

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product Status	Active
Number of LABs/CLBs	3688
Number of Logic Elements/Cells	33192
Total RAM Bits	663552
Number of I/O	250
Number of Gates	1600000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	320-BGA
Supplier Device Package	320-FBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s1600e-5fg320c

Email: info@E-XFL.COM

Details

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 14: Carry Logic Functions (Cont'd)

Function	Description
CY0G	 Carry generation for top half of slice. Fixed selection of: G1 or G2 inputs to the LUT (both equal 1 when a carry is to be generated) GAND gate for multiplication BY input for carry initialization Fixed 1 or 0 input for use as a simple Boolean function
CYMUXF	Carry generation or propagation mux for bottom half of slice. Dynamic selection via CYSELF of: · CYINIT carry propagation (CYSELF = 1) · CY0F carry generation (CYSELF = 0)
CYMUXG	 Carry generation or propagation mux for top half of slice. Dynamic selection via CYSELF of: CYMUXF carry propagation (CYSELG = 1) CY0G carry generation (CYSELG = 0)
CYSELF	 Carry generation or propagation select for bottom half of slice. Fixed selection of: F-LUT output (typically XOR result) Fixed 1 to always propagate
CYSELG	 Carry generation or propagation select for top half of slice. Fixed selection of: G-LUT output (typically XOR result) Fixed 1 to always propagate
XORF	 Sum generation for bottom half of slice. Inputs from: F-LUT CYINIT carry signal from previous stage Result is sent to either the combinatorial or registered output for the top of the slice.
XORG	 Sum generation for top half of slice. Inputs from: G-LUT CYMUXF carry signal from previous stage Result is sent to either the combinatorial or registered output for the top of the slice.
FAND	 Multiplier partial product for bottom half of slice. Inputs: F-LUT F1 input F-LUT F2 input Result is sent through CY0F to become the carry generate signal into CYMUXF
GAND	 Multiplier partial product for top half of slice. Inputs: G-LUT G1 input G-LUT G2 input Result is sent through CY0G to become the carry generate signal into CYMUXG

The basic usage of the carry logic is to generate a half-sum in the LUT via an XOR function, which generates or propagates a carry out COUT via the carry mux CYMUXF (or CYMUXG), and then complete the sum with the dedicated XORF (or XORG) gate and the carry input CIN. This structure allows two bits of an arithmetic function in each slice. The CYMUXF (or CYMUXG) can be instantiated using the MUXCY element, and the XORF (or XORG) can be instantiated using the XORCY element.

The FAND (or GAND) gate is used for partial product multiplication and can be instantiated using the MULT_AND component. Partial products are generated by two-input AND gates and then added. The carry logic is efficient for the adder, but one of the inputs must be outside the LUT as shown in Figure 23.

Figure 23: Using the MUXCY and XORCY in the Carry Logic

The FAND (or GAND) gate is used to duplicate one of the partial products, while the LUT generates both partial products and the XOR function, as shown in Figure 24.

Table 46: Pin Behavior during Configuration (Cont'd)

Pin Name	Master Serial	SPI (Serial Flash)	BPI (Parallel NOR Flash)	JTAG	Slave Parallel	Slave Serial	I/O Bank ⁽³⁾
D0/DIN	DIN	DIN	D0		D0	DIN	2
RDWR_B			RDWR_B		RDWR_B		2
A23			A23				2
A22			A22				2
A21			A21				2
A20			A20				2
A19/VS2		VS2	A19				2
A18/VS1		VS1	A18				2
A17/VS0		VS0	A17				2
A16			A16				1
A15			A15				1
A14			A14				1
A13			A13				1
A12			A12				1
A11			A11				1
A10			A10				1
A9			A9				1
A8			A8				1
A7			A7				1
A6			A6				1
A5			A5				1
A4			A4				1
A3			A3				1
A2			A2				1
A1			A1				1
A0			A0				1
LDC0			LDC0				1
LDC1			LDC1				1
LDC2			LDC2				1
HDC			HDC				1

Notes:

1. Gray shaded cells represent pins that are in a high-impedance state (Hi-Z, floating) during configuration. These pins have an optional internal pull-up resistor to their respective V_{CCO} supply pin that is active throughout configuration if the HSWAP input is Low.

2. Yellow shaded cells represent pins with an internal pull-up resistor to its respective voltage supply rail that is active during configuration, regardless of the HSWAP pin.

3. Note that dual-purpose outputs are supplied by V_{CCO} , and configuration inputs are supplied by V_{CCAUX} .

The HSWAP pin itself has a pull-up resistor enabled during configuration. However, the VCCO_0 supply voltage must be applied before the pull-up resistor becomes active. If the VCCO_0 supply ramps after the VCCO_2 power supply, do not let HSWAP float; tie HSWAP to the desired logic level externally.

Spartan-3E FPGAs have only six dedicated configuration pins, including the DONE and PROG_B pins, and the four JTAG boundary-scan pins: TDI, TDO, TMS, and TCK. All other configuration pins are dual-purpose I/O pins and are available to the FPGA application after the DONE pin goes High. See <u>Start-Up</u> for additional information. Table 47 shows the default I/O standard setting for the various configuration pins during the configuration process. The configuration interface is designed primarily for 2.5V operation when the VCCO_2 (and VCCO_1 in BPI mode) connects to 2.5V.

Table 4	7: Defa	ult I/O Star	ndard Set	tting Du	ring Config-	-
uration	(VCCO_	_2 = 2.5V)				

Pin(s)	I/O Standard	Output Drive	Slew Rate	
All, including CCLK	LVCMOS25	8 mA	Slow	

HSWAP Value	I/O Pull-up Resistors	Required Resistor Value to Define Logic Level on HSWAP, M[2:0], or VS[2:0]			
		High	Low		
0	Enabled	Pulled High via an internal pull-up resistor to the associated V_{CCO} supply. No external pull-up resistor is necessary.	Pulled Low using an appropriately sized pull-down resistor to GND. For a 2.5V or 3.3V interface: $R \le 560\Omega$. For a 1.8V interface: $R \le 1.1 k\Omega$.		
1	Disabled	Pulled High using a 3.3 to $4.7 k\Omega$ resistor to the associated V _{CCO} supply.	Pulled Low using a 3.3 to $4.7k\Omega$ resistor to GND.		

