
E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	3688
Number of Logic Elements/Cells	33192
Total RAM Bits	663552
Number of I/O	304
Number of Gates	1600000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	400-BGA
Supplier Device Package	400-FBGA (21x21)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s1600e-4fg400c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

As described in Architectural Overview, the Spartan-3E FPGA architecture consists of five fundamental functional elements:

- Input/Output Blocks (IOBs)
- Configurable Logic Block (CLB) and Slice Resources
- Block RAM
- Dedicated Multipliers
- Digital Clock Managers (DCMs)

The following sections provide detailed information on each of these functions. In addition, this section also describes the following functions:

- Clocking Infrastructure
- Interconnect
- Configuration
- Powering Spartan-3E FPGAs

Input/Output Blocks (IOBs)

For additional information, refer to the "Using I/O Resources" chapter in <u>UG331</u>.

IOB Overview

The Input/Output Block (IOB) provides a programmable, unidirectional or bidirectional interface between a package pin and the FPGA's internal logic. The IOB is similar to that of the Spartan-3 family with the following differences:

- Input-only blocks are added
- Programmable input delays are added to all blocks
- DDR flip-flops can be shared between adjacent IOBs

The unidirectional input-only block has a subset of the full IOB capabilities. Thus there are no connections or logic for an output path. The following paragraphs assume that any reference to output functionality does not apply to the input-only blocks. The number of input-only blocks varies with device size, but is never more than 25% of the total IOB count.

Figure 5 is a simplified diagram of the IOB's internal structure. There are three main signal paths within the IOB: the output path, input path, and 3-state path. Each path has its own pair of storage elements that can act as either registers or latches. For more information, see Storage Element Functions. The three main signal paths are as follows:

 The input path carries data from the pad, which is bonded to a package pin, through an optional programmable delay element directly to the I line. After the delay element, there are alternate routes through a pair of storage elements to the IQ1 and IQ2 lines. The IOB outputs I, IQ1, and IQ2 lead to the FPGA's internal logic. The delay element can be set to ensure a hold time of zero (see Input Delay Functions).

- The output path, starting with the O1 and O2 lines, carries data from the FPGA's internal logic through a multiplexer and then a three-state driver to the IOB pad. In addition to this direct path, the multiplexer provides the option to insert a pair of storage elements.
- The 3-state path determines when the output driver is high impedance. The T1 and T2 lines carry data from the FPGA's internal logic through a multiplexer to the output driver. In addition to this direct path, the multiplexer provides the option to insert a pair of storage elements.
- All signal paths entering the IOB, including those associated with the storage elements, have an inverter option. Any inverter placed on these paths is automatically absorbed into the IOB.

The wide multiplexers can be used by the automatic tools or instantiated in a design using a component such as the F5MUX. The symbol, signals, and function are described in Figure 21, Table 12, and Table 13. The description is similar for the F6MUX, F7MUX, and F8MUX. Each has versions with a general output, local output, or both.

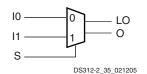


Figure 21: F5MUX with Local and General Outputs

Table 12: F5MUX Inputs and Outputs

Signal	Function
10	Input selected when S is Low
11	Input selected when S is High
S	Select input
LO	Local Output that connects to the F5 or FX CLB pins, which use local feedback to the FXIN inputs to the FiMUX for cascading
0	General Output that connects to the general-purpose combinatorial or registered outputs of the CLB

Table 13: F5MUX Function

Inputs			Outputs		
S	10	l1	0	LO	
0	1	Х	1	1	
0	0	Х	0	0	
1	Х	1	1	1	
1	Х	0	0	0	

Table 22: Port Aspect Ratios

Total Data Path Width (w bits)	DI/DO Data Bus Width (w-p bits) ⁽¹⁾	DIP/DOP Parity Bus Width (p bits)	ADDR Bus Width (r bits) ⁽²⁾	DI/DO [w-p-1:0]	DIP/DOP [p-1:0]	ADDR [r-1:0]	No. of Addressable Locations (n) ⁽³⁾	Block RAM Capacity (w*n bits) ⁽⁴⁾
1	1	0	14	[0:0]	-	[13:0]	16,384	16,384
2	2	0	13	[1:0]	-	[12:0]	8,192	16,384
4	4	0	12	[3:0]	-	[11:0]	4,096	16,384
9	8	1	11	[7:0]	[0:0]	[10:0]	2,048	18,432
18	16	2	10	[15:0]	[1:0]	[9:0]	1,024	18,432
36	32	4	9	[31:0]	[3:0]	[8:0]	512	18,432

Notes:

- 1. The width of the total data path (w) is the sum of the DI/DO bus width (w-p) and any parity bits (p).
- 2. The width selection made for the DI/DO bus determines the number of address lines (r) according to the relationship expressed as: r = 14 - [log(w-p)/log9(2)].
- 3. The number of address lines delimits the total number (n) of addressable locations or depth according to the following equation: $n = 2^{r}$.
- 4. The product of w and n yields the total block RAM capacity.

If the data bus width of Port A differs from that of Port B, the block RAM automatically performs a bus-matching function as described in Figure 31. When data is written to a port with a narrow bus and then read from a port with a wide bus, the latter port effectively combines "narrow" words to form "wide" words. Similarly, when data is written into a port with a wide bus and then read from a port with a narrow bus, the latter port divides "wide" words to form "narrow" words. Parity bits are not available if the data port width is configured as x4, x2, or x1. For example, if a x36 data word (32 data, 4 parity) is addressed as two x18 halfwords (16 data, 2 parity), the parity bits associated with each data byte are mapped within the block RAM to the appropriate parity bits. The same effect happens when the x36 data word is mapped as four x9 words.

Delay-Locked Loop (DLL)

The most basic function of the DLL component is to eliminate clock skew. The main signal path of the DLL consists of an input stage, followed by a series of discrete delay elements or *steps*, which in turn leads to an output stage. This path together with logic for phase detection and control forms a system complete with feedback as shown in Figure 41. In Spartan-3E FPGAs, the DLL is implemented using a counter-based delay line. The DLL component has two clock inputs, CLKIN and CLKFB, as well as seven clock outputs, CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as described in Table 28. The clock outputs drive simultaneously. Signals that initialize and report the state of the DLL are discussed in Status Logic.

