differential pair. The '#' field is the I/O bank number.

The pin name suffix has the following significance. Figure 79 provides a specific example showing a differential input to and a differential output from Bank 1. 'L' indicates that the pin is part of a differential pair.

'xx' is a two-digit integer, unique for each bank, that identifies a differential pin-pair.

'y' is replaced by 'P' for the true signal or 'N' for the inverted. These two pins form one differential pin-pair.

'#' is an integer, 0 through 3, indicating the associated $\ensuremath{\mathsf{I/O}}$ bank.

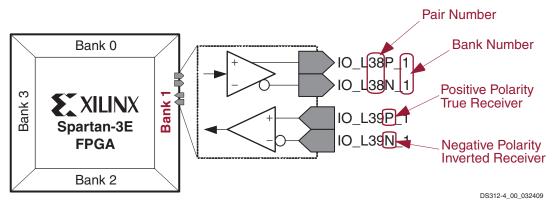


Figure 79: Differential Pair Labeling

Table 137: TQ144 Package Pinout (Cont'd)

Bank	XC3S100E Pin Name	XC3S250E Pin Name	TQ144 Pin	Туре
GND	GND	GND	P27	GND
GND	GND	GND	P37	GND
GND	GND	GND	P46	GND
GND	GND	GND	P55	GND
GND	GND	GND	P61	GND
GND	GND	GND	P73	GND
GND	GND	GND	P90	GND
GND	GND	GND	P99	GND
GND	GND	GND	P118	GND
GND	GND	GND	P127	GND
GND	GND	GND	P133	GND
VCCAUX	DONE	DONE	P72	CONFIG
VCCAUX	PROG_B	PROG_B	P1	CONFIG
VCCAUX	ТСК	ТСК	P110	JTAG
VCCAUX	TDI	TDI	P144	JTAG
VCCAUX	TDO	TDO	P109	JTAG
VCCAUX	TMS	TMS	P108	JTAG
VCCAUX	VCCAUX	VCCAUX	P30	VCCAUX
VCCAUX	VCCAUX	VCCAUX	P65	VCCAUX
VCCAUX	VCCAUX	VCCAUX	P102	VCCAUX
VCCAUX	VCCAUX	VCCAUX	P137	VCCAUX
VCCINT	VCCINT	VCCINT	P9	VCCINT
VCCINT	VCCINT	VCCINT	P45	VCCINT
VCCINT	VCCINT	VCCINT	P80	VCCINT
VCCINT	VCCINT	VCCINT	P115	VCCINT

Table 148: FG320 Package Pinout (Cont'd)