Table 49: Pull-up or Pull-down Values for HSWAP, M[2:0], and VS[2:0]

The logic level on HSWAP dictates how to define the logic levels on M[2:0] and VS[2:0], as shown in Table 49. If the application requires HSWAP to be High, the HSWAP pin is pulled High using an external $3.3k\Omega$ to $4.7k\Omega$ resistor to VCCO_0. If the application requires HSWAP to be Low during configuration, then HSWAP is either connected to GND or pulled Low using an appropriately sized external pull-down resistor to VCCO_0. The external pull-down resistor to VCCO_0. The external pull-down resistor must be strong enough to define a logic Low on HSWAP for the I/O standard used during configuration. For 2.5V or 3.3V I/O, the pull-down resistor is 560Ω or lower. For 1.8V I/O, the pull-down resistor is $1.1k\Omega$ or lower.

Once HSWAP is defined, use Table 49 to define the logic values for M[2:0] and VS[2:0].

Use the weakest external pull-up or pull-down resistor value allowed by the application. The resistor must be strong enough to define a logic Low or High during configuration. However, when driving the HSWAP, M[2:0], or VS[2:0] pins after configuration, the output driver must be strong enough to overcome the pull-up or pull-down resistor value and generate the appropriate logic levels. For example, to overcome a 560 Ω pull-down resistor, a 3.3V FPGA I/O pin must use a 6 mA or stronger driver.

Master Serial Mode

For additional information, refer to the "Master Serial Mode" chapter in $\underline{\text{UG332}}$.

In Master Serial mode (M[2:0] = <0:0:0>), the Spartan-3E FPGA configures itself from an attached Xilinx Platform

Flash PROM, as illustrated in Figure 51. The FPGA supplies the CCLK output clock from its internal oscillator to the attached Platform Flash PROM. In response, the Platform Flash PROM supplies bit-serial data to the FPGA's DIN input, and the FPGA accepts this data on each rising CCLK edge.

All mode select pins, M[2:0], must be Low when sampled, when the FPGA's INIT_B output goes High. After configuration, when the FPGA's DONE output goes High, the mode select pins are available as full-featured user-I/O pins.

SPI Serial Flash Mode

For additional information, refer to the "Master SPI Mode" chapter in UG332.

In SPI Serial Flash mode (M[2:0] = <0:0:1>), the Spartan-3E FPGA configures itself from an attached industry-standard SPI serial Flash PROM, as illustrated in Figure 53 and Figure 54. The FPGA supplies the CCLK output clock from its internal oscillator to the clock input of the attached SPI Flash PROM.

(S) Although SPI is a standard four-wire interface, various available SPI Flash PROMs use different command protocols. The FPGA's variant select pins, VS[2:0], define how the FPGA communicates with the SPI Flash, including which SPI Flash command the FPGA issues to start the read operation and the number of dummy bytes inserted before the FPGA expects to receive valid data from the SPI Flash. Table 53 shows the available SPI Flash PROMs expected to operate with Spartan-3E FPGAs. Other compatible devices might work but have not been tested for suitability with Spartan-3E FPGAs. All other VS[2:0] values are reserved for future use. Consult the data sheet for the desired SPI Flash device to determine its suitability. The basic timing requirements and waveforms are provided in

Serial Peripheral Interface (SPI) Configuration Timing in Module 3.

Figure 53 shows the general connection diagram for those SPI Flash PROMs that support the 0x03 READ command or the 0x0B FAST READ commands.

Figure 54 shows the connection diagram for Atmel DataFlash serial PROMs, which also use an SPI-based protocol. 'B'-series DataFlash devices are limited to FPGA applications operating over the commercial temperature range. Industrial temperature range applications must use 'C'- or 'D'-series DataFlash devices, which have a shorter DataFlash select setup time, because of the faster FPGA CCLK frequency at cold temperatures.

iMPACT Dummy VS2 **SPI Read Command** VS1 VS0 **SPI Serial Flash Vendor SPI Flash Family** Programming Bytes Support M25Pxx Yes STMicroelectronics (ST) M25PExx/M45PExx AT45DB 'D'-Series Data Yes Flash Atmel AT26 / AT25(1) Intel **S**33 Spansion (AMD, Fujitsu) S25FLxxxA FAST READ (0x0B) Winbond (NexFlash) NX25 / W25 1 1 1 1 (see Figure 53) Macronix MX25Lxxxx SST25LFxxxA Silicon Storage Technology (SST) SST25VFxxxA Programmable Microelectronics Corp. Pm25LVxxx (PMC) AMIC Technology A25L Eon Silicon Solution, Inc. **EN25** M25Pxx STMicroelectronics (ST) Yes M25PExx/M45PExx Spansion (AMD, Fujitsu) S25FLxxxA Winbond (NexFlash) NX25 / W25 Macronix MX25Lxxxx READ (0x03) 1 0 1 0 (see Figure 53) SST25LFxxxA Silicon Storage Technology SST25VFxxxA (SST) SST25VFxxx Programmable Microelectronics Corp. Pm25LVxxx (PMC) AT45DB DataFlash READ ARRAY (0xE8) (use only 'C' or 'D' 1 1 0 4 **Atmel Corporation** Yes (see Figure 54) Series for Industrial temperature range) Others Reserved

Table 53: Variant Select Codes for Various SPI Serial Flash PROMs

Notes:

1. See iMPACT documentation for specific device support.

WRITER NOTE: Many of the URLs in this table are obsolete or otherwise broken.

This addressing flexibility allows the FPGA to share the parallel Flash PROM with an external or embedded processor. Depending on the specific processor architecture, the processor boots either from the top or bottom of memory. The FPGA is flexible and boots from the opposite end of memory from the processor. Only the processor or the FPGA can boot at any given time. The FPGA can configure first, holding the processor in reset or the processor can boot first, asserting the FPGA's PROG_B pin.

The mode select pins, M[2:0], are sampled when the FPGA's INIT_B output goes High and must be at defined logic levels during this time. After configuration, when the FPGA's DONE output goes High, the mode pins are available as full-featured user-I/O pins.

P Similarly, the FPGA's HSWAP pin must be Low to enable pull-up resistors on all user-I/O pins or High to disable the pull-up resistors. The HSWAP control must remain at a constant logic level throughout FPGA configuration. After configuration, when the FPGA's DONE output goes High, the HSWAP pin is available as full-featured user-I/O pin and is powered by the VCCO_0 supply.

The RDWR_B and CSI_B must be Low throughout the configuration process. After configuration, these pins also become user I/O.

In a single-FPGA application, the FPGA's CSO_B and CCLK pins are not used but are actively driving during the configuration process. The BUSY pin is not used but also actively drives during configuration and is available as a user I/O after configuration.