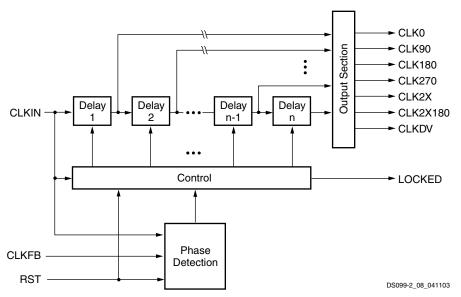


Figure 41: Simplified Functional Diagram of DLL

Table 28: DLL Signals

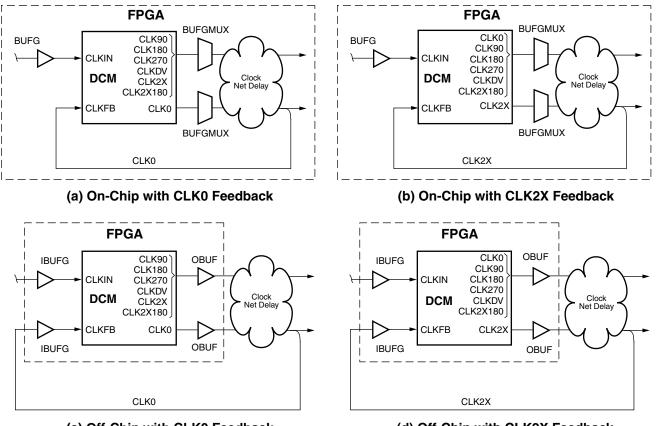
Signal	Direction	Description
CLKIN	Input	Receives the incoming clock signal. See Table 30, Table 31, and Table 32 for optimal external inputs to a DCM.
CLKFB	Input	Accepts either CLK0 or CLK2X as the feedback signal. (Set the CLK_FEEDBACK attribute accordingly).
CLK0	Output	Generates a clock signal with the same frequency and phase as CLKIN.
CLK90	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 90°.
CLK180	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 180°.
CLK270	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 270°.
CLK2X	Output	Generates a clock signal with the same phase as CLKIN, and twice the frequency.
CLK2X180	Output	Generates a clock signal with twice the frequency of CLKIN, and phase-shifted 180° with respect to CLK2X.
CLKDV	Output	Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower frequency clock signal that is phase-aligned to CLKIN.

The clock signal supplied to the CLKIN input serves as a reference waveform. The DLL seeks to align the rising-edge of feedback signal at the CLKFB input with the rising-edge of CLKIN input. When eliminating clock skew, the common approach to using the DLL is as follows: The CLK0 signal is passed through the clock distribution network that feeds all the registers it synchronizes. These registers are either

internal or external to the FPGA. After passing through the clock distribution network, the clock signal returns to the DLL via a feedback line called CLKFB. The control block inside the DLL measures the phase error between CLKFB and CLKIN. This phase error is a measure of the clock skew that the clock distribution network introduces. The control block activates the appropriate number of delay steps to

DLL Clock Output and Feedback Connections

As many as four of the nine DCM clock outputs can simultaneously drive four of the BUFGMUX buffers on the same die edge. All DCM clock outputs can simultaneously drive general routing resources, including interconnect leading to OBUF buffers.


The feedback loop is essential for DLL operation. Either the CLK0 or CLK2X outputs feed back to the CLKFB input via a BUFGMUX global buffer to eliminate the clock distribution delay. The specific BUFGMUX buffer used to feed back the CLK0 or CLK2X signal is ideally one of the BUFGMUX buffers associated with a specific DCM, as shown in Table 30, Table 31, and Table 32.

The feedback path also phase-aligns the other seven DLL outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X, or CLK2X180. The CLK_FEEDBACK attribute value must agree with the physical feedback connection. Use "1X" for CLK0 feedback and "2X" for CLK2X feedback. If the DFS unit is used stand-alone, without the DLL, then no feedback is required and set the CLK_FEEDBACK attribute to "NONE".

Two basic cases determine how to connect the DLL clock outputs and feedback connections: on-chip synchronization and off-chip synchronization, which are illustrated in Figure 42a through Figure 42d.

In the on-chip synchronization case in Figure 42a and Figure 42b, it is possible to connect any of the DLL's seven output clock signals through general routing resources to the FPGA's internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock network. As shown in Figure 42a, the feedback loop is created by routing CLK0 (or CLK2X) in Figure 42b to a global clock net, which in turn drives the CLKFB input.

In the off-chip synchronization case in Figure 42c and Figure 42d, CLK0 (or CLK2X) plus any of the DLL's other output clock signals exit the FPGA using output buffers (OBUF) to drive an external clock network plus registers on the board. As shown in Figure 42c, the feedback loop is formed by feeding CLK0 (or CLK2X) in Figure 42d back into the FPGA, then to the DCM's CLKFB input via a Global Buffer Input, specified in Table 30.

(d) Off-Chip with CLK2X Feedback

DS099-2_09_082104

Figure 42: Input Clock, Output Clock, and Feedback Connections for the DLL

The connections for the bottom-edge BUFGMUX elements are similar to the top-edge connections (see Figure 46).

🐮 XILINX.

On the left and right edges, only two clock inputs feed each pair of BUFGMUX elements.

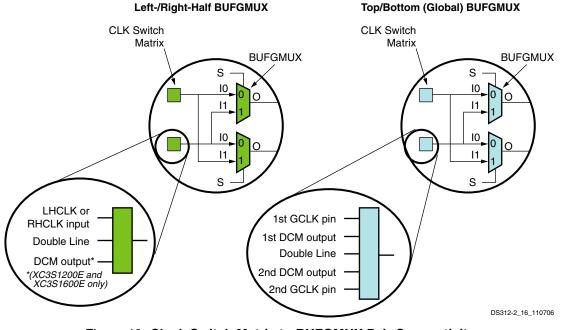


Figure 46: Clock Switch Matrix to BUFGMUX Pair Connectivity

Quadrant Clock Routing

The clock routing within the FPGA is quadrant-based, as shown in Figure 45. Each clock quadrant supports eight total clock signals, labeled 'A' through 'H' in Table 41 and Figure 47. The clock source for an individual clock line originates either from a global BUFGMUX element along the top and bottom edges or from a BUFGMUX element along the associated edge, as shown in Figure 47. The clock lines feed the synchronous resource elements (CLBs, IOBs, block RAM, multipliers, and DCMs) within the quadrant.

