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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Number of LABs/CLBs 3688

Number of Logic Elements/Cells 33192

Total RAM Bits 663552

Number of I/O 250

Number of Gates 1600000

Voltage - Supply 1.14V ~ 1.26V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 320-BGA

Supplier Device Package 320-FBGA (19x19)
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 Wide Multiplexers

For additional information, refer to the “Using Dedicated 
Multiplexers” chapter in UG331.

Wide-function multiplexers effectively combine LUTs in 
order to permit more complex logic operations. Each slice 
has two of these multiplexers with F5MUX in the bottom 
portion of the slice and FiMUX in the top portion. The 
F5MUX multiplexes the two LUTs in a slice. The FiMUX 
multiplexes two CLB inputs which connect directly to the 
F5MUX and FiMUX results from the same slice or from 
other slices. See Figure 19.

Depending on the slice, FiMUX takes on the name F6MUX, 
F7MUX, or F8MUX. The designation indicates the number 
of inputs possible without restriction on the function. For 
example, an F7MUX can generate any function of seven 
inputs. Figure 20 shows the names of the multiplexers in 
each position in the Spartan-3E CLB. The figure also 
includes the direct connections within the CLB, along with 
the F7MUX connection to the CLB below. 

Each mux can create logic functions of more inputs than 
indicated by its name. The F5MUX, for example, can 
generate any function of five inputs, with four inputs 
duplicated to two LUTs and the fifth input controlling the 
mux. Because each LUT can implement independent 2:1 
muxes, the F5MUX can combine them to create a 4:1 mux, 
which is a six-input function. If the two LUTs have 
completely independent sets of inputs, some functions of all 
nine inputs can be implemented. Table 11 shows the 
connections for each multiplexer and the number of inputs 
possible for different types of functions.

X-Ref Target - Figure 18

Figure 18: LUT Resources in a Slice

A[4:1]F[4:1]
4

4

DS312-2_33_111105

F-LUT

G[4:1] DA[4:1] YQ

Y

G-LUT

FFY

FFX
D XQ

X

X-Ref Target - Figure 19

Figure 19: Dedicated Multiplexers in Spartan-3E CLB
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X-Ref Target - Figure 20

Figure 20: MUXes and Dedicated Feedback in Spartan-3E CLB
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Table  11: MUX Capabilities

MUX Usage Input Source
Total Number of Inputs per Function

For Any Function For MUX For Limited 
Functions

F5MUX F5MUX LUTs 5 6 (4:1 MUX) 9 

FiMUX F6MUX F5MUX 6 11 (8:1 MUX) 19 

F7MUX F6MUX 7 20 (16:1 MUX) 39 

F8MUX F7MUX 8 37 (32:1 MUX) 79 

http://www.xilinx.com
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The basic usage of the carry logic is to generate a half-sum 
in the LUT via an XOR function, which generates or 
propagates a carry out COUT via the carry mux CYMUXF 
(or CYMUXG), and then complete the sum with the 
dedicated XORF (or XORG) gate and the carry input CIN. 
This structure allows two bits of an arithmetic function in 
each slice. The CYMUXF (or CYMUXG) can be instantiated 
using the MUXCY element, and the XORF (or XORG) can 
be instantiated using the XORCY element.

The FAND (or GAND) gate is used for partial product 
multiplication and can be instantiated using the MULT_AND 
component. Partial products are generated by two-input 
AND gates and then added. The carry logic is efficient for 
the adder, but one of the inputs must be outside the LUT as 
shown in Figure 23. 

The FAND (or GAND) gate is used to duplicate one of the 
partial products, while the LUT generates both partial 
products and the XOR function, as shown in Figure 24.

CY0G Carry generation for top half of slice. Fixed selection of:
· G1 or G2 inputs to the LUT (both equal 1 when a carry is to be generated)
· GAND gate for multiplication
· BY input for carry initialization
· Fixed 1 or 0 input for use as a simple Boolean function

CYMUXF Carry generation or propagation mux for bottom half of slice. Dynamic selection via CYSELF of:
· CYINIT carry propagation (CYSELF = 1)
· CY0F carry generation (CYSELF = 0)

CYMUXG Carry generation or propagation mux for top half of slice. Dynamic selection via CYSELF of:
· CYMUXF carry propagation (CYSELG = 1)
· CY0G carry generation (CYSELG = 0)

CYSELF Carry generation or propagation select for bottom half of slice. Fixed selection of:
· F-LUT output (typically XOR result)
· Fixed 1 to always propagate

CYSELG Carry generation or propagation select for top half of slice. Fixed selection of:
· G-LUT output (typically XOR result)
· Fixed 1 to always propagate

XORF Sum generation for bottom half of slice. Inputs from:
· F-LUT
· CYINIT carry signal from previous stage
Result is sent to either the combinatorial or registered output for the top of the slice.

XORG Sum generation for top half of slice. Inputs from:
· G-LUT 
· CYMUXF carry signal from previous stage
Result is sent to either the combinatorial or registered output for the top of the slice.

FAND Multiplier partial product for bottom half of slice. Inputs:
· F-LUT F1 input
· F-LUT F2 input
Result is sent through CY0F to become the carry generate signal into CYMUXF

GAND Multiplier partial product for top half of slice. Inputs:
· G-LUT G1 input
· G-LUT G2 input
Result is sent through CY0G to become the carry generate signal into CYMUXG

Table  14: Carry Logic Functions (Cont’d)

Function Description

X-Ref Target - Figure 23

Figure 23: Using the MUXCY and XORCY in the Carry 
Logic
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VARIABLE Phase Shift Mode

In VARIABLE phase shift mode, the FPGA application 
dynamically adjusts the fine phase shift value using three 

inputs to the PS unit (PSEN, PSCLK, and PSINCDEC), as 
defined in Table 36 and shown in Figure 40.

The FPGA application uses the three PS inputs on the 
Phase Shift unit to dynamically and incrementally increase 
or decrease the phase shift amount on all nine DCM clock 
outputs. 