After configuration, all of the interface pins except DONE and PROG_B are available as user I/Os. Furthermore, the bidirectional SelectMAP configuration peripheral interface (see Slave Parallel Mode) is available after configuration. To continue using SelectMAP mode, set the *Persist* bitstream generator option to **Yes**. An external host can then read and verify configuration data.

The Persist option will maintain A20-A23 as configuration pins although they are not used in SelectMAP mode.

Pin Name	FPGA Direction	Description	During Configuration	After Configuration
HSWAP P	Input	User I/O Pull-Up Control . When Low during configuration, enables pull-up resistors in all I/O pins to respective I/O bank V _{CCO} input. 0: Pull-ups during configuration 1: No pull-ups	Drive at valid logic level throughout configuration.	User I/O
M[2:0]	Input	Mode Select . Selects the FPGA configuration mode. See Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins.	M2 = 0, M1 = 1. Set M0 = 0 to start at address 0, increment addresses. Set M0 = 1 to start at address 0xFFFFF and decrement addresses. Sampled when INIT_B goes High.	User I/O
CSI_B	Input	Chip Select Input. Active Low.	Must be Low throughout configuration.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
RDWR_B	Input	Read/Write Control. Active Low write enable. Read functionality typically only used after configuration, if bitstream option <i>Persist=Yes</i> .	Must be Low throughout configuration.	User I/O. If bitstream option <i>Persist=Yes</i> , becomes part of SelectMap parallel peripheral interface.
LDC0	Output	PROM Chip Enable	Connect to PROM chip-select input (CE#). FPGA drives this signal Low throughout configuration.	User I/O. If the FPGA does not access the PROM after configuration, drive this pin High to deselect the PROM. A[23:0], D[7:0], LDC[2:1], and HDC then become available as user I/O.
LDC1	Output	PROM Output Enable	Connect to the PROM output-enable input (OE#). The FPGA drives this signal Low throughout configuration.	User I/O

Table	59:	Byte-Wide	Peripheral	Interface	(BPI)	Connections
-------	-----	-----------	------------	-----------	-------	-------------

XILINX.

Figure 67: Boundary-Scan Configuration Flow Diagram

Voltage Regulators

Various power supply manufacturers offer complete power solutions for Xilinx FPGAs including some with integrated three-rail regulators specifically designed for Spartan-3 and Spartan-3E FPGAs. The Xilinx Power Corner website provides links to vendor solution guides and Xilinx power estimation and analysis tools.

Power Distribution System (PDS) Design and Decoupling/Bypass Capacitors

Good power distribution system (PDS) design is important for all FPGA designs, but especially so for high performance applications, greater than 100 MHz. Proper design results in better overall performance, lower clock and DCM jitter, and a generally more robust system. Before designing the printed circuit board (PCB) for the FPGA design, please review <u>XAPP623</u>: Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors.

Power-On Behavior

For additional power-on behavior information, including I/O behavior before and during configuration, refer to the "Sequence of Events" chapter in UG332.

Spartan-3E FPGAs have a built-in Power-On Reset (POR) circuit that monitors the three power rails required to successfully configure the FPGA. At power-up, the POR circuit holds the FPGA in a reset state until the V_{CCINT} , V_{CCAUX} , and V_{CCO} Bank 2 supplies reach their respective input threshold levels (see Table 74 in Module 3). After all three supplies reach their respective thresholds, the POR reset is released and the FPGA begins its configuration process.

Supply Sequencing

Because the three FPGA supply inputs must be valid to release the POR reset and can be supplied in any order, there are no FPGA-specific voltage sequencing requirements. Applying the FPGA's V_{CCAUX} supply before the V_{CCINT} supply uses the least I_{CCINT} current.

Although the FPGA has no specific voltage sequence requirements, be sure to consider any potential sequencing requirement of the configuration device attached to the FPGA, such as an SPI serial Flash PROM, a parallel NOR Flash PROM, or a microcontroller. For example, Flash PROMs have a minimum time requirement before the PROM can be selected and this must be considered if the 3.3V supply is the last in the sequence. See Power-On Precautions if 3.3V Supply is Last in Sequence for more details.

When all three supplies are valid, the minimum current required to power-on the FPGA equals the worst-case quiescent current, specified in Table 79. Spartan-3E FPGAs

do not require Power-On Surge (POS) current to successfully configure.

Surplus I_{CCINT} if V_{CCINT} Applied before V_{CCAUX}

If the V_{CCINT} supply is applied before the V_{CCAUX} supply, the FPGA might draw a surplus I_{CCINT} current in addition to the I_{CCINT} quiescent current levels specified in Table 79, page 118. The momentary additional I_{CCINT} surplus current might be a few hundred milliamperes under nominal conditions, significantly less than the instantaneous current consumed by the bypass capacitors at power-on. However, the surplus current immediately disappears when the V_{CCAUX} supply is applied, and, in response, the FPGA's I_{CCINT} quiescent current demand drops to the levels specified in Table 79. The FPGA does not use or require the surplus current to successfully power-on and configure. If applying V_{CCINT} before V_{CCAUX}, ensure that the regulator does not have a foldback feature that could inadvertently shut down in the presence of the surplus current.

Configuration Data Retention, Brown-Out

The FPGA's configuration data is stored in robust CMOS configuration latches. The data in these latches is retained even when the voltages drop to the minimum levels necessary to preserve RAM contents, as specified in Table 76.

If, after configuration, the V_{CCAUX} or V_{CCINT} supply drops below its data retention voltage, the current device configuration must be cleared using one of the following methods:

- Force the V_{CCAUX} or V_{CCINT} supply voltage below the minimum Power On Reset (POR) voltage threshold (Table 74).
- Assert PROG_B Low.

The POR circuit does not monitor the VCCO_2 supply after configuration. Consequently, dropping the VCCO_2 voltage does not reset the device by triggering a Power-On Reset (POR) event.

No Internal Charge Pumps or Free-Running Oscillators

Some system applications are sensitive to sources of analog noise. Spartan-3E FPGA circuitry is fully static and does not employ internal charge pumps.

The CCLK configuration clock is active during the FPGA configuration process. After configuration completes, the CCLK oscillator is automatically disabled unless the Bitstream Generator (BitGen) option *Persist=Yes*.