The four quadrants of the device are:

- Top Right (TR)
- Bottom Right (BR)
- Bottom Left (BL)
- Top Left (TL)

Note that the quadrant clock notation (TR, BR, BL, TL) is separate from that used for similar IOB placement constraints.

To estimate the quadrant location for a particular I/O, see the footprint diagrams in Module 4, Pinout Descriptions. For exact quadrant locations, use the floorplanning tool. In the QFP packages (VQ100, TQ144 and PQ208) the quadrant borders fall in the middle of each side of the package, at a GND pin. The clock inputs fall on the quadrant boundaries, as indicated in Table 42.

Table 42: QFP Package Clock Quadrant Locations

Clock Pins	Quadrant
GCLK[3:0]	BR
GCLK[7:4]	TR
GCLK[11:8]	TL
GCLK[15:12]	BL
RHCLK[3:0]	BR
RHCLK[7:4]	TR
LHCLK[3:0]	TL
LHCLK[7:4]	BL

In a few cases, a dedicated input is physically in one quadrant of the device but connects to a different clock quadrant:

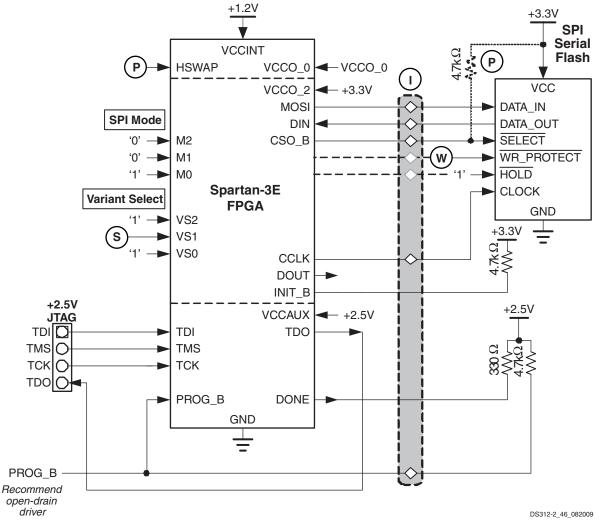
- FT256, H16 is in clock quadrant BR
- FG320, K2 is in clock quadrant BL
- FG400, L8 is in clock quadrant TL and the I/O at N11 is in clock quadrant BL
- FG484, M2 is in clock quadrant TL and L15 is in clock quadrant BR

HSWAP Value	I/O Pull-up Resistors during Configuration				
		High	Low		
0	Enabled	Pulled High via an internal pull-up resistor to the associated V_{CCO} supply. No external pull-up resistor is necessary.	Pulled Low using an appropriately sized pull-down resistor to GND. For a 2.5V or 3.3V interface: $R \le 560\Omega$. For a 1.8V interface: $R \le 1.1 k\Omega$.		
1	Disabled	Pulled High using a 3.3 to $4.7 k\Omega$ resistor to the associated V _{CCO} supply.	Pulled Low using a 3.3 to $4.7k\Omega$ resistor to GND.		

Table 49: Pull-up or Pull-down Values for HSWAP, M[2:0], and VS[2:0]

The logic level on HSWAP dictates how to define the logic levels on M[2:0] and VS[2:0], as shown in Table 49. If the application requires HSWAP to be High, the HSWAP pin is pulled High using an external $3.3k\Omega$ to $4.7k\Omega$ resistor to VCCO_0. If the application requires HSWAP to be Low during configuration, then HSWAP is either connected to GND or pulled Low using an appropriately sized external pull-down resistor to VCCO_0. The external pull-down resistor to VCCO_0. The external pull-down resistor must be strong enough to define a logic Low on HSWAP for the I/O standard used during configuration. For 2.5V or 3.3V I/O, the pull-down resistor is 560Ω or lower. For 1.8V I/O, the pull-down resistor is $1.1k\Omega$ or lower.

Once HSWAP is defined, use Table 49 to define the logic values for M[2:0] and VS[2:0].


Use the weakest external pull-up or pull-down resistor value allowed by the application. The resistor must be strong enough to define a logic Low or High during configuration. However, when driving the HSWAP, M[2:0], or VS[2:0] pins after configuration, the output driver must be strong enough to overcome the pull-up or pull-down resistor value and generate the appropriate logic levels. For example, to overcome a 560 Ω pull-down resistor, a 3.3V FPGA I/O pin must use a 6 mA or stronger driver.

SPI Serial Flash Mode

For additional information, refer to the "Master SPI Mode" chapter in UG332.

In SPI Serial Flash mode (M[2:0] = <0:0:1>), the Spartan-3E FPGA configures itself from an attached industry-standard SPI serial Flash PROM, as illustrated in Figure 53 and Figure 54. The FPGA supplies the CCLK output clock from its internal oscillator to the clock input of the attached SPI Flash PROM.

(S) Although SPI is a standard four-wire interface, various available SPI Flash PROMs use different command protocols. The FPGA's variant select pins, VS[2:0], define how the FPGA communicates with the SPI Flash, including which SPI Flash command the FPGA issues to start the read operation and the number of dummy bytes inserted before the FPGA expects to receive valid data from the SPI Flash. Table 53 shows the available SPI Flash PROMs expected to operate with Spartan-3E FPGAs. Other compatible devices might work but have not been tested for suitability with Spartan-3E FPGAs. All other VS[2:0] values are reserved for future use. Consult the data sheet for the desired SPI Flash device to determine its suitability. The basic timing requirements and waveforms are provided in

Serial Peripheral Interface (SPI) Configuration Timing in Module 3.

Figure 53 shows the general connection diagram for those SPI Flash PROMs that support the 0x03 READ command or the 0x0B FAST READ commands.

Figure 54 shows the connection diagram for Atmel DataFlash serial PROMs, which also use an SPI-based protocol. 'B'-series DataFlash devices are limited to FPGA applications operating over the commercial temperature range. Industrial temperature range applications must use 'C'- or 'D'-series DataFlash devices, which have a shorter DataFlash select setup time, because of the faster FPGA CCLK frequency at cold temperatures.

