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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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HSTL and SSTL inputs use the Reference Voltage (VREF) to 
bias the input-switching threshold. Once a configuration 
data file is loaded into the FPGA that calls for the I/Os of a 
given bank to use HSTL/SSTL, a few specifically reserved 
I/O pins on the same bank automatically convert to VREF 

inputs. For banks that do not contain HSTL or SSTL, VREF 
pins remain available for user I/Os or input pins.

Differential standards employ a pair of signals, one the 
opposite polarity of the other. The noise canceling 
properties (for example, Common-Mode Rejection) of these 
standards permit exceptionally high data transfer rates. This 
subsection introduces the differential signaling capabilities 
of Spartan-3E devices. 

Each device-package combination designates specific I/O 
pairs specially optimized to support differential standards. A 
unique L-number, part of the pin name, identifies the 
line-pairs associated with each bank (see Module 4, Pinout 
Descriptions). For each pair, the letters P and N designate 
the true and inverted lines, respectively. For example, the 
pin names IO_L43P_3 and IO_L43N_3 indicate the true 
and inverted lines comprising the line pair L43 on Bank 3. 

VCCO provides current to the outputs and additionally 
powers the On-Chip Differential Termination. VCCO must be 
2.5V when using the On-Chip Differential Termination. The 
VREF lines are not required for differential operation. 

To further understand how to combine multiple 
IOSTANDARDs within a bank, refer to IOBs Organized into 
Banks, page 18.

On-Chip Differential Termination

Spartan-3E devices provide an on-chip ~120Ω differential 
termination across the input differential receiver terminals. 
The on-chip input differential termination in Spartan-3E 
devices potentially eliminates the external 100Ω termination 
resistor commonly found in differential receiver circuits. 
Differential termination is used for LVDS, mini-LVDS, and 
RSDS as applications permit.

On-chip Differential Termination is available in banks with 
VCCO = 2.5V and is not supported on dedicated input pins. 
Set the DIFF_TERM attribute to TRUE to enable Differential 
Termination on a differential I/O pin pair. 

The DIFF_TERM attribute uses the following syntax in the 
UCF file:

INST <I/O_BUFFER_INSTANTIATION_NAME> 
DIFF_TERM = "<TRUE/FALSE>";

Table  7: Differential IOSTANDARD Bank Compatibility

Differential 
IOSTANDARD

VCCO Supply Input 
Requirements: 

VREF

Differential Bank 
Restriction(1)1.8V 2.5V 3.3V

LVDS_25 Input
Input,

On-chip Differential Termination,
Output

Input

VREF is not used for 
these I/O standards

Applies to Outputs 
Only

RSDS_25 Input
Input,

On-chip Differential Termination,
Output

Input Applies to Outputs 
Only

MINI_LVDS_25 Input
Input,

On-chip Differential Termination,
Output

Input Applies to Outputs 
Only

LVPECL_25 Input Input Input

No Differential Bank 
Restriction

(other I/O bank 
restrictions might 

apply)

BLVDS_25 Input Input,
Output Input

DIFF_HSTL_I_18 Input, 
Output Input Input

DIFF_HSTL_III_18 Input, 
Output Input Input

DIFF_SSTL18_I Input, 
Output Input Input

DIFF_SSTL2_I Input Input,
Output Input

Notes: 
1. Each bank can support any two of the following: LVDS_25 outputs, MINI_LVDS_25 outputs, RSDS_25 outputs.

http://www.xilinx.com
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 Wide Multiplexers

For additional information, refer to the “Using Dedicated 
Multiplexers” chapter in UG331.

Wide-function multiplexers effectively combine LUTs in 
order to permit more complex logic operations. Each slice 
has two of these multiplexers with F5MUX in the bottom 
portion of the slice and FiMUX in the top portion. The 
F5MUX multiplexes the two LUTs in a slice. The FiMUX 
multiplexes two CLB inputs which connect directly to the 
F5MUX and FiMUX results from the same slice or from 
other slices. See Figure 19.