General Recommended Operating Conditions

Table 77: General Recommended Operating Conditions

Symbol	Description			Min	Nominal	Max	Units
TJ	Junction temperature	Commercial		0	—	85	°C
		Industrial		-40	-	100	°C
V _{CCINT}	Internal supply voltage				1.200	1.260	V
V _{CCO} ⁽¹⁾	Output driver supply voltage			1.100	-	3.465	V
V _{CCAUX}	Auxiliary supply voltage			2.375	2.500	2.625	V
V _{IN} ^(2,3)	Input voltage extremes to avoid	I/O, Input-only, and	IP or IO_#	-0.5	_	V _{CCO} + 0.5	V
	turning on I/O protection diodes	Dual-Purpose pins (4)	IO_Lxxy_# ⁽⁵⁾	-0.5	_	V _{CCO} + 0.5	V
		Dedicated pins ⁽⁶⁾		-0.5	_	$V_{CCAUX} + 0.5$	V
T _{IN}	Input signal transition time ⁽⁷⁾			_	_	500	ns

Notes:

- 1. This V_{CCO} range spans the lowest and highest operating voltages for all supported I/O standards. Table 80 lists the recommended V_{CCO} range specific to each of the single-ended I/O standards, and Table 82 lists that specific to the differential standards.
- Input voltages outside the recommended range require the I_{IK} input clamp diode rating is met and no more than 100 pins exceed the range simultaneously. Refer to Table 73.
- 3. See XAPP459: Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3 Families.
- 4. Each of the User I/O and Dual-Purpose pins is associated with one of the four banks' V_{CCO} rails. Meeting the V_{IN} limit ensures that the internal diode junctions that exist between these pins and their associated V_{CCO} and GND rails do not turn on. The absolute maximum rating is provided in Table 73.
- 5. For single-ended signals that are placed on a differential-capable I/O, V_{IN} of –0.2V to –0.5V is supported but can cause increased leakage between the two pins. See *Parasitic Leakage* in <u>UG331</u>, *Spartan-3 Generation FPGA User Guide*.
- All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail (2.5V). Meeting the V_{IN} max limit ensures that the internal diode junctions that exist between each of these pins and the V_{CCAUX} and GND rails do not turn on.
- 7. Measured between 10% and 90% V_{CCO}. Follow Signal Integrity recommendations.

Timing Measurement Methodology

When measuring timing parameters at the programmable I/Os, different signal standards call for different test conditions. Table 95 lists the conditions to use for each standard.

The method for measuring Input timing is as follows: A signal that swings between a Low logic level of V_L and a High logic level of V_H is applied to the Input under test. Some standards also require the application of a bias voltage to the V_{REF} pins of a given bank to properly set the input-switching threshold. The measurement point of the Input signal (V_M) is commonly located halfway between V_L and V_H.

The Output test setup is shown in Figure 72. A termination voltage V_T is applied to the termination resistor R_T, the other end of which is connected to the Output. For each standard, R_T and V_T generally take on the standard values recommended for minimizing signal reflections. If the standard does not ordinarily use terminations (e.g.,

LVCMOS, LVTTL), then R_T is set to $1M\Omega$ to indicate an open connection, and V_T is set to zero. The same measurement point (V_M) that was used at the Input is also used at the Output.

Notes:

1. The names shown in parentheses are used in the IBIS file.

Figure 72: Output Test Setup

Signal Standard			Inputs			Outputs		
(1051A	NDARD)	V _{REF} (V)	V _L (V)	V _H (V)	R_T (Ω)	V _T (V)	V _M (V)	
Single-Ended								
LVTTL		-	0	3.3	1M	0	1.4	
LVCMOS33		-	0	3.3	1M	0	1.65	
LVCMOS25		-	0	2.5	1M	0	1.25	
LVCMOS18		-	0	1.8	1M	0	0.9	
LVCMOS15		-	0	1.5	1M	0	0.75	
LVCMOS12		-	0	1.2	1M	0	0.6	
PCI33_3	Rising	-	Note 3	Note 3	25	0	0.94	
	Falling				25	3.3	2.03	
PCI66_3	Rising	-	Note 3	Note 3	25	0	0.94	
	Falling				25	3.3	2.03	
HSTL_I_18		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	
HSTL_III_18		1.1	V _{REF} – 0.5	V _{REF} + 0.5	50	1.8	V _{REF}	
SSTL18_I		0.9	V _{REF} – 0.5	V _{REF} + 0.5	50	0.9	V _{REF}	
SSTL2_I		1.25	V _{REF} – 0.75	V _{REF} + 0.75	50	1.25	V _{REF}	
Differential		•	•	•		•		
LVDS_25		-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}	
BLVDS_25		-	V _{ICM} – 0.125	V _{ICM} + 0.125	1M	0	V _{ICM}	
MINI_LVDS_2	25	-	V _{ICM} – 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}	
LVPECL_25		-	V _{ICM} - 0.3	V _{ICM} + 0.3	1M	0	V _{ICM}	
RSDS_25		-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}	

Table 95: Test Methods for Timing Measurement at I/Os

Package Thermal Characteristics

The power dissipated by an FPGA application has implications on package selection and system design. The power consumed by a Spartan-3E FPGA is reported using either the <u>XPower Estimator</u> or the <u>XPower Analyzer</u> calculator integrated in the Xilinx ISE® development software. Table 130 provides the thermal characteristics for the various Spartan-3E package offerings.

The junction-to-case thermal resistance (θ_{JC}) indicates the difference between the temperature measured on the

package body (case) and the die junction temperature per watt of power consumption. The junction-to-board (θ_{JB}) value similarly reports the difference between the board and junction temperature. The junction-to-ambient (θ_{JA}) value reports the temperature difference per watt between the ambient environment and the junction temperature. The θ_{JA} value is reported at different air velocities, measured in linear feet per minute (LFM). The Still Air (0 LFM) column shows the θ_{JA} value in a system without a fan. The thermal resistance drops with increasing air flow.