Daisy-Chaining

If the application requires multiple FPGAs with different configurations, then configure the FPGAs using a daisy chain, as shown in Figure 57. Daisy-chaining from a single SPI serial Flash PROM is supported in Stepping 1 devices. It is not supported in Stepping 0 devices. Use SPI Flash mode (M[2:0] = <0:0:1>) for the FPGA connected to the Platform Flash PROM and Slave Serial mode (M[2:0] = <1:1:1>) for all other FPGAs in the daisy-chain. After the master FPGA—the FPGA on the left in the diagram—finishes loading its configuration data from the SPI Flash PROM, the master device uses its DOUT output pin to supply data to the next device in the daisy-chain, on the falling CCLK edge.

Design Note

SPI mode daisy chains are supported only in Stepping 1 silicon versions.

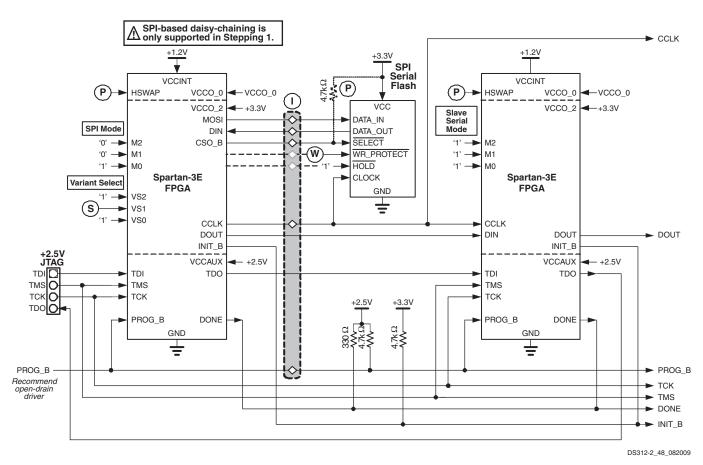
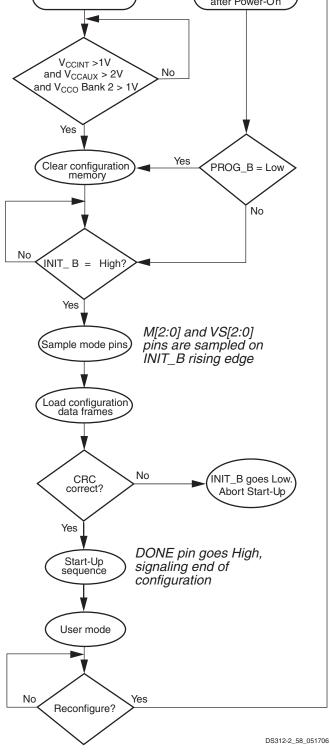


Figure 57: Daisy-Chaining from SPI Flash Mode (Stepping 1)


Programming Support

For successful daisy-chaining, the **DONE_cycle** configuration option must be set to cycle 5 or sooner. The default cycle is 4. See Table 69 and the Start-Up section for additional information.

U In production applications, the SPI Flash PROM is usually pre-programmed before it is mounted on the printed circuit board. The <u>Xilinx ISE development software</u> produces industry-standard programming files that can be used with third-party gang programmers. Consult your specific SPI Flash vendor for recommended production programming solutions. In-system programming support is available from some third-party PROM programmers using a socket adapter with attached wires. To gain access to the SPI Flash signals, drive the FPGA's PROG_B input Low with an open-drain driver. This action places all FPGA I/O pins, including those attached to the SPI Flash, in high-impedance (Hi-Z). If the HSWAP input is Low, the I/Os have pull-up resistors to the V_{CCO} input on their respective I/O bank. The external programming hardware then has direct access to the SPI Flash pins. The programming access points are highlighted in the gray box in Figure 53, Figure 54, and Figure 57.

Beginning with the Xilinx ISE 8.2i software release, the iMPACT programming utility provides direct, in-system prototype programming support for STMicro M25P-series

EXILINX.

XILINX.

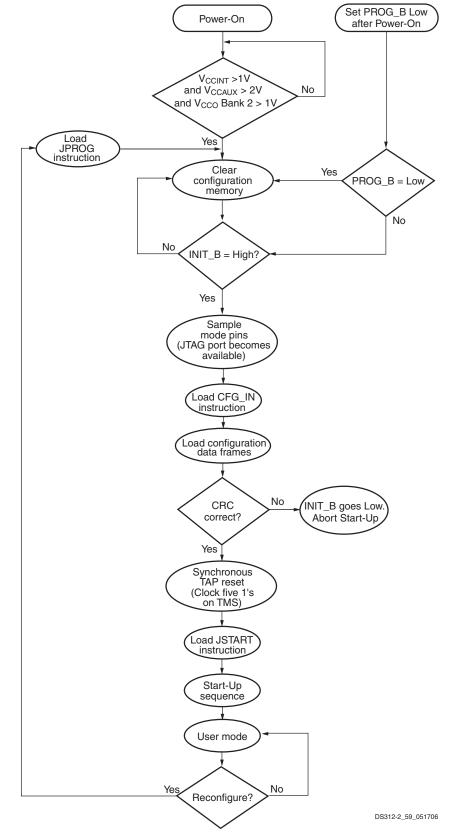


Figure 67: Boundary-Scan Configuration Flow Diagram

www.xilinx.com

Configuration Clock (CCLK) Characteristics

Table 112: Master Mode CCLK Output Period by ConfigRate Option Setting

Symbol	Description	<i>ConfigRate</i> Setting	Temperature Range	Minimum	Maximum	Units
T _{CCLK1}	CCLK clock period by ConfigRate setting	1 (power-on value and	Commercial	570	1,250	ns
CCLK1	Comgnate setting	default value)	Industrial	485	1,230	ns
т		3	Commercial	285	625	ns
T _{CCLK3}		3	Industrial	242	025	ns
т	CCLK6	6	Commercial	142	313	ns
CCLK6		0	Industrial	121		ns
т	_	12	Commercial	71.2	- 157	ns
T _{CCLK12}			Industrial	60.6		ns
Τ		25	Commercial	35.5	78.2	ns
T _{CCLK25}		25	Industrial	30.3		ns
T _{CCLK50}		50	Commercial	17.8	39.1	ns
		50	Industrial	15.1		ns

Notes:

1. Set the ConfigRate option value when generating a configuration bitstream. See Bitstream Generator (BitGen) Options in Module 2.