To adjust the current phase shift value, the PSEN enable 
signal must be High to enable the PS unit. Coincidently, 
PSINCDEC must be High to increment the current phase 
shift amount or Low to decrement the current amount. All 
VARIABLE phase shift operations are controlled by the 
PSCLK input, which can be the CLKIN signal or any other 
clock signal.

Design Note

The VARIABLE phase shift feature operates differently from 
the Spartan-3 DCM; use the DCM_SP primitive, not the 
DCM primitive.

DCM_DELAY_STEP

DCM_DELAY_STEP is the finest delay resolution available 
in the PS unit. Its value is provided at the bottom of 
Table 105 in Module 3. For each enabled PSCLK cycle that 
PSINCDEC is High, the PS unit adds one DCM_ 
DELAY_STEP of phase shift to all nine DCM outputs. 
Similarly, for each enabled PSCLK cycle that PSINCDEC is 
Low, the PS unit subtracts one DCM_ DELAY_STEP of 
phase shift from all nine DCM outputs.

Because each DCM_DELAY_STEP has a minimum and 
maximum value, the actual phase shift delay for the present 
phase increment/decrement value (VALUE) falls within the 
minimum and maximum values according to Equation 4 and 
Equation 5.

Eq 4

Eq 5

The maximum variable phase shift steps, MAX_STEPS, is 
described in Equation 6 or Equation 7, for a given CLKIN 
input period, TCLKIN, in nanoseconds. To convert this to a 

phase shift range measured in time and not steps, use 
MAX_STEPS derived in Equation 6 and Equation 7 for 
VALUE in Equation 4 and Equation 5.

If CLKIN < 60 MHz:

Eq 6

If CLKIN ≥ 60 MHz:

Eq 7

The phase adjustment might require as many as 100 CLKIN 
cycles plus 3 PSCLK cycles to take effect, at which point the 
DCM’s PSDONE output goes High for one PSCLK cycle. 
This pulse indicates that the PS unit completed the previous 
adjustment and is now ready for the next request.

Asserting the Reset (RST) input returns the phase shift to 
zero.

Table  36: Signals for Variable Phase Mode

Signal Direction Description

PSEN(1) Input Enables the Phase Shift unit for variable phase adjustment. 

PSCLK(1) Input Clock to synchronize phase shift adjustment. 

PSINCDEC(1) Input When High, increments the current phase shift value. When Low, decrements the current 
phase shift value. This signal is synchronized to the PSCLK signal. 

PSDONE Output Goes High to indicate that the present phase adjustment is complete and PS unit is ready for 
next phase adjustment request. This signal is synchronized to the PSCLK signal. 

Notes: 
1. This input supports either a true or inverted polarity.

TPS Max( ) VALUE DCM_DELAY_STEP_MAX•=

TPS Min( ) VALUE DCM_DELAY_STEP_MIN•=

MAX_STEPS INTEGER 10 TCLKIN 3–( )•( )[ ]±=

MAX_STEPS INTEGER 15 TCLKIN 3–( )•( )[ ]±=

http://www.xilinx.com
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By contrast, the clock switch matrixes on the top and bottom 
edges receive signals from any of the five following sources: 
two GCLK pins, two DCM outputs, or one Double-Line 
interconnect.

Table 41 indicates permissible connections between clock 
inputs and BUFGMUX elements. The I0-input provides the 
best input path to a clock buffer. The I1-input provides the 
secondary input for the clock multiplexer function.

The four BUFGMUX elements on the top edge are paired 
together and share inputs from the eight global clock inputs 
along the top edge. Each BUFGMUX pair connects to four 
of the eight global clock inputs, as shown in Figure 45. This 
optionally allows differential inputs to the global clock inputs 
without wasting a BUFGMUX element.

Table  41: Connections from Clock Inputs to BUFGMUX Elements and Associated Quadrant Clock

Quadran
t Clock 

Line(1)

Left-Half BUFGMUX Top or Bottom BUFGMUX Right-Half BUFGMUX

Location(2) I0 Input I1 Input Location(2) I0 Input I1 Input Location(2) I0 Input I1 Input

H X0Y9 LHCLK7 LHCLK6 X1Y10 GCLK7 or 
GCLK11

GCLK6 or 
GCLK10 X3Y9 RHCLK3 RHCLK2

G X0Y8 LHCLK6 LHCLK7 X1Y11 GCLK6 or 
GCLK10

GCLK7 or 
GCLK11 X3Y8 RHCLK2 RHCLK3

F X0Y7 LHCLK5 LHCLK4 X2Y10 GCLK5 or 
GCLK9

GCLK4 or 
GCLK8 X3Y7 RHCLK1 RHCLK0

E X0Y6 LHCLK4 LHCLK5 X2Y11 GCLK4 or 
GCLK8

GCLK5 or 
GCLK9 X3Y6 RHCLK0 RHCLK1

D X0Y5 LHCLK3 LHCLK2 X1Y0 GCLK3 or 
GCLK15

GCLK2 or 
GCLK14 X3Y5 RHCLK7 RHCLK6

C X0Y4 LHCLK2 LHCLK3 X1Y1 GCLK2 or 
GCLK14

GCLK3 or 
GCLK15 X3Y4 RHCLK6 RHCLK7

B X0Y3 LHCLK1 LHCLK0 X2Y0 GCLK1 or 
GCLK13

GCLK0 or 
GCLK12 X3Y3 RHCLK5 RHCLK4

A X0Y2 LHCLK0 LHCLK1 X2Y1 GCLK0 or 
GCLK12

GCLK1 or 
GCLK13 X3Y2 RHCLK4 RHCLK5

Notes: 
1. See Quadrant Clock Routing for connectivity details for the eight quadrant clocks.
2. See Figure 45 for specific BUFGMUX locations, and Figure 47 for information on how BUFGMUX elements drive onto a specific clock line 

within a quadrant.

http://www.xilinx.com
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Direct Connections

Direct connect lines route signals to neighboring tiles: 
vertically, horizontally, and diagonally. These lines most 
often drive a signal from a “source” tile to a double, hex, or 
long line and conversely from the longer interconnect back 
to a direct line accessing a “destination” tile. 