Davias	Deekere	Junction-to-Case	Junction-to-Board		Unito			
Device	Раскаде	(θ _{JC})	(θ _{ЈВ})	Still Air (0 LFM)	250 LFM	500 LFM	750 LFM	Units
XC3S100E		13.0	30.9	49.0	40.7	37.9	37.0	°C/Watt
XC3S250E	VQ100	11.0	25.9	43.3	36.0	33.6	32.7	°C/Watt
XC3S500E		9.8		40.0	33.3	31.0	30.2	°C/Watt
XC3S100E		19.3	42.0	62.1	55.3	52.8	51.2	°C/Watt
XC3S250E	CP132	11.8	28.1	48.3	41.8	39.5	38.0	°C/Watt
XC3S500E		8.5	21.3	41.5	35.2	32.9	31.5	°C/Watt
XC3S100E	TO144	8.2	31.9	52.1	40.5	34.6	32.5	°C/Watt
XC3S250E	10/144	7.2	25.7	37.6	29.2	25.0	23.4	°C/Watt
XC3S250E	PO208	9.8	29.0	37.0	27.3	24.1	22.4	°C/Watt
XC3S500E	FQ200	8.5	26.8	36.1	26.6	23.6	21.8	°C/Watt
XC3S250E		12.4	27.7	35.8	29.3	28.4	28.1	°C/Watt
XC3S500E	FT256	9.6	22.2	31.1	25.0	24.0	23.6	°C/Watt
XC3S1200E		6.5	16.4	26.2	20.5	19.3	18.9	°C/Watt
XC3S500E		9.8	15.6	26.1	20.6	19.4	18.6	°C/Watt
XC3S1200E	FG320	8.2	12.5	23.0	17.7	16.4	15.7	°C/Watt
XC3S1600E		7.1	10.6	21.1	15.9	14.6	13.8	°C/Watt
XC3S1200E	EG400	7.5	12.4	22.3	17.2	16.0	15.3	°C/Watt
XC3S1600E	FG400	6.0	10.4	20.3	15.2	14.0	13.3	°C/Watt
XC3S1600E	FG484	5.7	9.4	18.8	12.5	11.3	10.8	°C/Watt

Table 130: Spartan-3E Package Thermal Characteristics

Table 131: VQ100 Package Pinout (Cont'd)

Bank	XC3S100E XC3S250E XC3S500E Pin Name	VQ100 Pin Number	Туре
3	IO_L02P_3	P4	I/O
3	IO_L03N_3/LHCLK1	P10	LHCLK
3	IO_L03P_3/LHCLK0	P9	LHCLK
3	IO_L04N_3/LHCLK3	P12	LHCLK
3	IO_L04P_3/LHCLK2	P11	LHCLK
3	IO_L05N_3/LHCLK5	P16	LHCLK
3	IO_L05P_3/LHCLK4	P15	LHCLK
3	IO_L06N_3/LHCLK7	P18	LHCLK
3	IO_L06P_3/LHCLK6	P17	LHCLK
3	IO_L07N_3	P23	I/O
3	IO_L07P_3	P22	I/O
3	IP	P13	INPUT
3	VCCO_3	P8	VCCO
3	VCCO_3	P20	VCCO
GND	GND	P7	GND
GND	GND	P14	GND
GND	GND	P19	GND
GND	GND	P29	GND
GND	GND	P37	GND
GND	GND	P52	GND
GND	GND	P59	GND
GND	GND	P64	GND
GND	GND	P72	GND
GND	GND	P81	GND
GND	GND	P87	GND
GND	GND	P93	GND
VCCAUX	DONE	P51	CONFIG
VCCAUX	PROG_B	P1	CONFIG
VCCAUX	ТСК	P77	JTAG
VCCAUX	TDI	P100	JTAG
VCCAUX	TDO	P76	JTAG
VCCAUX	TMS	P75	JTAG
VCCAUX	VCCAUX	P21	VCCAUX
VCCAUX	VCCAUX	P46	VCCAUX
VCCAUX	VCCAUX	P74	VCCAUX
VCCAUX	VCCAUX	P96	VCCAUX
VCCINT	VCCINT	P6	VCCINT
VCCINT	VCCINT	P28	VCCINT
VCCINT	VCCINT	P56	VCCINT
VCCINT	VCCINT	P80	VCCINT

User I/Os by Bank

 Table 138 and Table 139 indicate how the 108 available

user-I/O pins are distributed between the four I/O banks on

the TQ144 package.

Table 138: User I/Os Per Bank for the XC3S100E in the TQ144 Package

Package Edge	I/O Bank	Maximum I/O	All Possible I/O Pins by Type				
	I/O Dalik		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾
Тор	0	26	9	6	1	2	8
Right	1	28	0	5	21	2	0(2)
Bottom	2	26	0	4	20	2	0 ⁽²⁾
Left	3	28	13	4	0	3	8
TOTAL		108	22	19	42	9	16

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 139: User I/Os Per Bank for the XC3S250E in TQ144 Package

Package	I/O Bank Maximum I/O		All Possible I/O Pins by Type				
Edge	1/O Dalik		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾
Тор	0	26	9	6	1	2	8
Right	1	28	0	5	21	2	0(2)
Bottom	2	26	0	4	20	2	0(2)
Left	3	28	11	6	0	3	8
TOTAL		108	20	21	42	9	16

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Footprint Migration Differences

Table 140 summarizes any footprint and functionality differences between the XC3S100E and the XC3S250E FPGAs that may affect easy migration between devices. There are four such pins. All other pins not listed in Table 140 unconditionally migrate between Spartan-3E devices available in the TQ144 package.

The arrows indicate the direction for easy migration. For example, a left-facing arrow indicates that the pin on the XC3S250E unconditionally migrates to the pin on the XC3S100E. It may be possible to migrate the opposite direction depending on the I/O configuration. For example, an I/O pin (Type = I/O) can migrate to an input-only pin (Type = INPUT) if the I/O pin is configured as an input.

Tahle	140.	TO144	Footprint	Migration	Differences
Table	140.	THEFT	1 OOtprint	wingration	Differences

TQ144 Pin	Bank	XC3S100E Type	Migration	XC3S250E Type
P10	3	I/O	÷	INPUT
P29	3	I/O	÷	INPUT
P31	3	VREF(INPUT)	\rightarrow	VREF(I/O)
P66	2	VREF(INPUT)	\rightarrow	VREF(I/O)
DIFFERE	NCES		4	

Legend:

This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction may be possible depending on how the pin is configured for the device on the right.

This pin can unconditionally migrate from the device on the right to the device on the left. Migration in the other direction may be possible depending on how the pin is configured for the device on the left.

PQ208: 208-pin Plastic Quad Flat Package

The 208-pin plastic quad flat package, PQ208, supports two different Spartan-3E FPGAs, including the XC3S250E and the XC3S500E.