Bank	XC3S500E Pin Name	XC3S1200E Pin Name	XC3S1600E Pin Name	FG320 Ball	Туре
0	VCCO_0	VCCO_0	VCCO_0	A9	VCCO
0	VCCO_0	VCCO_0	VCCO_0	C6	VCCO
0	VCCO_0	VCCO_0	VCCO_0	C13	VCCO
0	VCCO_0	VCCO_0	VCCO_0	G8	VCCO
0	VCCO_0	VCCO_0	VCCO_0	G11	VCCO
1	N.C. (�)	IO	IO	P16	500E: N.C. 1200E: I/O 1600E: I/O
1	IO_L01N_1/A15	IO_L01N_1/A15	IO_L01N_1/A15	T17	DUAL
1	IO_L01P_1/A16	IO_L01P_1/A16	IO_L01P_1/A16	U18	DUAL
1	IO_L02N_1/A13	IO_L02N_1/A13	IO_L02N_1/A13	T18	DUAL
1	IO_L02P_1/A14	IO_L02P_1/A14	IO_L02P_1/A14	R18	DUAL
1	IO_L03N_1/VREF_1	IO_L03N_1/VREF_1	IO_L03N_1/VREF_1	R16	VREF
1	IO_L03P_1	IO_L03P_1	IO_L03P_1	R15	I/O
1	N.C. (�)	IO_L04N_1	IO_L04N_1	N14	500E: N.C. 1200E: I/O 1600E: I/O
1	N.C. (�)	IO_L04P_1	IO_L04P_1	N15	500E: N.C. 1200E: I/O 1600E: I/O
1	IO_L05N_1/VREF_1	IO_L05N_1/VREF_1	IO_L05N_1/VREF_1	M13	VREF
1	IO_L05P_1	IO_L05P_1	IO_L05P_1	M14	I/O
1	IO_L06N_1	IO_L06N_1	IO_L06N_1	P18	I/O
1	IO_L06P_1	IO_L06P_1	IO_L06P_1	P17	I/O
1	IO_L07N_1	IO_L07N_1	IO_L07N_1	M16	I/O
1	IO_L07P_1	IO_L07P_1	IO_L07P_1	M15	I/O
1	IO_L08N_1	IO_L08N_1	IO_L08N_1	M18	I/O
1	IO_L08P_1	IO_L08P_1	IO_L08P_1	N18	I/O
1	IO_L09N_1/A11	IO_L09N_1/A11	IO_L09N_1/A11	L15	DUAL
1	IO_L09P_1/A12	IO_L09P_1/A12	IO_L09P_1/A12	L16	DUAL
1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	IO_L10N_1/VREF_1	L17	VREF
1	IO_L10P_1	IO_L10P_1	IO_L10P_1	L18	I/O
1	IO_L11N_1/A9/RHCLK1	IO_L11N_1/A9/RHCLK1	IO_L11N_1/A9/RHCLK1	K12	RHCLK/DUAL
1	IO_L11P_1/A10/RHCLK0	IO_L11P_1/A10/RHCLK0	IO_L11P_1/A10/RHCLK0	K13	RHCLK/DUAL
1	IO_L12N_1/A7/RHCLK3/ TRDY1	IO_L12N_1/A7/RHCLK3/ TRDY1	IO_L12N_1/A7/RHCLK3/ TRDY1	K14	RHCLK/DUAL
1	IO_L12P_1/A8/RHCLK2	IO_L12P_1/A8/RHCLK2	IO_L12P_1/A8/RHCLK2	K15	RHCLK/DUAL
1	IO_L13N_1/A5/RHCLK5	IO_L13N_1/A5/RHCLK5	IO_L13N_1/A5/RHCLK5	J16	RHCLK/DUAL
1	IO_L13P_1/A6/RHCLK4/ IRDY1	IO_L13P_1/A6/RHCLK4/ IRDY1	IO_L13P_1/A6/RHCLK4/ IRDY1	J17	RHCLK/DUAL
1	IO_L14N_1/A3/RHCLK7	IO_L14N_1/A3/RHCLK7	IO_L14N_1/A3/RHCLK7	J14	RHCLK/DUAL
1	IO_L14P_1/A4/RHCLK6	IO_L14P_1/A4/RHCLK6	IO_L14P_1/A4/RHCLK6	J15	RHCLK/DUAL
1	IO_L15N_1/A1	IO_L15N_1/A1	IO_L15N_1/A1	J13	DUAL
1	IO_L15P_1/A2	IO_L15P_1/A2	IO_L15P_1/A2	J12	DUAL
1	IO_L16N_1/A0	IO_L16N_1/A0	IO_L16N_1/A0	H17	DUAL
1	IO_L16P_1	IO_L16P_1	IO_L16P_1	H16	I/O

www.xilinx.com

Table 152: FG400 Package Pinout (Cont'd)

Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре
1	IP	L18	INPUT
1	IP	M20	INPUT
1	IP	N14	INPUT
1	IP	N20	INPUT
1	IP	P15	INPUT
1	IP	R16	INPUT
1	IP	R19	INPUT
1	IP/VREF_1	E19	VREF
1	IP/VREF_1	K18	VREF
1	VCCO_1	D19	VCCO
1	VCCO_1	G17	VCCO
1	VCCO_1	K15	VCCO
1	VCCO_1	K19	VCCO
1	VCCO_1	N17	VCCO
1	VCCO_1	T19	VCCO
2	IO	P8	I/O
2	IO	P13	I/O
2	IO	R9	I/O
2	IO	R13	I/O
2	IO	W15	I/O
2	IO	Y5	I/O
2	IO	Y7	I/O
2	IO	Y13	I/O
2	IO/D5	N11	DUAL
2	IO/M1	T11	DUAL
2	IO/VREF_2	Y3	VREF
2	IO/VREF_2	Y17	VREF
2	IO_L01N_2/INIT_B	V4	DUAL
2	IO_L01P_2/CSO_B	U4	DUAL
2	IO_L03N_2/MOSI/CSI_B	V5	DUAL
2	IO_L03P_2/DOUT/BUSY	U5	DUAL
2	IO_L04N_2	Y4	I/O
2	IO_L04P_2	W4	I/O
2	IO_L06N_2	Т6	I/O
2	IO_L06P_2	T5	I/O
2	IO_L07N_2	U7	I/O
2	IO_L07P_2	V7	I/O
2	IO_L09N_2/VREF_2	R7	VREF
2	IO_L09P_2	Τ7	I/O
2	IO_L10N_2	V8	I/O
2	IO_L10P_2	W8	I/O
2	IO_L12N_2	U9	I/O
2	IO_L12P_2	V9	I/O

Table 152: FG400 Package Pinout (Cont'd)

2 IO_L15P_2/D7/GCLK12 W9 2 IO_L16N_2/D3/GCLK15 P10 2 IO_L16P_2/D4/GCLK14 R10 2 IO_L18N_2/D1/GCLK3 V11	I/O I/O DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK
2 IO_L15N_2/D6/GCLK13 W10 2 IO_L15P_2/D7/GCLK12 W9 2 IO_L16N_2/D3/GCLK15 P10 2 IO_L16P_2/D4/GCLK14 R10 2 IO_L18N_2/D1/GCLK3 V11	DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/
2 IO_L15P_2/D7/GCLK12 W9 2 IO_L16N_2/D3/GCLK15 P10 2 IO_L16P_2/D4/GCLK14 R10 2 IO_L18N_2/D1/GCLK3 V11	GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/
2 IO_L16N_2/D3/GCLK15 P10 2 IO_L16P_2/D4/GCLK14 R10 2 IO_L18N_2/D1/GCLK3 V11	GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/
2 IO_L16P_2/D4/GCLK14 R10 2 IO_L18N_2/D1/GCLK3 V11	GCLK DUAL/ GCLK DUAL/ GCLK DUAL/
2 IO_L18N_2/D1/GCLK3 V11	GCLK DUAL/ GCLK DUAL/
	GCLK DUAL/
2 IO_L18P_2/D2/GCLK2 V10	GOLIN
2 IO_L19N_2/DIN/D0 Y12	DUAL
2 IO_L19P_2/M0 Y11	DUAL
2 IO_L21N_2 U12	I/O
2 IO_L21P_2 V12	I/O
2 IO_L22N_2/VREF_2 W12	VREF
2 IO_L22P_2 W13	I/O
2 IO_L24N_2 U13	I/O
2 IO_L24P_2 V13	I/O
2 IO_L25N_2 P14	I/O
2 IO_L25P_2 R14	I/O
2 IO_L27N_2/A22 Y14	DUAL
2 IO_L27P_2/A23 Y15	DUAL
2 IO_L28N_2 T15	I/O
2 IO_L28P_2 U15	I/O
2 IO_L30N_2/A20 V16	DUAL
2 IO_L30P_2/A21 U16	DUAL
2 IO_L31N_2/VS1/A18 Y18	DUAL
2 IO_L31P_2/VS2/A19 W18	DUAL
2 IO_L32N_2/CCLK W19	DUAL
2 IO_L32P_2/VS0/A17 Y19	DUAL
2 IP T16	INPUT
2 IP W3	INPUT
2 IP_L02N_2 Y2	INPUT
2 IP_L02P_2 W2	INPUT
	INPUT
	INPUT
	INPUT
2 IP_L08P_2 W6	INPUT
	INPUT
	INPUT
2 IP_L14N_2/VREF_2 T10	VREF

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.