Depending on the slice, FiMUX takes on the name F6MUX, 
F7MUX, or F8MUX. The designation indicates the number 
of inputs possible without restriction on the function. For 
example, an F7MUX can generate any function of seven 
inputs. Figure 20 shows the names of the multiplexers in 
each position in the Spartan-3E CLB. The figure also 
includes the direct connections within the CLB, along with 
the F7MUX connection to the CLB below. 

Each mux can create logic functions of more inputs than 
indicated by its name. The F5MUX, for example, can 
generate any function of five inputs, with four inputs 
duplicated to two LUTs and the fifth input controlling the 
mux. Because each LUT can implement independent 2:1 
muxes, the F5MUX can combine them to create a 4:1 mux, 
which is a six-input function. If the two LUTs have 
completely independent sets of inputs, some functions of all 
nine inputs can be implemented. Table 11 shows the 
connections for each multiplexer and the number of inputs 
possible for different types of functions.

X-Ref Target - Figure 18

Figure 18: LUT Resources in a Slice
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X-Ref Target - Figure 19

Figure 19: Dedicated Multiplexers in Spartan-3E CLB
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The MULT_AND is useful for small multipliers. Larger 
multipliers can be built using the dedicated 18x18 multiplier 
blocks (see Dedicated Multipliers).

Storage Elements

The storage element, which is programmable as either a 
D-type flip-flop or a level-sensitive transparent latch, 
provides a means for synchronizing data to a clock signal, 
among other uses. The storage elements in the top and 
bottom portions of the slice are called FFY and FFX, 
respectively. FFY has a fixed multiplexer on the D input 
selecting either the combinatorial output Y or the bypass 
signal BY. FFX selects between the combinatorial output X 
or the bypass signal BX.

The functionality of a slice storage element is identical to 
that described earlier for the I/O storage elements. All 
signals have programmable polarity; the default active-High 
function is described.

The control inputs R, S, CE, and C are all shared between 
the two flip-flops in a slice.

X-Ref Target - Figure 24

Figure 24: Using the MULT_AND for Multiplication in 
Carry Logic
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Table  15: Storage Element Signals

Signal Description

D Input. For a flip-flop data on the D input is loaded when R and S (or CLR and PRE) are Low and CE is High during the 
Low-to-High clock transition. For a latch, Q reflects the D input while the gate (G) input and gate enable (GE) are High and R 
and S (or CLR and PRE) are Low. The data on the D input during the High-to-Low gate transition is stored in the latch. The 
data on the Q output of the latch remains unchanged as long as G or GE remains Low.

Q Output. Toggles after the Low-to-High clock transition for a flip-flop and immediately for a latch.

C Clock for edge-triggered flip-flops.

G Gate for level-sensitive latches.

CE Clock Enable for flip-flops.

GE Gate Enable for latches.

S Synchronous Set (Q = High). When the S input is High and R is Low, the flip-flop is set, output High, during the Low-to-High 
clock (C) transition. A latch output is immediately set, output High.

R Synchronous Reset (Q = Low); has precedence over Set. 

PRE Asynchronous Preset (Q = High). When the PRE input is High and CLR is Low, the flip-flop is set, output High, during the 
Low-to-High clock (C) transition. A latch output is immediately set, output High.

CLR Asynchronous Clear (Q = Low); has precedence over Preset to reset Q output Low

SR CLB input for R, S, CLR, or PRE

REV CLB input for opposite of SR. Must be asynchronous or synchronous to match SR.

X-Ref Target - Figure 25

Figure 25: FD Flip-Flop Component with Synchronous 
Reset, Set, and Clock Enable
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Table  16: FD Flip-Flop Functionality with Synchronous 
Reset, Set, and Clock Enable

Inputs Outputs

R S CE D C Q

1 X X X ↑ 0

0 1 X X ↑ 1

0 0 0 X X No Change

0 0 1 1 ↑ 1

0 0 1 0 ↑ 0

http://www.xilinx.com
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 Cascading Multipliers

The MULT18X18SIO primitive has two additional ports 
called BCIN and BCOUT to cascade or share the 
multiplier’s ‘B’ input among several multiplier bocks. The 
18-bit BCIN “cascade” input port offers an alternate input 
source from the more typical ‘B’ input. The B_INPUT 
attribute specifies whether the specific implementation uses 
the BCIN or ‘B’ input path. Setting B_INPUT to DIRECT 
chooses the ‘B’ input. Setting B_INPUT to CASCADE 
selects the alternate BCIN input. The BREG register then 
optionally holds the selected input value, if required.