Symbol	Description	<i>ConfigRate</i> Setting	Temperature Range	Minimum	Maximum	Units
F _{CCLK1}	Equivalent CCLK clock frequency by <i>ConfigRate</i> setting	1 (power-on value and	Commercial	0.8	1.8	MHz
' CCLK1	by comgnate setting	default value)	Industrial	0.0	2.1	MHz
E	CLK3	3	Commercial	1.6	3.6	MHz
F _{CCLK3}		3	Industrial	1.0	4.2	MHz
Family	_	6	Commercial	3.2	7.1	MHz
F _{CCLK6}		0	Industrial	0.2	8.3	MHz
F		12	Commercial	6.4	14.1	MHz
F _{CCLK12}		12	Industrial	0.4	16.5	MHz
E		25	Commercial	12.8	28.1	MHz
F _{CCLK25}		20	Industrial	12.0	33.0	MHz
Familia		50	Commercial	25.6	56.2	MHz
F _{CCLK50}		50	Industrial	20.0	66.0	MHz


Table 114: Master Mode CCLK Output Minimum Low and High Time

Symbol	Description		ConfigRate Setting						Units
Symbol	Description	Description		3	6	12	25	50	Units
T _{MCCL,}	TMCCL, MCCHMaster mode CCLK minimum Low and High time	Commercial	276	138	69	34.5	17.1	8.5	ns
I MCCH		Industrial	235	117	58	29.3	14.5	7.3	ns

Table 115: Slave Mode CCLK Input Low and High Time

Symbol	Description	Min	Мах	Units
T _{SCCL,} T _{SCCH}	CCLK Low and High time	5	∞	ns

Serial Peripheral Interface (SPI) Configuration Timing

Shaded values indicate specifications on attached SPI Flash PROM.

ds312-3_06_110206

Figure 76: Waveforms for Serial Peripheral Interface (SPI) Configuration

Table 118: Timing for Serial Peripheral Interface (SPI) Configuration Mode

Symbol	Description	Minimum	Maximum	Units
T _{CCLK1}	Initial CCLK clock period	See Table 112		
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting	See Table 112		
T _{MINIT}	Setup time on VS[2:0] and M[2:0] mode pins before the rising edge of INIT_B	50	-	ns
T _{INITM}	Hold time on VS[2:0] and M[2:0]mode pins after the rising edge of INIT_B	0	-	ns
T _{CCO}	MOSI output valid after CCLK edge	See Table 116		
T _{DCC}	Setup time on DIN data input before CCLK edge	See Table 116		
T _{CCD}	Hold time on DIN data input after CCLK edge	See Table 116		

Table 129: Maximum User I/O by Package

		Maximum	Maximum	Maximum	All Possible I/Os by Type							
Device	Package	User I/Os and Input-Only	Input- Only	Differential Pairs	I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾	N.C.		
XC3S100E		66	7	30	16	1	21	4	24	0		
XC3S250E	VQ100	66	7	30	16	1	21	4	24	0		
XC3S500E		66	7	30	16	1	21	4	24	0		
XC3S100E		83	11	35	16	2	42	7	16	9		
XC3S250E	CP132	92	7	41	22	0	46	8	16	0		
XC3S500E		92	7	41	22	0	46	8	16	0		
XC3S100E	TO144	108	28	40	22	19	42	9	16	0		
XC3S250E	- TQ144	108 28		40	20	21	42	9	16	0		
XC3S250E	PQ208	158	32	65	58	25	46	13	16	0		
XC3S500E	PQ206	158	32	65	58	25	46	13	16	0		
XC3S250E		172	40	68	62	33	46	15	16	18		
XC3S500E	FT256	190	41	77	76	33	46	19	16	0		
XC3S1200E		190	40	77	78	31	46	19	16	0		
XC3S500E		232	56	92	102	48	46	20	16	18		
XC3S1200E	FG320	250	56	99	120	47	46	21	16	0		
XC3S1600E		250	56	99	120	47	46	21	16	0		
XC3S1200E	FC 400	304	72	124	156	62	46	24	16	0		
XC3S1600E	- FG400	304	72	124	156	62	46	24	16	0		
XC3S1600E	FG484	376	82	156	214	72	46	28	16	0		

Notes:

1. Some VREF pins are on INPUT pins. See pinout tables for details.

 All devices have 24 possible global clock and right- and left-half side clock inputs. The right-half and bottom-edge clock pins have shared functionality in some FPGA configuration modes. Consequently, some clock pins are counted in the DUAL column. 4 GCLK pins, including 2 DUAL pins, are on INPUT pins.

Electronic versions of the package pinout tables and footprints are available for download from the Xilinx website. Download the files from the following location:

http://www.xilinx.com/support/documentation/data_sheets/s3e_pin.zip

Using a spreadsheet program, the data can be sorted and reformatted according to any specific needs. Similarly, the ASCII-text file is easily parsed by most scripting programs.

Footprint Migration Differences

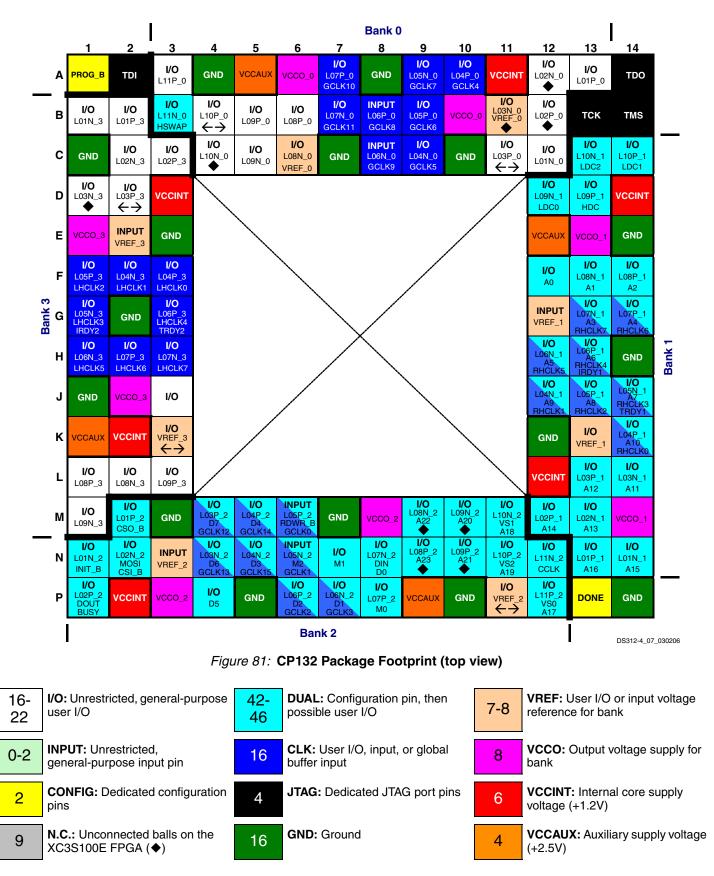
Table 136 summarizes any footprint and functionality differences between the XC3S100E, the XC3S250E, and the XC3S500E FPGAs that may affect easy migration between devices in the CP132 package. There are 14 such balls. All other pins not listed in Table 136 unconditionally migrate between Spartan-3E devices available in the CP132 package.