Global Controls (STARTUP_SPARTAN3E)

In addition to the general-purpose interconnect, Spartan-3E 
FPGAs have two global logic control signals, as described 
in Table 43. These signals are available to the FPGA 
application via the STARTUP_SPARTAN3E primitive.

The Global Set/Reset (GSR) signal replaces the global 
reset signal included in many ASIC-style designs. Use the 
GSR control instead of a separate global reset signal in the 
design to free up CLB inputs, resulting in a smaller, more 
efficient design. Similarly, the GSR signal is asserted 
automatically during the FPGA configuration process, 
guaranteeing that the FPGA starts-up in a known state.

The STARTUP_SPARTAN3E primitive also includes two 
other signals used specifically during configuration. The 
MBT signals are for Dynamically Loading Multiple 
Configuration Images Using MultiBoot Option, page 91. The 
CLK input is an alternate clock for configuration Start-Up, 
page 105.

Table  43: Spartan-3E Global Logic Control Signals

Global Control 
Input Description

GSR

Global Set/Reset: When High, 
asynchronously places all registers and 
flip-flops in their initial state (see Initialization, 
page 31). Asserted automatically during the 
FPGA configuration process (see Start-Up, 
page 105).

GTS
Global Three-State: When High, 
asynchronously forces all I/O pins to a 
high-impedance state (Hi-Z, three-state).

http://www.xilinx.com
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Daisy-Chaining

If the application requires multiple FPGAs with different 
configurations, then configure the FPGAs using a daisy 
chain, as shown in Figure 57. Daisy-chaining from a single 
SPI serial Flash PROM is supported in Stepping 1 devices. 
It is not supported in Stepping 0 devices. Use SPI Flash 
mode (M[2:0] = <0:0:1>) for the FPGA connected to the 
Platform Flash PROM and Slave Serial mode 
(M[2:0] = <1:1:1>) for all other FPGAs in the daisy-chain. 
After the master FPGA—the FPGA on the left in the 

diagram—finishes loading its configuration data from the 
SPI Flash PROM, the master device uses its DOUT output 
pin to supply data to the next device in the daisy-chain, on 
the falling CCLK edge.

Design Note

SPI mode daisy chains are supported only in Stepping 1 
silicon versions.

Programming Support

For successful daisy-chaining, the DONE_cycle 
configuration option must be set to cycle 5 or sooner. The 
default cycle is 4. See Table 69 and the Start-Up section for 
additional information.

 In production applications, the SPI Flash PROM is 
usually pre-programmed before it is mounted on the printed 
circuit board. The Xilinx ISE development software 
produces industry-standard programming files that can be 
used with third-party gang programmers. Consult your 
specific SPI Flash vendor for recommended production 
programming solutions.

In-system programming support is available from some 
third-party PROM programmers using a socket adapter with 
attached wires. To gain access to the SPI Flash signals, 
drive the FPGA’s PROG_B input Low with an open-drain 
driver. This action places all FPGA I/O pins, including those 
attached to the SPI Flash, in high-impedance (Hi-Z). If the 
HSWAP input is Low, the I/Os have pull-up resistors to the 
VCCO input on their respective I/O bank. The external 
programming hardware then has direct access to the SPI 
Flash pins. The programming access points are highlighted 
in the gray box in Figure 53, Figure 54, and Figure 57.

Beginning with the Xilinx ISE 8.2i software release, the 
iMPACT programming utility provides direct, in-system 
prototype programming support for STMicro M25P-series 

X-Ref Target - Figure 57

Figure 57: Daisy-Chaining from SPI Flash Mode (Stepping 1)
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Figure 66: General Configuration Process
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DC Electrical Characteristics
In this section, specifications may be designated as 
Advance, Preliminary, or Production. These terms are 
defined as follows:

Advance: Initial estimates are based on simulation, early 
characterization, and/or extrapolation from the 
characteristics of other families. Values are subject to 
change. Use as estimates, not for production.

Preliminary: Based on characterization. Further changes 
are not expected.

Production: These specifications are approved once the 
silicon has been characterized over numerous production 
lots. Parameter values are considered stable with no future 
changes expected.

All parameter limits are representative of worst-case supply 
voltage and junction temperature conditions. Unless 
otherwise noted, the published parameter values apply 
to all Spartan®-3E devices. AC and DC characteristics 
are specified using the same numbers for both 
commercial and industrial grades.

Absolute Maximum Ratings

Stresses beyond those listed under Table 73, Absolute 
Maximum Ratings may cause permanent damage to the 
device. These are stress ratings only; functional operation 
of the device at these or any other conditions beyond those 
listed under the Recommended Operating Conditions is not 
implied. Exposure to absolute maximum conditions for 
extended periods of time adversely affects device reliability.

155
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Table  73: Absolute Maximum Ratings

Symbol Description Conditions Min Max Units

VCCINT Internal supply voltage –0.5 1.32 V

VCCAUX Auxiliary supply voltage –0.5 3.00 V

VCCO Output driver supply voltage –0.5 3.75 V

VREF Input reference voltage –0.5 VCCO + 0.5(1) V

VIN
(1,2,3,4) Voltage applied to all User I/O pins and 

Dual-Purpose pins
Driver in a 
high-impedance 
state

Commercial –0.95 4.4 V

Industrial –0.85 4.3 V

Voltage applied to all Dedicated pins All temp. ranges –0.5 VCCAUX+ 0.5(3) V

IIK Input clamp current per I/O pin –0.5 V < VIN < (VCCO + 0.5 V) – ±100 mA

VESD Electrostatic Discharge Voltage Human body model – ±2000 V

Charged device model – ±500 V

Machine model – ±200 V

TJ Junction temperature – 125 °C

TSTG Storage temperature –65 150 °C

Notes: 
1. Each of the User I/O and Dual-Purpose pins is associated with one of the four banks’ VCCO rails. Keeping VIN within 500 mV of the 

associated VCCO rails or ground rail ensures that the internal diode junctions do not turn on. Table 77 specifies the VCCO range used to 
evaluate the maximum VIN voltage. 