BCOUT is an 18-bit output port that always reflects the 
value that is applied to the multiplier’s second input, which is 
either the ‘B’ input, the cascaded value from the BCIN input, 
or the output of the BREG if it is inserted. 

Figure 38 illustrates the four possible configurations using 
different settings for the B_INPUT attribute and the BREG 
attribute.

 

X-Ref Target - Figure 37

Figure 37: MULT18X18SIO Primitive
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X-Ref Target - Figure 38

Figure 38: Four Configurations of the B Input
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FIXED Phase Shift Mode 

The FIXED phase shift mode shifts the DCM outputs by a 
fixed amount (TPS), controlled by the user-specified 
PHASE_SHIFT attribute. The PHASE_SHIFT value (shown 
as P in Figure 44) must be an integer ranging from –255 to 
+255. PHASE_SHIFT specifies a phase shift delay as a 
fraction of the TCLKIN. The phase shift behavior is different 
between ISE 8.1, Service Pack 3 and prior software 
versions, as described below.

Design Note

Prior to ISE 8.1i, Service Pack 3, the FIXED phase shift 
feature operated differently than the Spartan-3 DCM design 
primitive and simulation model. Designs using software 
prior to ISE 8.1i, Service Pack 3 require recompilation using 
the latest ISE software release. The following Answer 
Record contains additional information:

http://www.xilinx.com/support/answers/23153.htm.

FIXED Phase Shift using ISE 8.1i, Service Pack 3 and 
later: See Equation 2. The value corresponds to a phase 
shift range of –360° to +360°, which matches behavior of 
the Spartan-3 DCM design primitive and simulation model.

Eq 2

FIXED Phase Shift prior to ISE 8.1i, Service Pack 3: See 
Equation 3. The value corresponds to a phase shift range of 
–180° to +180° degrees, which is different from the 
Spartan-3 DCM design primitive and simulation model. 
Designs created prior to ISE 8.1i, Service Pack 3 must be 
recompiled using the most recent ISE development 
software.

Eq 3

When the PHASE_SHIFT value is zero, CLKFB and CLKIN 
are in phase, the same as when the PS unit is disabled. 
When the PHASE_SHIFT value is positive, the DCM 
outputs are shifted later in time with respect to CLKIN input. 
When the attribute value is negative, the DCM outputs are 
shifted earlier in time with respect to CLKIN. 

Figure 44b illustrates the relationship between CLKFB and 
CLKIN in the Fixed Phase mode. In the Fixed Phase mode, 
the PSEN, PSCLK, and PSINCDEC inputs are not used 
and must be tied to GND.

Equation 2 or Equation 3 applies only to FIXED phase shift 
mode. The VARIABLE phase shift mode operates 
differently.

tPS
PHASESHIFT

256
---------------------------------------- 
  TCLKIN•=

tPS
PHASESHIFT

512
---------------------------------------- 
  TCLKIN•=

X-Ref Target - Figure 44

Figure 44: NONE and FIXED Phase Shifter Waveforms (ISE 8.1i, Service Pack 3 and later)
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By contrast, the clock switch matrixes on the top and bottom 
edges receive signals from any of the five following sources: 
two GCLK pins, two DCM outputs, or one Double-Line 
interconnect.

Table 41 indicates permissible connections between clock 
inputs and BUFGMUX elements. The I0-input provides the 
best input path to a clock buffer. The I1-input provides the 
secondary input for the clock multiplexer function.

The four BUFGMUX elements on the top edge are paired 
together and share inputs from the eight global clock inputs 
along the top edge. Each BUFGMUX pair connects to four 
of the eight global clock inputs, as shown in Figure 45. This 
optionally allows differential inputs to the global clock inputs 
without wasting a BUFGMUX element.