The XC3S100E is duplicated on both the left and right sides of the table to show migrations to and from the XC3S250E and the XC3S500E. The arrows indicate the direction for easy migration. A double-ended arrow ($\leftarrow \rightarrow$) indicates that the two pins have identical functionality. A left-facing arrow (\leftarrow) indicates that the pin on the device on the right unconditionally migrates to the pin on the device on the left. It may be possible to migrate the opposite direction depending on the I/O configuration. For example, an I/O pin (Type = I/O) can migrate to an input-only pin (Type = INPUT) if the I/O pin is configured as an input.

The XC3S100E FPGA in the CP132 package has four fewer BPI-mode address lines than the XC3S250E and XC3S500E.

CP132 Ball	Bank	XC3S100E Type	Migration	XC3S250E Type	Migration	XC3S500E Type	Migration	XC3S100E Type	
A12	0	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.	
B4	0	INPUT	\rightarrow	I/O	\leftrightarrow	I/O	÷	INPUT	
B11	0	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.	
B12	0	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.	
C4	0	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.	
C11	0	INPUT	\rightarrow	I/O	\leftrightarrow	I/O	÷	INPUT	
D1	3	N.C.	\rightarrow	I/O		I/O	÷	N.C.	
D2	3	I/O	\rightarrow	I/O (Diff)	\leftrightarrow	I/O (Diff)	÷	I/O	
K3	3	VREF(INPUT)	\rightarrow	VREF(I/O)	\leftrightarrow	VREF(I/O)	÷	VREF(INPUT)	
M9	2	N.C.	\rightarrow	DUAL	\leftrightarrow	DUAL	÷	N.C.	
M10	2	N.C.	\rightarrow	DUAL	\leftrightarrow	DUAL	÷	N.C.	
N9	2	N.C.	\rightarrow	DUAL	\leftrightarrow	DUAL	÷	N.C.	
N10	2	N.C.	\rightarrow	DUAL	\leftrightarrow	DUAL	÷	N.C.	
P11	P11 2 VREF(IN		\rightarrow	VREF(I/O)	\leftrightarrow	VREF(I/O)	÷	VREF(INPUT)	
DIFFERI	ENCES		14		0		14		

Table 136: CP132 Footprint Migration Differences


Legend:

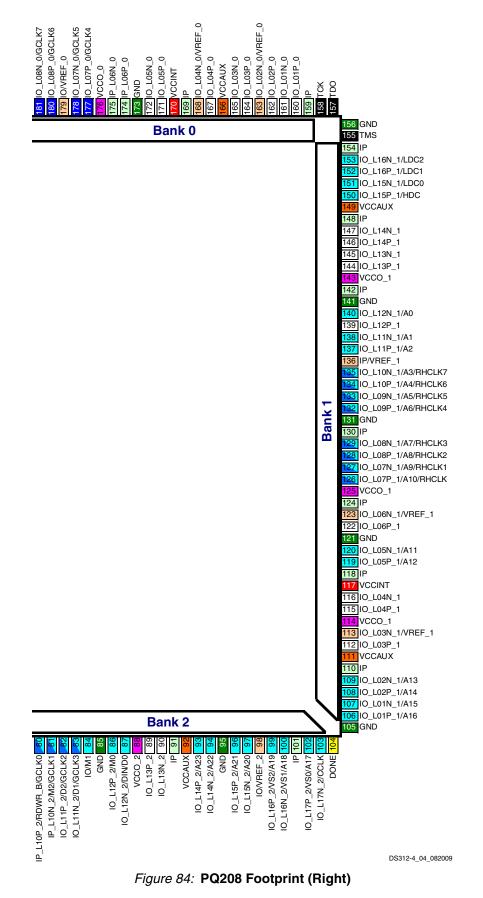
 \leftrightarrow This pin is identical on the device on the left and the right.

This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction may be possible depending on how the pin is configured for the device on the right.

+ This pin can unconditionally migrate from the device on the right to the device on the left. Migration in the other direction may be possible depending on how the pin is configured for the device on the left.

CP132 Footprint

www.xilinx.com


Table 141: PQ208 Package Pinout (Cont'd)

Bank	XC3S250E XC3S500E Pin Name	PQ208 Pin	Туре
3	IO_L14P_3	P41	I/O
3	IO_L15N_3	P48	I/O
3	IO_L15P_3	P47	I/O
3	IO_L16N_3	P50	I/O
3	IO_L16P_3	P49	I/O
3	IP	P6	INPUT
3	IP	P14	INPUT
3	IP	P26	INPUT
3	IP	P32	INPUT
3	IP	P43	INPUT
3	IP	P51	INPUT
3	IP/VREF_3	P20	VREF
3	VCCO_3	P21	VCCO
3	VCCO_3	P38	VCCO
3	VCCO_3	P46	VCCO
GND	GND	P10	GND
GND	GND	P17	GND
GND	GND	P27	GND
GND	GND	P37	GND
GND	GND	P52	GND
GND	GND	P53	GND
GND	GND	P70	GND
GND	GND	P79	GND
GND	GND	P85	GND
GND	GND	P95	GND
GND	GND	P105	GND
GND	GND	P121	GND
GND	GND	P131	GND
GND	GND	P141	GND
GND	GND	P156	GND
GND	GND	P173	GND
GND	GND	P182	GND
GND	GND	P188	GND
GND	GND	P198	GND
GND	GND	P208	GND
VCCAUX	DONE	P104	CONFIG
VCCAUX	PROG_B	P1	CONFIG
VCCAUX	тск	P158	JTAG
VCCAUX	TDI	P207	JTAG
VCCAUX	TDO	P157	JTAG
VCCAUX	TMS	P155	JTAG
VCCAUX	VCCAUX	P7	VCCAUX
VCCAUX	VCCAUX	P44	VCCAUX