2. Input voltages outside the -0.5V to VCCO + 0.5V (or VCCAUX + 0.5V) voltage range are require the IIK input diode clamp diode rating is met 
and no more than 100 pins exceed the range simultaneously. Prolonged exposure to such current may compromise device reliability. A 
sustained current of 10 mA will not compromise device reliability. See XAPP459: Eliminating I/O Coupling Effects when Interfacing 
Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3 Families for more details.

3. All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the VCCAUX rail (2.5V). Meeting the VIN max limit ensures 
that the internal diode junctions that exist between each of these pins and the VCCAUX rail do not turn on. Table 77 specifies the VCCAUX 
range used to evaluate the maximum VIN voltage. As long as the VIN max specification is met, oxide stress is not possible.

4. See XAPP459: Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3 
Families.

5. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow 
Guidelines for Pb-Free Packages. 

http://www.xilinx.com/support/documentation/application_notes/xapp459.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp459.pdf
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug112.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp427.pdf
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X-Ref Target - Figure 70

Figure 70: Differential Output Voltages

Table  83: DC Characteristics of User I/Os Using Differential Signal Standards

IOSTANDARD 
Attribute

VOD ΔVOD VOCM ΔVOCM VOH VOL

Min 
(mV)

Typ 
(mV)

Max 
(mV)

Min 
(mV)

Max 
(mV)

Min
(V)

Typ 
(V)

Max 
(V)

Min 
(mV)

Max 
(mV)

Min
(V)

Max 
(V)

LVDS_25 250 350 450 – – 1.125 – 1.375 – – – –

BLVDS_25 250 350 450 – – – 1.20 – – – – –

MINI_LVDS_25 300 – 600 – 50 1.0 – 1.4 – 50 – –

RSDS_25 100 – 400 – – 1.1 – 1.4 – – – –

DIFF_HSTL_I_18 – – – – – – – – – – VCCO – 0.4 0.4

DIFF_HSTL_III_18 – – – – – – – – – – VCCO – 0.4 0.4

DIFF_SSTL18_I – – – – – – – – – – VTT + 0.475 VTT – 0.475

DIFF_SSTL2_I – – – – – – – – – – VTT + 0.61 VTT – 0.61

Notes: 
1. The numbers in this table are based on the conditions set forth in Table 77 and Table 82.
2. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ω across the N and P pins of the 

differential signal pair. The exception is for BLVDS, shown in Figure 71.
3. At any given time, no more than two of the following differential output standards may be assigned to an I/O bank: LVDS_25, RSDS_25, 

MINI_LVDS_25

X-Ref Target - Figure 71

Figure 71: External Termination Resistors for BLVDS Transmitter and BLVDS Receiver
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Switching Characteristics
All Spartan-3E FPGAs ship in two speed grades: -4 and the 
higher performance -5. Switching characteristics in this 
document may be designated as Advance, Preliminary, or 
Production, as shown in Table 84. Each category is defined 
as follows:

Advance: These specifications are based on simulations 
only and are typically available soon after establishing 
FPGA specifications. Although speed grades with this 
designation are considered relatively stable and 
conservative, some under-reporting might still occur.

Preliminary: These specifications are based on complete 
early silicon characterization. Devices and speed grades 
with this designation are intended to give a better indication 
of the expected performance of production silicon. The 
probability of under-reporting preliminary delays is greatly 
reduced compared to Advance data.

Production: These specifications are approved once 
enough production silicon of a particular device family 
member has been characterized to provide full correlation 
between speed files and devices over numerous production 
lots. There is no under-reporting of delays, and customers 
receive formal notification of any subsequent changes. 
Typically, the slowest speed grades transition to Production 
before faster speed grades.

Software Version Requirements

Production-quality systems must use FPGA designs 
compiled using a speed file designated as PRODUCTION 
status. FPGAs designs using a less mature speed file 
designation should only be used during system prototyping 
or pre-production qualification. FPGA designs with speed 
files designated as Advance or Preliminary should not be 
used in a production-quality system.

Whenever a speed file designation changes, as a device 
matures toward Production status, rerun the latest Xilinx 
ISE software on the FPGA design to ensure that the FPGA 
design incorporates the latest timing information and 
software updates.

All parameter limits are representative of worst-case supply 
voltage and junction temperature conditions. Unless 
otherwise noted, the published parameter values apply 
to all Spartan-3E devices. AC and DC characteristics 
are specified using the same numbers for both 
commercial and industrial grades. 

Create a Xilinx user account and sign up to receive 
automatic e-mail notification whenever this data sheet or 
the associated user guides are updated.

Sign Up for Alerts on Xilinx.com
https://secure.xilinx.com/webreg/register.do
?group=myprofile&languageID=1

Timing parameters and their representative values are 
selected for inclusion below either because they are 
important as general design requirements or they indicate 
fundamental device performance characteristics. The 
Spartan-3E speed files (v1.27), part of the Xilinx 
Development Software, are the original source for many but 
not all of the values. The speed grade designations for 
these files are shown in Table 84. For more complete, more 
precise, and worst-case data, use the values reported by 
the Xilinx static timing analyzer (TRACE in the Xilinx 
development software) and back-annotated to the 
simulation netlist.

Table 85 provides the history of the Spartan-3E speed files 
since all devices reached Production status.

Table  84: Spartan-3E v1.27 Speed Grade Designations

Device Advance Preliminary Production

XC3S100E -MIN, -4, -5

XC3S250E -MIN, -4, -5

XC3S500E -MIN, -4, -5

XC3S1200E -MIN, -4, -5

XC3S1600E -MIN, -4, -5

Table  85: Spartan-3E Speed File Version History

Version ISE 
Release Description

1.27 9.2.03i Added XA Automotive.

1.26 8.2.02i Added -0/-MIN speed grade, which 
includes minimum values.

1.25 8.2.01i Added XA Automotive devices to speed 
file. Improved model for left and right 
DCMs.

1.23 8.2i Updated input setup/hold values based 
on default IFD_DELAY_VALUE 
settings.