Table  41: Connections from Clock Inputs to BUFGMUX Elements and Associated Quadrant Clock

Quadran
t Clock 

Line(1)

Left-Half BUFGMUX Top or Bottom BUFGMUX Right-Half BUFGMUX

Location(2) I0 Input I1 Input Location(2) I0 Input I1 Input Location(2) I0 Input I1 Input

H X0Y9 LHCLK7 LHCLK6 X1Y10 GCLK7 or 
GCLK11

GCLK6 or 
GCLK10 X3Y9 RHCLK3 RHCLK2

G X0Y8 LHCLK6 LHCLK7 X1Y11 GCLK6 or 
GCLK10

GCLK7 or 
GCLK11 X3Y8 RHCLK2 RHCLK3

F X0Y7 LHCLK5 LHCLK4 X2Y10 GCLK5 or 
GCLK9

GCLK4 or 
GCLK8 X3Y7 RHCLK1 RHCLK0

E X0Y6 LHCLK4 LHCLK5 X2Y11 GCLK4 or 
GCLK8

GCLK5 or 
GCLK9 X3Y6 RHCLK0 RHCLK1

D X0Y5 LHCLK3 LHCLK2 X1Y0 GCLK3 or 
GCLK15

GCLK2 or 
GCLK14 X3Y5 RHCLK7 RHCLK6

C X0Y4 LHCLK2 LHCLK3 X1Y1 GCLK2 or 
GCLK14

GCLK3 or 
GCLK15 X3Y4 RHCLK6 RHCLK7

B X0Y3 LHCLK1 LHCLK0 X2Y0 GCLK1 or 
GCLK13

GCLK0 or 
GCLK12 X3Y3 RHCLK5 RHCLK4

A X0Y2 LHCLK0 LHCLK1 X2Y1 GCLK0 or 
GCLK12

GCLK1 or 
GCLK13 X3Y2 RHCLK4 RHCLK5

Notes: 
1. See Quadrant Clock Routing for connectivity details for the eight quadrant clocks.
2. See Figure 45 for specific BUFGMUX locations, and Figure 47 for information on how BUFGMUX elements drive onto a specific clock line 

within a quadrant.
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Configuration Bitstream Image Sizes

A specific Spartan-3E part type always requires a constant 
number of configuration bits, regardless of design 
complexity, as shown in Table 45. The configuration file size 
for a multiple-FPGA daisy-chain design roughly equals the 
sum of the individual file sizes.

Pin Behavior During Configuration

For additional information, refer to the “Configuration Pins 
and Behavior during Configuration” chapter in UG332.

Table 46 shows how various pins behave during the FPGA 
configuration process. The actual behavior depends on the 

values applied to the M2, M1, and M0 mode select pins and 
the HSWAP pin. The mode select pins determine which of 
the I/O pins are borrowed during configuration and how they 
function. In JTAG configuration mode, no user-I/O pins are 
borrowed for configuration.

All user-I/O pins, input-only pins, and dual-purpose pins that 
are not actively involved in the currently-select configuration 
mode are high impedance (floating, three-stated, Hi-Z) 
during the configuration process. These pins are indicated 
in Table 46 as gray shaded table entries or cells. 

The HSWAP input controls whether all user-I/O pins, 
input-only pins, and dual-purpose pins have a pull-up 
resistor to the supply rail or not. When HSWAP is Low, each 
pin has an internal pull-up resistor that is active throughout 
configuration. After configuration, pull-up and pull-down 
resistors are available in the FPGA application as described 
in Pull-Up and Pull-Down Resistors.

The yellow-shaded table entries or cells represent pins 
where the pull-up resistor is always enabled during 
configuration, regardless of the HSWAP input. The 
post-configuration behavior of these pins is defined by 
Bitstream Generator options as defined in Table 69.