Table 141: PQ208 Package Pinout (Cont'd)

Bank	XC3S250E XC3S500E Pin Name	PQ208 Pin	Туре
VCCAUX	VCCAUX	P66	VCCAUX
VCCAUX	VCCAUX	P92	VCCAUX
VCCAUX	VCCAUX	P111	VCCAUX
VCCAUX	VCCAUX	P149	VCCAUX
VCCAUX	VCCAUX	P166	VCCAUX
VCCAUX	VCCAUX	P195	VCCAUX
VCCINT	VCCINT	P13	VCCINT
VCCINT	VCCINT	P67	VCCINT
VCCINT	VCCINT	P117	VCCINT
VCCINT	VCCINT	P170	VCCINT

PQ208 Footprint (Right)

www.xilinx.com

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S500E Pin Name	XC3S1200E Pin Name	FT256 Ball	Туре	
1	IO	IO	IP	M14	250E: I/O 500E: I/O 1200E: INPUT	
1	IO/VREF_1	IP/VREF_1	IP/VREF_1	D16	250E: VREF(I/O) 500E: VREF(INPUT) 1200E: VREF(INPUT)	
1	IP/VREF_1	IP/VREF_1	IP/VREF_1	H13	VREF	
1	VCCO_1	VCCO_1	VCCO_1	E15	VCCO	
1	VCCO_1	VCCO_1	VCCO_1	G11	VCCO	
1	VCCO_1	VCCO_1	VCCO_1	K11	VCCO	
1	VCCO_1	VCCO_1	VCCO_1	M15	VCCO	
2	IP	IP	10	M7	250E: INPUT 500E: INPUT 1200E: I/O	
2	IP	IP	IO	T12	250E: INPUT 500E: INPUT 1200E: I/O	
2	IO/D5	IO/D5	IO/D5	Т8	DUAL	
2	IO/M1	IO/M1	IO/M1	T10	DUAL	
2	IO/VREF_2	IO/VREF_2	IO/VREF_2	P13	VREF	
2	IO/VREF_2	IO/VREF_2	IO/VREF_2	R4	VREF	
2	IO_L01N_2/INIT_B	IO_L01N_2/INIT_B	IO_L01N_2/INIT_B	P4	DUAL	
2	IO_L01P_2/CSO_B	IO_L01P_2/CSO_B	IO_L01P_2/CSO_B	P3	DUAL	
2	IO_L03N_2/MOSI/CSI_B	IO_L03N_2/MOSI/CSI_B	IO_L03N_2/MOSI/CSI_B	N5	DUAL	
2	IO_L03P_2/DOUT/BUSY	IO_L03P_2/DOUT/BUSY	IO_L03P_2/DOUT/BUSY	P5	DUAL	
2	IO_L04N_2	IO_L04N_2	IO_L04N_2	T5	I/O	
2	IO_L04P_2	IO_L04P_2	IO_L04P_2	T4	I/O	
2	IO_L05N_2	IO_L05N_2	IO_L05N_2	N6	I/O	
2	IO_L05P_2	IO_L05P_2	IO_L05P_2	M6	I/O	
2	IO_L06N_2	IO_L06N_2	IO_L06N_2	P6	I/O	
2	IO_L06P_2	IO_L06P_2	IO_L06P_2	R6	I/O	
2	N.C. (�)	IO_L07N_2	IO_L07N_2	P7	250E: N.C. 500E: I/O 1200E: I/O	
2	N.C. (�)	IO_L07P_2	IO_L07P_2	N7	250E: N.C. 500E: I/O 1200E: I/O	
2	IO_L09N_2/D6/GCLK13	IO_L09N_2/D6/GCLK13	IO_L09N_2/D6/GCLK13	L8	DUAL/GCLK	
2	IO_L09P_2/D7/GCLK12	IO_L09P_2/D7/GCLK12	IO_L09P_2/D7/GCLK12	M8	DUAL/GCLK	
2	IO_L10N_2/D3/GCLK15	IO_L10N_2/D3/GCLK15	IO_L10N_2/D3/GCLK15	P8	DUAL/GCLK	
2	IO_L10P_2/D4/GCLK14	IO_L10P_2/D4/GCLK14	IO_L10P_2/D4/GCLK14	N8	DUAL/GCLK	
2	IO_L12N_2/D1/GCLK3	IO_L12N_2/D1/GCLK3	IO_L12N_2/D1/GCLK3	N9	DUAL/GCLK	
2	IO_L12P_2/D2/GCLK2	IO_L12P_2/D2/GCLK2	IO_L12P_2/D2/GCLK2	P9	DUAL/GCLK	
2	IO_L13N_2/DIN/D0	IO_L13N_2/DIN/D0	IO_L13N_2/DIN/D0	M9	DUAL	
2	IO_L13P_2/M0	IO_L13P_2/M0	IO_L13P_2/M0	L9	DUAL	