1.21 8.1.03i All Spartan-3E FPGAs and all speed 
grades elevated to Production status.

http://www.xilinx.com
https://secure.xilinx.com/webreg/register.do?group=myprofile&languageID=1
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Simultaneously Switching Output Guidelines

This section provides guidelines for the recommended 
maximum allowable number of Simultaneous Switching 
Outputs (SSOs). These guidelines describe the maximum 
number of user I/O pins of a given output signal standard 
that should simultaneously switch in the same direction, 
while maintaining a safe level of switching noise. Meeting 
these guidelines for the stated test conditions ensures that 
the FPGA operates free from the adverse effects of ground 
and power bounce.

Ground or power bounce occurs when a large number of 
outputs simultaneously switch in the same direction. The 
output drive transistors all conduct current to a common 
voltage rail. Low-to-High transitions conduct to the VCCO 
rail; High-to-Low transitions conduct to the GND rail. The 
resulting cumulative current transient induces a voltage 
difference across the inductance that exists between the die 
pad and the power supply or ground return. The inductance 
is associated with bonding wires, the package lead frame, 
and any other signal routing inside the package. Other 
variables contribute to SSO noise levels, including stray 
inductance on the PCB as well as capacitive loading at 
receivers. Any SSO-induced voltage consequently affects 
internal switching noise margins and ultimately signal 
quality.

Table 96 and Table 97 provide the essential SSO 
guidelines. For each device/package combination, Table 96 
provides the number of equivalent VCCO/GND pairs. The 

equivalent number of pairs is based on characterization and 
might not match the physical number of pairs. For each 
output signal standard and drive strength, Table 97 
recommends the maximum number of SSOs, switching in 
the same direction, allowed per VCCO/GND pair within an 
I/O bank. The guidelines in Table 97 are categorized by 
package style. Multiply the appropriate numbers from 
Table 96 and Table 97 to calculate the maximum number of 
SSOs allowed within an I/O bank. Exceeding these SSO 
guidelines might result in increased power or ground 
bounce, degraded signal integrity, or increased system jitter.

SSOMAX/IO Bank = Table 96 x Table 97

The recommended maximum SSO values assumes that the 
FPGA is soldered on the printed circuit board and that the 
board uses sound design practices. The SSO values do not 
apply for FPGAs mounted in sockets, due to the lead 
inductance introduced by the socket.

The number of SSOs allowed for quad-flat packages (VQ, 
TQ, PQ) is lower than for ball grid array packages (FG) due 
to the larger lead inductance of the quad-flat packages. The 
results for chip-scale packaging (CP132) are better than 
quad-flat packaging but not as high as for ball grid array 
packaging. Ball grid array packages are recommended for 
applications with a large number of simultaneously 
switching outputs.

 

Table  96: Equivalent VCCO/GND Pairs per Bank

Device
Package Style (including Pb-free)

VQ100 CP132 TQ144 PQ208 FT256 FG320 FG400 FG484

XC3S100E 2 2 2 - - - - -

XC3S250E 2 2 2 3 4 - - -

XC3S500E 2 2 - 3 4 5 - -

XC3S1200E - - - - 4 5 6 -

XC3S1600E - - - - - 5 6 7

http://www.xilinx.com
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Table  97: Recommended Number of Simultaneously 
Switching Outputs per VCCO/GND Pair

Signal Standard
(IOSTANDARD)

Package Type

VQ
100

TQ
144

PQ
208

CP
132

FT256
FG320
FG400
FG484

Single-Ended Standards

LVTTL Slow 2 34 20 19 52 60

4 17 10 10 26 41

6 17 10 7 26 29

8 8 6 6 13 22

12 8 6 5 13 13

16 5 5 5 6 11

Fast 2 17 17 17 26 34

4 9 9 9 13 20

6 7 7 7 13 15

8 6 6 6 6 12

12 5 5 5 6 10

16 5 5 5 5 9

LVCMOS33 Slow 2 34 20 20 52 76

4 17 10 10 26 46

6 17 10 7 26 27

8 8 6 6 13 20

12 8 6 5 13 13

16 5 5 5 6 10

Fast 2 17 17 17 26 44

4 8 8 8 13 26

6 8 6 6 13 16

8 6 6 6 6 12

12 5 5 5 6 10

16 8 8 5 5 8

LVCMOS25 Slow 2 28 16 16 42 76

4 13 10 10 19 46

6 13 7 7 19 33

8 6 6 6 9 24

12 6 6 6 9 18

Fast 2 17 16 16 26 42

4 9 9 9 13 20

6 9 7 7 13 15

8 6 6 6 6 13

12 5 5 5 6 11

LVCMOS18 Slow 2 19 11 8 29 64

4 13 7 6 19 34

6 6 5 5 9 22

8 6 4 4 9 18

Fast 2 13 8 8 19 36

4 8 5 5 13 21

6 4 4 4 6 13

8 4 4 4 6 10

LVCMOS15 Slow 2 16 10 10 19 55

4 8 7 7 9 31

6 6 5 5 9 18

Fast 2 9 9 9 13 25

4 7 7 7 7 16

6 5 5 5 5 13

LVCMOS12 Slow 2 17 11 11 16 55

Fast 2 10 10 10 10 31

PCI33_3 8 8 8 16 16

PCI66_3 8 8 8 13 13

PCIX 7 7 7 11 11

HSTL_I_18 10 10 10 16 17

HSTL_III_18 10 10 10 16 16

SSTL18_I 9 9 9 15 15

SSTL2_I 12 12 12 18 18

Differential Standards (Number of I/O Pairs or Channels)

LVDS_25 6 6 6 12 20

BLVDS_25 4 4 4 4 4

MINI_LVDS_25 6 6 6 12 20

LVPECL_25 Input Only

RSDS_25 6 6 6 12 20

DIFF_HSTL_I_18 5 5 5 8 8

DIFF_HSTL_IIII_18 5 5 5 8 8

DIFF_SSTL18_I 4 4 4 7 7

DIFF_SSTL2_I 6 6 6 9 8

Notes: 
1. The numbers in this table are recommendations that assume 

sound board layout practice. This table assumes the following 
parasitic factors: combined PCB trace and land inductance per 
VCCO and GND pin of 1.0 nH, receiver capacitive load of 15 pF. 
Test limits are the VIL/VIH voltage limits for the respective I/O 
standard.