Table 141 lists all the PQ208 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at:

http://www.xilinx.com/support/documentation/data_sheets/s3e_pin.zip

Pinout Table

Table 141: PQ208 Package Pinout							
Bank	XC3S250E XC3S500E Pin Name	PQ208 Pin	Туре				
0	10	P187	I/O				
0	IO/VREF_0	P179	VREF				
0	IO_L01N_0	P161	I/O				
0	IO_L01P_0	P160	I/O				
0	IO_L02N_0/VREF_0	P163	VREF				
0	IO_L02P_0	P162	I/O				
0	IO_L03N_0	P165	I/O				
0	IO_L03P_0	P164	I/O				
0	IO_L04N_0/VREF_0	P168	VREF				
0	IO_L04P_0	P167	I/O				
0	IO_L05N_0	P172	I/O				
0	IO_L05P_0	P171	I/O				
0	IO_L07N_0/GCLK5	P178	GCLK				
0	IO_L07P_0/GCLK4	P177	GCLK				
0	IO_L08N_0/GCLK7	P181	GCLK				
0	IO_L08P_0/GCLK6	P180	GCLK				
0	IO_L10N_0/GCLK11	P186	GCLK				
0	IO_L10P_0/GCLK10	P185	GCLK				
0	IO_L11N_0	P190	I/O				
0	IO_L11P_0	P189	I/O				
0	IO_L12N_0/VREF_0	P193	VREF				
0	IO_L12P_0	P192	I/O				
0	IO_L13N_0	P197	I/O				
0	IO_L13P_0	P196	I/O				
0	IO_L14N_0/VREF_0	P200	VREF				
0	IO_L14P_0	P199	I/O				
0	IO_L15N_0	P203	I/O				

Table	141:	PQ208	Package	Pinout	(Cont'd)
-------	------	-------	---------	--------	----------

Bank	XC3S250E XC3S500E Pin Name	PQ208 Pin	Туре
0	IO_L15P_0	P202	I/O
0	IO_L16N_0/HSWAP	P206	DUAL
0	IO_L16P_0	P205	I/O
0	IP	P159	INPUT
0	IP	P169	INPUT
0	IP	P194	INPUT
0	IP	P204	INPUT
0	IP_L06N_0	P175	INPUT
0	IP_L06P_0	P174	INPUT
0	IP_L09N_0/GCLK9	P184	GCLK
0	IP_L09P_0/GCLK8	P183	GCLK
0	VCCO_0	P176	VCCO
0	VCCO_0	P191	VCCO
0	VCCO_0	P201	VCCO
1	IO_L01N_1/A15	P107	DUAL
1	IO_L01P_1/A16	P106	DUAL
1	IO_L02N_1/A13	P109	DUAL
1	IO_L02P_1/A14	P108	DUAL
1	IO_L03N_1/VREF_1	P113	VREF
1	IO_L03P_1	P112	I/O
1	IO_L04N_1	P116	I/O
1	IO_L04P_1	P115	I/O
1	IO_L05N_1/A11	P120	DUAL
1	IO_L05P_1/A12	P119	DUAL
1	IO_L06N_1/VREF_1	P123	VREF
1	IO_L06P_1	P122	I/O
1	IO_L07N_1/A9/RHCLK1	P127	RHCLK/DUAL
1	IO_L07P_1/A10/RHCLK0	P126	RHCLK/DUAL
1	IO_L08N_1/A7/RHCLK3	P129	RHCLK/DUAL
1	IO_L08P_1/A8/RHCLK2	P128	RHCLK/DUAL
1	IO_L09N_1/A5/RHCLK5	P133	RHCLK/DUAL
1	IO_L09P_1/A6/RHCLK4	P132	RHCLK/DUAL
1	IO_L10N_1/A3/RHCLK7	P135	RHCLK/DUAL
1	IO_L10P_1/A4/RHCLK6	P134	RHCLK/DUAL
1	IO_L11N_1/A1	P138	DUAL
1	IO_L11P_1/A2	P137	DUAL
1	IO_L12N_1/A0	P140	DUAL
1	IO_L12P_1	P139	I/O
1	IO_L13N_1	P145	I/O
1	IO_L13P_1	P144	I/O
1	IO_L14N_1	P147	I/O
1	IO L14P 1	P146	I/O

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S250E Pin Name XC3S500E Pin Name XC3S1200E Pin Name		FT256 Ball	Туре
1	Ю	IO	IP	M14	250E: I/O 500E: I/O 1200E: INPUT
1	IO/VREF_1	IP/VREF_1	IP/VREF_1	D16	250E: VREF(I/O) 500E: VREF(INPUT) 1200E: VREF(INPUT)
1	IP/VREF_1	IP/VREF_1	IP/VREF_1	H13	VREF
1	VCCO_1	VCCO_1	VCCO_1	E15	VCCO
1	VCCO_1	VCCO_1	VCCO_1	G11	VCCO
1	VCCO_1	VCCO_1	VCCO_1	K11	VCCO
1	VCCO_1	VCCO_1	VCCO_1	M15	VCCO
2	IP IP	IP	10	M7 T12	250E: INPUT 500E: INPUT 1200E: I/O 250E: INPUT
					<i>500E:</i> INPUT <i>1200E:</i> I/O
2	IO/D5	IO/D5	IO/D5	Т8	DUAL
2	IO/M1	IO/M1	IO/M1	T10	DUAL
2	IO/VREF_2	IO/VREF_2	IO/VREF_2	P13	VREF
2	IO/VREF_2	IO/VREF_2	IO/VREF_2	R4	VREF
2	IO_L01N_2/INIT_B	IO_L01N_2/INIT_B	IO_L01N_2/INIT_B	P4	DUAL
2	IO_L01P_2/CSO_B	IO_L01P_2/CSO_B	IO_L01P_2/CSO_B	P3	DUAL
2	IO_L03N_2/MOSI/CSI_B	IO_L03N_2/MOSI/CSI_B	IO_L03N_2/MOSI/CSI_B	N5	DUAL
2	IO_L03P_2/DOUT/BUSY	IO_L03P_2/DOUT/BUSY	IO_L03P_2/DOUT/BUSY	P5	DUAL
2	IO_L04N_2	IO_L04N_2	IO_L04N_2	T5	I/O
2	IO_L04P_2	IO_L04P_2	IO_L04P_2	T4	I/O
2	IO_L05N_2	IO_L05N_2	IO_L05N_2	N6	I/O
2	IO_L05P_2	IO_L05P_2	IO_L05P_2	M6	I/O
2	IO_L06N_2	IO_L06N_2	IO_L06N_2	P6	I/O
2	IO_L06P_2	IO_L06P_2	IO_L06P_2	R6	I/O
2	N.C. (◆)	IO_L07N_2	IO_L07N_2	P7	250E: N.C. 500E: I/O 1200E: I/O
2	N.C. (◆)	IO_L07P_2	IO_L07P_2	N7	250E: N.C. 500E: I/O 1200E: I/O
2	IO_L09N_2/D6/GCLK13	IO_L09N_2/D6/GCLK13	IO_L09N_2/D6/GCLK13	L8	DUAL/GCLK
2	IO_L09P_2/D7/GCLK12	IO_L09P_2/D7/GCLK12	IO_L09P_2/D7/GCLK12	M8	DUAL/GCLK
2	IO_L10N_2/D3/GCLK15	IO_L10N_2/D3/GCLK15	IO_L10N_2/D3/GCLK15	P8	DUAL/GCLK
2	IO_L10P_2/D4/GCLK14	IO_L10P_2/D4/GCLK14	IO_L10P_2/D4/GCLK14	N8	DUAL/GCLK
2	IO_L12N_2/D1/GCLK3	IO_L12N_2/D1/GCLK3	IO_L12N_2/D1/GCLK3	N9	DUAL/GCLK
2	IO_L12P_2/D2/GCLK2	IO_L12P_2/D2/GCLK2	IO_L12P_2/D2/GCLK2	P9	DUAL/GCLK
2	IO_L13N_2/DIN/D0	IO_L13N_2/DIN/D0	IO_L13N_2/DIN/D0	M9	DUAL
2	IO_L13P_2/M0	IO_L13P_2/M0	IO_L13P_2/M0	L9	DUAL