www.xilinx.com

FT256 Footprint

	Bank 0 1 2 _ 3 4 5 6 7 8 9 10 11										11	12	13	14	15	16			
		A	GND	TDI	INPUT	I/O L17N_0 VREF 0	I/O L17P_0	VCCAUX	<i>i</i> /o	INPUT L10P_0 GCLK8	I/O L09N_0 GCLK7	I/O L09P_0 GCLK6	VCCAUX	1/0	I/O L03N_0 VREF 0	I/O L01N_0	тск	GND	
-	_	в	I/O L01P_3	I/O L01N_3	I/O L19N_0 HSWAP	I/O	VCCO_0	INPUT ←→	I/O L13P_0 ♦	INPUT L10N_0 GCLK9	GND	INPUT ←→	I/O L05N_0 VREF 0	VCCO_0	I/O L03P_0	I/O L01P_0	TMS	INPUT	-
		с	I/O L02P_3	I/O L02N_3 VREF_3	I/O L19P_0	I/O L18N_0	I/O L18P_0	I/O L15P_0	I/O L13N_0 ♠	I/O L11P_0 GCLK10	INPUT L07N_0	INPUT L07P_0	I/O L05P_0	INPUT L02N_0	INPUT	TDO	I/O L19N_1 LDC2	I/O L19P_1 LDC1	
		D	I/O L05P_3	INPUT	PROG_B	VCCINT	INPUT L16P_0	I/O L15N_0	I/O L14N_0 VREF 0	I/O L11N_0 GCLK11	I/O VREF_0	I/O L06P_0	I/O L04P_0	INPUT L02P_0	VCCINT	I/O L18N_1 LDC0	I/O L18P_1 HDC	INPUT VREF_1 ←→	
		E	I/O L05N_3	VCCO_3	I/O L03P_3	I/O L03N_3	VCCINT	INPUT L16N_0	I/O L14P_0	I/O L12P_0	I/O L08P_0 GCLK4	I/O L06N_0	I/O L04N_0	VCCINT	I/O L17P_1 ♠	INPUT	VCCO_1	I/O L17N_1 ♦	
		F	VCCAUX	INPUT	I/O L04P_3	I/O L04N_3 VREF_3	INPUT ←→	GND	VCCO_0	I/O L12N_0	I/O L08N_0 GCLK5	VCCO_0	GND	I/O L16N_1	I/O L16P_1	I/O L15P_1	I/O L15N_1	VCCAUX	
		G	INPUT VREF_3	I/O L07N_3	I/O L07P_3	I/O L06N_3	I/O L06P_3	VCCO_3	GND	GND	GND	GND	VCCO_1	INPUT	I/O L14P_1	I/O L14N_1 A0	I/O L13P_1 A2	I/O L13N_1 A1	
		н	INPUT	GND	I/O L09P_3 LHCLK2	I/O L09N_3 LHCLK3 IRDY2	I/O L08P_3 LHCLK0	I/O L08N_3 LHCLK1	GND	GND	GND	GND	I/O L12N_1 A3 RHCLK7	I/O L12P_1 A4 RHCLK6	INPUT VREF_1	I/O L11N_1 A5 RHCLK5	I/O L11P_1 A6 RHCLK4	INPUT	(1
	Bank	J	I/O L12P_3	I/O L10P_3 LHCLK4 TRDY2	I/O L10N_3 LHCLK5	I/O L11N_3 LHCLK7	I/O L11P_3 LHCLK6	INPUT	GND	GND	GND	GND	INPUT	INPUT	I/O L10N_1 A7 RHCLK3	I/O L10P_1 A8 RHCLK2	GND	I/O L09N_1 A9 RHCLK1	Bank
		к	I/O L12N_3	I/O L13P_3	I/O L13N_3	INPUT	I/O L15P_3	VCCO_3	GND	GND	GND	GND	VCCO_1	I/O L07N_1 A11	TRDY1 I/O L07P_1 A12	I/O L08N_1 VREF_1	I/O L08P_1	I/O L09P_1 A10 RHCLK0	
		L	VCCAUX	I/O L14N_3 VREF_3	I/O L14P_3	I/O L17N_3	I/O L15N_3	GND	VCCO_2	I/O L09N_2 D6 GCLK13	I/O L13P_2 M0	VCCO_2	GND	I/O L05P_1 ♠	I/O L05N_1 ♠	I/O L06P_1	I/O L06N_1	VCCAUX	
		м	I/O L16P_3	VCCO_3	INPUT	I/O L17P_3	VCCINT	I/O L05P_2	INPUT ←→	I/O L09P_2 D7 GCLK12	I/O L13N_2 DIN	I/O L15N_2	INPUT L17N_2	VCCINT		INPUT ←→	VCCO_1	I/O L04N_1 VREF_1	
		N	I/O L16N_3	INPUT VREF_3 ←→	INPUT	VCCINT	I/O L03N_2 MOSI CSI_B	I/O L05N_2	I/O L07P_2	I/O L10P_2 D4	D0 I/O L12N_2 D1 GCLK3	I/O L15P_2	INPUT L17P_2	I/O L18N_2 A20	VCCINT	I/O L03P_1 ♦	I/O L03N_1 VREF_1	I/O L04P_1	
		Р	I/O L18N_3	I/O L18P_3	I/O L01P_2 CSO B	I/O L01N_2 INIT B	L03P_2 DOUT BUSY	I/O L06N_2	I/O L07N_2	GCLK14 I/O L10N_2 D3 GCLK15	I/O L12P_2 D2 GCLK2	I/O L14P_2 ♠	I/O L16N_2 A22	I/O L18P_2 A21	I/O VREF_2	I/O L20P_2 VS0 A17	I/O L02N_1 A13	I/O L02P_1 A14	
		R	I/O L19N_3	I/O L19P_3	INPUT L02N_2	I/O VREF_2	VCCO_2	I/O L06P_2	INPUT L08P_2	GND	INPUT L11N_2 M2 GCLK1	I/O L14N_2 VREF_2	I/O L16P_2 A23	VCCO_2	I/O L19N_2 VS1 A18	I/O L20N_2 CCLK	I/O L01N_1 A15	I/O L01P_1 A16	
-		т	GND	INPUT	INPUT L02P_2	I/O L04P_2	I/O L04N_2	VCCAUX	INPUT L08N_2 VREF_2	I/O D5	INPUT L11P_2 RDWR_B GCLK0	I/O M1	VCCAUX	INPUT ←→	I/O L19P_2 VS2 A19	INPUT	DONE	GND	-
		•				I	I			Bank 2	COLIC				1110			DS312-4_05	101805
							Figure	9 <i>85:</i> F	T256	Packa	ge Fo	otprint	t (top v	view)					
2		CC pin		Dedica	ated co	nfigura	tion	4	JTAG:	Dedica	ated JT	AG por	t pins	8		CINT: tage (+	Internal 1.2V)	core s	upply
28		GN	ID: Gro	ound				16	VCCO bank	: Outpu	ut volta	ge supp	oly for	8		CAUX: 2.5V)	Auxilia	ry supp	ly voltage
6 ←→		pa		migratio		For flex these p		18 (♦)	Uncon	inected	pins o	n XC3S	250E						

www.xilinx.com