2. The PQ208 results are based on physical measurements of a 
PQ208 package soldered to a typical printed circuit board. All 
other results are based on worst-case simulation and an 
interpolation of the PQ208 physical results.

3. If more than one signal standard is assigned to the I/Os of a given 
bank, refer to XAPP689: Managing Ground Bounce in Large 
FPGAs for information on how to perform weighted average SSO 
calculations.

Table  97: Recommended Number of Simultaneously 
Switching Outputs per VCCO/GND Pair (Cont’d)

Signal Standard
(IOSTANDARD)

Package Type

VQ
100

TQ
144

PQ
208

CP
132

FT256
FG320
FG400
FG484

http://www.xilinx.com
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18 x 18 Embedded Multiplier Timing

Table  102: 18 x 18 Embedded Multiplier Timing

Symbol Description

Speed Grade

Units-5 -4

Min Max Min Max

Combinatorial Delay

TMULT Combinatorial multiplier propagation delay from the A and B inputs 
to the P outputs, assuming 18-bit inputs and a 36-bit product 
(AREG, BREG, and PREG registers unused)

- 4.34(1) - 4.88(1) ns

Clock-to-Output Times

TMSCKP_P Clock-to-output delay from the active transition of the CLK input to 
valid data appearing on the P outputs when using the PREG 
register(2)

- 0.98 - 1.10 ns

TMSCKP_A
TMSCKP_B

Clock-to-output delay from the active transition of the CLK input to 
valid data appearing on the P outputs when using either the AREG 
or BREG register(3)

- 4.42 - 4.97 ns

Setup Times

TMSDCK_P Data setup time at the A or B input before the active transition at the 
CLK when using only the PREG output register (AREG, BREG 
registers unused)(2)

3.54 - 3.98 - ns

TMSDCK_A Data setup time at the A input before the active transition at the 
CLK when using the AREG input register(3) 0.20 - 0.23 - ns

TMSDCK_B Data setup time at the B input before the active transition at the 
CLK when using the BREG input register(3) 0.35 - 0.39 - ns

Hold Times

TMSCKD_P Data hold time at the A or B input after the active transition at the 
CLK when using only the PREG output register (AREG, BREG 
registers unused)(2)

–0.97 - –0.97 - ns

TMSCKD_A Data hold time at the A input after the active transition at the CLK 
when using the AREG input register(3) 0.03 - 0.04 - ns

TMSCKD_B Data hold time at the B input after the active transition at the CLK 
when using the BREG input register(3) 0.04 - 0.05 - ns

Clock Frequency

FMULT Internal operating frequency for a two-stage 18x18 multiplier using 
the AREG and BREG input registers and the PREG output 
register(1)

0 270 0 240 MHz

Notes: 
1. Combinatorial delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.
2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.
3. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.

http://www.xilinx.com


Spartan-3 FPGA Family: DC and Switching Characteristics

DS312 (4.0) October 29, 2012 www.xilinx.com
Product Specification 141

PRODUCT NOT RECOMMENDED FOR NEW DESIGNS

Digital Frequency Synthesizer (DFS)

Phase Alignment(4)

CLKIN_CLKFB_PHASE Phase offset between the CLKIN and CLKFB 
inputs

All - ±200 - ±200 ps

CLKOUT_PHASE_DLL Phase offset between DLL 
outputs

CLK0 to CLK2X
(not CLK2X180)

- ±[1% of 
CLKIN 
period
+ 100]

- ±[1% of 
CLKIN 
period
+ 100]

ps

All others - ±[1% of 
CLKIN 
period
+ 200]

- ±[1% of 
CLKIN 
period
+ 200]

ps

Lock Time

LOCK_DLL(3) When using the DLL alone: 
The time from deassertion at 
the DCM’s Reset input to the 
rising transition at its 
LOCKED output. When the 
DCM is locked, the CLKIN and 
CLKFB signals are in phase

5 MHz ≤ FCLKIN 
≤ 15 MHz

All - 5 - 5 ms

FCLKIN > 15 MHz - 600 - 600 μs

Delay Lines

DCM_DELAY_STEP Finest delay resolution All 20 40 20 40 ps

Notes: 
1. The numbers in this table are based on the operating conditions set forth in Table 77 and Table 104.
2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. 

Example: The data sheet specifies a maximum jitter of ±[1% of CLKIN period + 150]. Assume the CLKIN frequency is 100 MHz. The 
equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] 
= ±250 ps.

Table  105: Switching Characteristics for the DLL (Cont’d)

Symbol Description Device

Speed Grade

Units-5 -4

Min Max Min Max

Table  106: Recommended Operating Conditions for the DFS

Symbol Description

Speed Grade

Units-5 -4

Min Max Min Max

Input Frequency Ranges(2)

FCLKIN CLKIN_FREQ_FX Frequency for the CLKIN input 0.200 333(4) 0.200 333(4) MHz

Input Clock Jitter Tolerance(3)

CLKIN_CYC_JITT_FX_LF Cycle-to-cycle jitter at the 
CLKIN input, based on CLKFX 
output frequency

FCLKFX ≤ 150 MHz - ±300 - ±300 ps

CLKIN_CYC_JITT_FX_HF FCLKFX > 150 MHz - ±150 - ±150 ps

CLKIN_PER_JITT_FX Period jitter at the CLKIN input - ±1 - ±1 ns

Notes: 
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 104.
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.
4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming 

clock frequency by two as it enters the DCM.

http://www.xilinx.com
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Table  119: Configuration Timing Requirements for Attached SPI Serial Flash

Symbol Description Requirement Units

TCCS SPI serial Flash PROM chip-select time ns

TDSU SPI serial Flash PROM data input setup time ns

TDH SPI serial Flash PROM data input hold time ns

TV SPI serial Flash PROM data clock-to-output time ns

fC or fR Maximum SPI serial Flash PROM clock frequency (also depends on 
specific read command used)

MHz

Notes: 
1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA provides the CCLK frequency. The post 

configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.
2. Subtract additional printed circuit board routing delay as required by the application.