Table  45: Number of Bits to Program a Spartan-3E 
FPGA (Uncompressed Bitstreams)

Spartan-3E FPGA Number of 
Configuration Bits

XC3S100E 581,344

XC3S250E 1,353,728

XC3S500E 2,270,208

XC3S1200E 3,841,184

XC3S1600E 5,969,696

Table  46: Pin Behavior during Configuration

Pin Name Master Serial SPI (Serial 
Flash)

BPI (Parallel 
NOR Flash) JTAG Slave Parallel Slave Serial I/O Bank(3)

IO* (user-I/O)
IP* (input-only)

-

TDI TDI TDI TDI TDI TDI TDI VCCAUX

TMS TMS TMS TMS TMS TMS TMS VCCAUX

TCK TCK TCK TCK TCK TCK TCK VCCAUX

TDO TDO TDO TDO TDO TDO TDO VCCAUX

PROG_B PROG_B PROG_B PROG_B PROG_B PROG_B PROG_B VCCAUX

DONE DONE DONE DONE DONE DONE DONE VCCAUX

HSWAP HSWAP HSWAP HSWAP HSWAP HSWAP HSWAP 0

M2 0 0 0 1 1 1 2

M1 0 0 1 0 1 1 2

M0 0 1 0 = Up
1 = Down

1 0 1 2

CCLK CCLK (I/O) CCLK (I/O) CCLK (I/O) CCLK (I) CCLK (I) 2

INIT_B INIT_B INIT_B INIT_B INIT_B INIT_B 2

CSO_B CSO_B CSO_B CSO_B 2

DOUT/BUSY DOUT DOUT BUSY BUSY DOUT 2

MOSI/CSI_B MOSI CSI_B CSI_B 2

D7 D7 D7 2

D6 D6 D6 2

D5 D5 D5 2

D4 D4 D4 2

D3 D3 D3 2

D2 D2 D2 2

D1 D1 D1 2

http://www.xilinx.com
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read operations at this time. Spartan-3E FPGAs issue the 
read command just once. If the SPI Flash is not ready, then 
the FPGA does not properly configure.

If the 3.3V supply is last in the sequence and does not ramp 
fast enough, or if the SPI Flash PROM cannot be ready 
when required by the FPGA, delay the FPGA configuration 
process by holding either the FPGA's PROG_B input or 
INIT_B input Low, as highlighted in Figure 54. Release the 
FPGA when the SPI Flash PROM is ready. For example, a 
simple R-C delay circuit attached to the INIT_B pin forces 
the FPGA to wait for a preselected amount of time. 
Alternately, a Power Good signal from the 3.3V supply or a 
system reset signal accomplishes the same purpose. Use 
an open-drain or open-collector output when driving 
PROG_B or INIT_B.

SPI Flash PROM Density Requirements

Table 57 shows the smallest usable SPI Flash PROM to 
program a single Spartan-3E FPGA. Commercially 
available SPI Flash PROMs range in density from 1 Mbit to 
128 Mbits. A multiple-FPGA daisy-chained application 
requires a SPI Flash PROM large enough to contain the 
sum of the FPGA file sizes. An application can also use a 
larger-density SPI Flash PROM to hold additional data 
beyond just FPGA configuration data. For example, the SPI 
Flash PROM can also store application code for a 
MicroBlaze™ RISC processor core integrated in the 
Spartan-3E FPGA. See Using the SPI Flash Interface after 
Configuration.

CCLK Frequency

In SPI Flash mode, the FPGA’s internal oscillator generates 
the configuration clock frequency. The FPGA provides this 
clock on its CCLK output pin, driving the PROM’s clock input 
pin. The FPGA starts configuration at its lowest frequency 
and increases its frequency for the remainder of the 
configuration process if so specified in the configuration 
bitstream. The maximum frequency is specified using the 
ConfigRate bitstream generator option. The maximum 
frequency supported by the FPGA configuration logic 
depends on the timing for the SPI Flash device. Without 
examining the timing for a specific SPI Flash PROM, use 
ConfigRate = 12 or lower. SPI Flash PROMs that support 
the FAST READ command support higher data rates. Some 

such PROMs support up to ConfigRate = 25 and beyond 
but require careful data sheet analysis. See Serial 
Peripheral Interface (SPI) Configuration Timing for more 
detailed timing analysis.