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S500E Pin Name	XC3S1200E Pin Name	FT256 Ball	Туре
3	IP	IP	IP	N3	INPUT
3	IP/VREF_3	IP/VREF_3	IP/VREF_3	G1	VREF
3	IO/VREF_3	IO/VREF_3	IP/VREF_3	N2	250E: VREF(I/O)
					500E: VREF(I/O)
					VREF(INPUT)
3	VCCO_3	VCCO_3	VCCO_3	E2	VCCO
3	VCCO_3	VCCO_3	VCCO_3	G6	VCCO
3	VCCO_3	VCCO_3	VCCO_3	K6	VCCO
3	VCCO_3	VCCO_3	VCCO_3	M2	VCCO
GND	GND	GND	GND	A1	GND
GND	GND	GND	GND	A16	GND
GND	GND	GND	GND	B9	GND
GND	GND	GND	GND	F6	GND
GND	GND	GND	GND	F11	GND
GND	GND	GND	GND	G7	GND
GND	GND	GND	GND	G8	GND
GND	GND	GND	GND	G9	GND
GND	GND	GND	GND	G10	GND
GND	GND	GND	GND	H2	GND
GND	GND	GND	GND	H7	GND
GND	GND	GND	GND	H8	GND
GND	GND	GND	GND	H9	GND
GND	GND	GND	GND	H10	GND
GND	GND	GND	GND	J7	GND
GND	GND	GND	GND	J8	GND
GND	GND	GND	GND	J9	GND
GND	GND	GND	GND	J10	GND
GND	GND	GND	GND	J15	GND
GND	GND	GND	GND	K7	GND
GND	GND	GND	GND	K8	GND
GND	GND	GND	GND	K9	GND
GND	GND	GND	GND	K10	GND
GND	GND	GND	GND	L6	GND
GND	GND	GND	GND	L11	GND
GND	GND	GND	GND	R8	GND
GND	GND	GND	GND	T1	GND
GND	GND	GND	GND	T16	GND
VCCAUX	DONE	DONE	DONE	T15	CONFIG
VCCAUX	PROG_B	PROG_B	PROG_B	D3	CONFIG
VCCAUX	ТСК	ТСК	ТСК	A15	JTAG
VCCAUX	TDI	TDI	TDI	A2	JTAG
VCCAUX	TDO	TDO	TDO	C14	JTAG
VCCAUX	TMS	TMS	TMS	B15	JTAG
VCCAUX	VCCAUX	VCCAUX	VCCAUX	A6	VCCAUX

User I/Os by Bank

Table 144, Table 145, and Table 146 indicate how the available user-I/O pins are distributed between the four I/O banks on the FT256 package.

The XC3S250E FPGA in the FT256 package has 18 unconnected balls, labeled with an "N.C." type. These pins are also indicated with the black diamond (♦) symbol in Figure 85.

Table 144: User I/Os Per Bank on XC3S250E in the FT256 Package

Package Edge	I/O Bank	Maximum I/O	All Possible I/O Pins by Type				
			I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾
Тор	0	44	20	10	1	5	8
Right	1	42	10	7	21	4	0 ⁽²⁾
Bottom	2	44	8	9	24	3	0 ⁽²⁾
Left	3	42	24	7	0	3	8
TOTAL		172	62	33	46	15	16

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 145: User I/Os Per Bank on XC3S500E in the FT256 Package

Package Edge	I/O Bank	Maximum I/O	All Possible I/O Pins by Type				
			I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾
Тор	0	46	22	10	1	5	8
Right	1	48	15	7	21	5	0 ⁽²⁾
Bottom	2	48	11	9	24	4	0(2)
Left	3	48	28	7	0	5	8
TOTAL		190	76	33	46	19	16

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 146: User I/Os Per Bank on XC3S1200E in the FT256 Package

Package Edge	I/O Bank	I/O Bank Maximum I/O		All Possible I/O Pins by Type				
			I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾	
Тор	0	46	24	8	1	5	8	
Right	1	48	14	8	21	5	0 ⁽²⁾	
Bottom	2	48	13	7	24	4	0 ⁽²⁾	
Left	3	48	27	8	0	5	8	
TOTAL		190	78	31	46	19	16	

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

FG400: 400-ball Fine-pitch Ball Grid Array

The 400-ball fine-pitch ball grid array, FG400, supports two different Spartan-3E FPGAs, including the XC3S1200E and the XC3S1600E. Both devices share a common footprint for this package as shown in Table 152 and Figure 87.

Table 152 lists all the FG400 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at:

http://www.xilinx.com/support/documentation/data_sheets/s3e_pin.zip

Pinout Table

Table 152: FG400 Package Pinout				
Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре	
0	IO	A3	I/O	
0	10	A8	I/O	
0	10	A12	I/O	
0	IO	C7	I/O	
0	10	C10	I/O	
0	10	E8	I/O	
0	10	E13	I/O	
0	10	E16	I/O	
0	10	F13	I/O	
0	10	F14	I/O	
0	10	G7	I/O	
0	IO/VREF_0	C11	VREF	
0	IO_L01N_0	B17	I/O	
0	IO_L01P_0	C17	I/O	
0	IO_L03N_0/VREF_0	A18	VREF	
0	IO_L03P_0	A19	I/O	
0	IO_L04N_0	A17	I/O	
0	IO_L04P_0	A16	I/O	
0	IO_L06N_0	A15	I/O	
0	IO_L06P_0	B15	I/O	
0	IO_L07N_0	C14	I/O	
0	IO_L07P_0	D14	I/O	
0	IO_L09N_0/VREF_0	A13	VREF	
0	IO_L09P_0	A14	I/O	
0	IO_L10N_0	B13	I/O	
0	IO_L10P_0	C13	I/O	
0	IO L12N 0	C12	I/O	