TCCS TMCCL1 TCCO–≤

TDSU TMCCL1 TCCO–≤

TDH TMCCH 1≤

TV TMCCLn TDCC–≤

fC
1

TCCLKn min( )
-------------------------------≥
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Spartan-3 FPGA Family: Pinout Descriptions

DS312 (4.0) October 29, 2012 www.xilinx.com
Product Specification 158

PRODUCT NOT RECOMMENDED FOR NEW DESIGNS

Package Overview
Table 125 shows the eight low-cost, space-saving 
production package styles for the Spartan-3E family. Each 
package style is available as a standard and an 
environmentally friendly lead-free (Pb-free) option. The 
Pb-free packages include an extra ‘G’ in the package style 
name. For example, the standard “VQ100” package 
becomes “VQG100” when ordered as the Pb-free option. 
The mechanical dimensions of the standard and Pb-free 

packages are similar, as shown in the mechanical drawings 
provided in Table 127. 

Not all Spartan-3E densities are available in all packages. 
For a specific package, however, there is a common 
footprint that supports all the devices available in that 
package. See the footprint diagrams that follow.

For additional package information, see UG112: Device 
Package User Guide.

Selecting the Right Package Option

Spartan-3E FPGAs are available in both quad-flat pack 
(QFP) and ball grid array (BGA) packaging options. While 
QFP packaging offers the lowest absolute cost, the BGA 

packages are superior in almost every other aspect, as 
summarized in Table 126. Consequently, Xilinx 
recommends using BGA packaging whenever possible.

Table  125: Spartan-3E Family Package Options

Package Leads Type Maximum 
I/O

Lead 
Pitch 
(mm)

Footprint 
Area (mm)

Height 
(mm)

Mass(1)

(g)

VQ100 / VQG100 100 Very-thin Quad Flat Pack (VQFP) 66 0.5 16 x 16 1.20 0.6

CP132 / CPG132 132 Chip-Scale Package (CSP) 92 0.5 8.1 x 8.1 1.10 0.1

TQ144 / TQG144 144 Thin Quad Flat Pack (TQFP) 108 0.5 22 x 22 1.60 1.4

PQ208 / PQG208 208 Plastic Quad Flat Pack (PQFP) 158 0.5 30.6 x 30.6 4.10  5.3

FT256 / FTG256 256 Fine-pitch, Thin Ball Grid Array (FBGA) 190 1.0 17 x 17 1.55 0.9

FG320 / FGG320 320 Fine-pitch Ball Grid Array (FBGA) 250 1.0 19 x 19 2.00 1.4

FG400 / FGG400 400 Fine-pitch Ball Grid Array (FBGA) 304 1.0 21 x 21 2.43 2.2

FG484 / FGG484 484 Fine-pitch Ball Grid Array (FBGA) 376 1.0 23 x 23 2.60 2.2

Notes: 
1. Package mass is ±10%.

Table  126: QFP and BGA Comparison

Characteristic Quad Flat Pack (QFP) Ball Grid Array (BGA)

Maximum User I/O 158 376

Packing Density (Logic/Area) Good Better

Signal Integrity Fair Better

Simultaneous Switching Output (SSO) Support Fair Better

Thermal Dissipation Fair Better

Minimum Printed Circuit Board (PCB) Layers 4 4-6

Hand Assembly/Rework Possible Difficult

http://www.xilinx.com/support/documentation/user_guides/ug112.pdf
http://www.xilinx.com
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Footprint Migration Differences

Table 136 summarizes any footprint and functionality 
differences between the XC3S100E, the XC3S250E, and 
the XC3S500E FPGAs that may affect easy migration 
between devices in the CP132 package. There are 14 such 
balls. All other pins not listed in Table 136 unconditionally 
migrate between Spartan-3E devices available in the 
CP132 package.

The XC3S100E is duplicated on both the left and right sides 
of the table to show migrations to and from the XC3S250E 
and the XC3S500E. The arrows indicate the direction for 
easy migration. A double-ended arrow () indicates that 

the two pins have identical functionality. A left-facing arrow 
() indicates that the pin on the device on the right 
unconditionally migrates to the pin on the device on the left. 
It may be possible to migrate the opposite direction 
depending on the I/O configuration. For example, an I/O pin 
(Type = I/O) can migrate to an input-only pin 
(Type = INPUT) if the I/O pin is configured as an input.

The XC3S100E FPGA in the CP132 package has four fewer 
BPI-mode address lines than the XC3S250E and 
XC3S500E.

Table  136: CP132 Footprint Migration Differences

CP132 
Ball Bank XC3S100E 

Type Migration XC3S250E 
Type Migration XC3S500E 

Type Migration XC3S100E 
Type

A12 0 N.C.  I/O  I/O  N.C.

B4 0 INPUT  I/O  I/O  INPUT

B11 0 N.C.  I/O  I/O  N.C.

B12 0 N.C.  I/O  I/O  N.C.

C4 0 N.C.  I/O  I/O  N.C.

C11 0 INPUT  I/O  I/O  INPUT

D1 3 N.C.  I/O  I/O  N.C.

D2 3 I/O  I/O (Diff)  I/O (Diff)  I/O

K3 3 VREF(INPUT)  VREF(I/O)  VREF(I/O)  VREF(INPUT)

M9 2 N.C.  DUAL  DUAL  N.C.

M10 2 N.C.  DUAL  DUAL  N.C.

N9 2 N.C.  DUAL  DUAL  N.C.

N10 2 N.C.  DUAL  DUAL  N.C.

P11 2 VREF(INPUT)  VREF(I/O)  VREF(I/O)  VREF(INPUT)

DIFFERENCES 14 0 14

Legend:

 This pin is identical on the device on the left and the right.

 This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction may be 
possible depending on how the pin is configured for the device on the right.

 This pin can unconditionally migrate from the device on the right to the device on the left. Migration in the other direction may be 
possible depending on how the pin is configured for the device on the left.

http://www.xilinx.com


Spartan-3 FPGA Family: Pinout Descriptions

DS312 (4.0) October 29, 2012 www.xilinx.com
Product Specification 175

PRODUCT NOT RECOMMENDED FOR NEW DESIGNS

2 IP IP P38 INPUT

2 IP IP P41 INPUT

2 IP IP P69 INPUT

2 IP_L03N_2/VREF_2 IP_L03N_2/VREF_2 P48 VREF

2 IP_L03P_2 IP_L03P_2 P47 INPUT

2 IP_L06N_2/M2/GCLK1 IP_L06N_2/M2/GCLK1 P57 DUAL/GCLK

2 IP_L06P_2/RDWR_B/GCLK0 IP_L06P_2/RDWR_B/GCLK0 P56 DUAL/GCLK

2 VCCO_2 VCCO_2 P42 VCCO

2 VCCO_2 VCCO_2 P49 VCCO

2 VCCO_2 VCCO_2 P64 VCCO

3 IP/VREF_3 IO/VREF_3 P31 100E: VREF(INPUT)
250E: VREF(I/O)

3 IO_L01N_3 IO_L01N_3 P3 I/O

3 IO_L01P_3 IO_L01P_3 P2 I/O

3 IO_L02N_3/VREF_3 IO_L02N_3/VREF_3 P5 VREF

3 IO_L02P_3 IO_L02P_3 P4 I/O

3 IO_L03N_3 IO_L03N_3 P8 I/O

3 IO_L03P_3 IO_L03P_3 P7 I/O

3 IO_L04N_3/LHCLK1 IO_L04N_3/LHCLK1 P15 LHCLK

3 IO_L04P_3/LHCLK0 IO_L04P_3/LHCLK0 P14 LHCLK

3 IO_L05N_3/LHCLK3/IRDY2 IO_L05N_3/LHCLK3 P17 LHCLK

3 IO_L05P_3/LHCLK2 IO_L05P_3/LHCLK2 P16 LHCLK

3 IO_L06N_3/LHCLK5 IO_L06N_3/LHCLK5 P21 LHCLK

3 IO_L06P_3/LHCLK4/TRDY2 IO_L06P_3/LHCLK4 P20 LHCLK

3 IO_L07N_3/LHCLK7 IO_L07N_3/LHCLK7 P23 LHCLK

3 IO_L07P_3/LHCLK6 IO_L07P_3/LHCLK6 P22 LHCLK

3 IO_L08N_3 IO_L08N_3 P26 I/O

3 IO_L08P_3 IO_L08P_3 P25 I/O

3 IO_L09N_3 IO_L09N_3 P33 I/O

3 IO_L09P_3 IO_L09P_3 P32 I/O

3 IO_L10N_3 IO_L10N_3 P35 I/O

3 IO_L10P_3 IO_L10P_3 P34 I/O

3 IP IP P6 INPUT

3 IO IP P10 100E: I/O
250E: INPUT

3 IP IP P18 INPUT

3 IP IP P24 INPUT

3 IO IP P29 100E: I/O
250E: INPUT

3 IP IP P36 INPUT

3 IP/VREF_3 IP/VREF_3 P12 VREF

3 VCCO_3 VCCO_3 P13 VCCO

3 VCCO_3 VCCO_3 P28 VCCO

GND GND GND P11 GND

GND GND GND P19 GND

Table  137: TQ144 Package Pinout (Cont’d)

Bank XC3S100E Pin Name XC3S250E Pin Name TQ144 Pin Type
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User I/Os by Bank 

Table 138 and Table 139 indicate how the 108 available 
user-I/O pins are distributed between the four I/O banks on 
the TQ144 package.

Footprint Migration Differences

Table 140 summarizes any footprint and functionality 
differences between the XC3S100E and the XC3S250E 
FPGAs that may affect easy migration between devices. 
There are four such pins. All other pins not listed in 
Table 140 unconditionally migrate between Spartan-3E 
devices available in the TQ144 package.

The arrows indicate the direction for easy migration. For 
example, a left-facing arrow indicates that the pin on the 
XC3S250E unconditionally migrates to the pin on the 
XC3S100E. It may be possible to migrate the opposite 
direction depending on the I/O configuration. For example, 
an I/O pin (Type = I/O) can migrate to an input-only pin 
(Type = INPUT) if the I/O pin is configured as an input. 

Table  138: User I/Os Per Bank for the XC3S100E in the TQ144 Package

Package 
Edge I/O Bank Maximum I/O

All Possible I/O Pins by Type

I/O INPUT DUAL VREF(1) CLK(2)

Top 0 26 9 6 1 2 8

Right 1 28 0 5 21 2 0(2)

Bottom 2 26 0 4 20 2 0(2)

Left 3 28 13 4 0 3 8

TOTAL 108 22 19 42 9 16

Notes: 
1. Some VREF and CLK pins are on INPUT pins.
2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table  139: User I/Os Per Bank for the XC3S250E in TQ144 Package

Package 
Edge I/O Bank Maximum I/O

All Possible I/O Pins by Type

I/O INPUT DUAL VREF(1) CLK(2)

Top 0 26 9 6 1 2 8

Right 1 28 0 5 21 2 0(2)

Bottom 2 26 0 4 20 2 0(2)

Left 3 28 11 6 0 3 8

TOTAL 108 20 21 42 9 16

Notes: 
1. Some VREF and CLK pins are on INPUT pins.
2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table  140: TQ144 Footprint Migration Differences

TQ144 Pin Bank XC3S100E Type Migration XC3S250E Type

P10 3 I/O  INPUT

P29 3 I/O  INPUT

P31 3 VREF(INPUT)  VREF(I/O)

P66 2 VREF(INPUT)  VREF(I/O)

DIFFERENCES 4

Legend:

 This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction may 
be possible depending on how the pin is configured for the device on the right.

 This pin can unconditionally migrate from the device on the right to the device on the left. Migration in the other direction may 
be possible depending on how the pin is configured for the device on the left.
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