Table	152:	FG400	Package	Pinout	(Cont'd)
-------	------	-------	---------	--------	----------

Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре
0	IO_L12P_0	D12	I/O
0	IO_L13N_0	E12	I/O
0	IO_L13P_0	F12	I/O
0	IO_L15N_0/GCLK5	G11	GCLK
0	IO_L15P_0/GCLK4	F11	GCLK
0	IO_L16N_0/GCLK7	E10	GCLK
0	IO_L16P_0/GCLK6	E11	GCLK
0	IO_L18N_0/GCLK11	A9	GCLK
0	IO_L18P_0/GCLK10	A10	GCLK
0	IO_L19N_0	F9	I/O
0	IO_L19P_0	E9	I/O
0	IO_L21N_0	C9	I/O
0	IO_L21P_0	D9	I/O
0	IO_L22N_0/VREF_0	B8	VREF
0	IO_L22P_0	B9	I/O
0	IO_L24N_0/VREF_0	F7	VREF
0	IO_L24P_0	F8	I/O
0	IO_L25N_0	A6	I/O
0	IO_L25P_0	A7	I/O
0	IO_L27N_0	B5	I/O
0	IO_L27P_0	B6	I/O
0	IO_L28N_0	D6	I/O
0	IO_L28P_0	C6	I/O
0	IO_L30N_0/VREF_0	C5	VREF
0	IO_L30P_0	D5	I/O
0	IO_L31N_0	A2	I/O
0	IO_L31P_0	B2	I/O
0	IO_L32N_0/HSWAP	D4	DUAL
0	IO_L32P_0	C4	I/O
0	IP	B18	INPUT
0	IP	E5	INPUT
0	IP_L02N_0	C16	INPUT
0	IP_L02P_0	D16	INPUT
0	IP_L05N_0	D15	INPUT
0	IP_L05P_0	C15	INPUT
0	IP_L08N_0	E14	INPUT
0	IP_L08P_0	E15	INPUT
0	IP_L11N_0	G14	INPUT
0	IP_L11P_0	G13	INPUT
0	IP_L14N_0	B11	INPUT
0	IP_L14P_0	B12	INPUT
0	IP_L17N_0/GCLK9	G10	GCLK

Table 152: FG400 Package Pinout (Cont'd)

Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре
0	IP_L17P_0/GCLK8	H10	GCLK
0	IP_L20N_0	G9	INPUT
0	IP_L20P_0	G8	INPUT
0	IP_L23N_0	C8	INPUT
0	IP_L23P_0	D8	INPUT
0	IP_L26N_0	E6	INPUT
0	IP_L26P_0	E7	INPUT
0	IP_L29N_0	A4	INPUT
0	IP_L29P_0	A5	INPUT
0	VCCO_0	B4	VCCO
0	VCCO_0	B10	VCCO
0	VCCO_0	B16	VCCO
0	VCCO_0	D7	VCCO
0	VCCO_0	D13	VCCO
0	VCCO_0	F10	VCCO
1	IO_L01N_1/A15	U18	DUAL
1	IO_L01P_1/A16	U17	DUAL
1	IO_L02N_1/A13	T18	DUAL
1	IO_L02P_1/A14	T17	DUAL
1	IO_L03N_1/VREF_1	V19	VREF
1	IO_L03P_1	U19	I/O
1	IO_L04N_1	W20	I/O
1	IO_L04P_1	V20	I/O
1	IO_L05N_1	R18	I/O
1	IO_L05P_1	R17	I/O
1	IO_L06N_1	T20	I/O
1	IO_L06P_1	U20	I/O
1	IO_L07N_1	P18	I/O
1	IO_L07P_1	P17	I/O
1	IO_L08N_1/VREF_1	P20	VREF
1	IO_L08P_1	R20	I/O
1	IO_L09N_1	P16	I/O
1	IO_L09P_1	N16	I/O
1	IO_L10N_1	N19	I/O
1	IO_L10P_1	N18	I/O
1	IO_L11N_1	N15	I/O
1	IO_L11P_1	M15	I/O
1	IO_L12N_1/A11	M18	DUAL
1	IO_L12P_1/A12	M17	DUAL
1	IO_L13N_1/VREF_1	L19	VREF
1	IO_L13P_1	M19	I/O
1	IO_L14N_1/A9/RHCLK1	L16	RHCLK/ DUAL

Table 152: FG400 Package Pinout (Cont'd)

Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре
1	IO_L14P_1/A10/RHCLK0	M16	RHCLK/ DUAL
1	IO_L15N_1/A7/RHCLK3/ TRDY1	L14	RHCLK/ DUAL
1	IO_L15P_1/A8/RHCLK2	L15	RHCLK/ DUAL
1	IO_L16N_1/A5/RHCLK5	K14	RHCLK/ DUAL
1	IO_L16P_1/A6/RHCLK4/ IRDY1	K13	RHCLK/ DUAL
1	IO_L17N_1/A3/RHCLK7	J20	RHCLK/ DUAL
1	IO_L17P_1/A4/RHCLK6	K20	RHCLK/ DUAL
1	IO_L18N_1/A1	K16	DUAL
1	IO_L18P_1/A2	J16	DUAL
1	IO_L19N_1/A0	J13	DUAL
1	IO_L19P_1	J14	I/O
1	IO_L20N_1	J17	I/O
1	IO_L20P_1	J18	I/O
1	IO_L21N_1	H19	I/O
1	IO_L21P_1	J19	I/O
1	IO_L22N_1	H15	I/O
1	IO_L22P_1	H16	I/O
1	IO_L23N_1	H18	I/O
1	IO_L23P_1	H17	I/O
1	IO_L24N_1/VREF_1	H20	VREF
1	IO_L24P_1	G20	I/O
1	IO_L25N_1	G16	I/O
1	IO_L25P_1	F16	I/O
1	IO_L26N_1	F19	I/O
1	IO_L26P_1	F20	I/O
1	IO_L27N_1	F18	I/O
1	IO_L27P_1	F17	I/O
1	IO_L28N_1	D20	I/O
1	IO_L28P_1	E20	I/O
1	IO_L29N_1/LDC0	D18	DUAL
1	IO_L29P_1/HDC	E18	DUAL
1	IO_L30N_1/LDC2	C19	DUAL
1	IO_L30P_1/LDC1	C20	DUAL
1	IP	B20	INPUT
1	IP	G15	INPUT
1	IP	G18	INPUT
1	IP	H14	INPUT
1	IP	J15	INPUT