Using the SPI Flash Interface after Configuration

After the FPGA successfully completes configuration, all of 
the pins connected to the SPI Flash PROM are available as 
user-I/O pins.

If not using the SPI Flash PROM after configuration, drive 
CSO_B High to disable the PROM. The MOSI, DIN, and 
CCLK pins are then available to the FPGA application.

Because all the interface pins are user I/O after 
configuration, the FPGA application can continue to use the 
SPI Flash interface pins to communicate with the SPI Flash 
PROM, as shown in Figure 56. SPI Flash PROMs offer 
random-accessible, byte-addressable, read/write, 
non-volatile storage to the FPGA application.

SPI Flash PROMs are available in densities ranging from 
1 Mbit up to 128 Mbits. However, a single Spartan-3E 
FPGA requires less than 6 Mbits. If desired, use a larger 
SPI Flash PROM to contain additional non-volatile 
application data, such as MicroBlaze processor code, or 
other user data such as serial numbers and Ethernet MAC 
IDs. In the example shown in Figure 56, the FPGA 
configures from SPI Flash PROM. Then using FPGA logic 
after configuration, the FPGA copies MicroBlaze code from 
SPI Flash into external DDR SDRAM for code execution. 
Similarly, the FPGA application can store non-volatile 
application data within the SPI Flash PROM.

The FPGA configuration data is stored starting at location 0. 
Store any additional data beginning in the next available SPI 
Flash PROM sector or page. Do not mix configuration data 
and user data in the same sector or page.

Similarly, the SPI bus can be expanded to additional SPI 
peripherals. Because SPI is a common industry-standard 
interface, various SPI-based peripherals are available, such 
as analog-to-digital (A/D) converters, digital-to-analog (D/A) 
converters, CAN controllers, and temperature sensors. 
However, if sufficient I/O pins are available in the 
application, Xilinx recommends creating a separate SPI bus 
to control peripherals. Creating a second port reduces the 
loading on the CCLK and DIN pins, which are crucial for 
configuration.

The MOSI, DIN, and CCLK pins are common to all SPI 
peripherals. Connect the select input on each additional SPI 
peripheral to one of the FPGA user I/O pins. If HSWAP = 0 
during configuration, the FPGA holds the select line High. If 
HSWAP = 1, connect the select line to +3.3V via an external 
4.7 kΩ pull-up resistor to avoid spurious read or write 
operations. After configuration, drive the select line Low to 
select the desired SPI peripheral.

Table  57: Number of Bits to Program a Spartan-3E 
FPGA and Smallest SPI Flash PROM

Device Number of 
Configuration Bits

Smallest Usable SPI 
Flash PROM

XC3S100E 581,344 1 Mbit

XC3S250E 1,353,728 2 Mbit

XC3S500E 2,270,208 4 Mbit

XC3S1200E 3,841,184 4 Mbit

XC3S1600E 5,969,696 8 Mbit

http://www.xilinx.com
http://www.xilinx.com/microblaze
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Stepping 0 Limitations when Reprogramming via 
JTAG if FPGA Set for BPI Configuration

The FPGA can always be reprogrammed via the JTAG port, 
regardless of the mode pin (M[2:0]) settings. However, 
Stepping 0 devices have a minor limitation. If a Stepping 0 
FPGA is set to configure in BPI mode and the FPGA is 
attached to a parallel memory containing a valid FPGA 

configuration file, then subsequent reconfigurations using 
the JTAG port will fail. Potential workarounds include setting 
the mode pins for JTAG configuration (M[2:0] = <1:0:1>) or 
offsetting the initial memory location in Flash by 0x2000.

Stepping 1 devices fully support JTAG configuration even 
when the FPGA mode pins are set for BPI mode.

In-System Programming Support

 In a production application, the parallel Flash PROM is 
usually preprogrammed before it is mounted on the printed 
circuit board. In-system programming support is available 
from third-party boundary-scan tool vendors and from some 
third-party PROM programmers using a socket adapter with 
attached wires. To gain access to the parallel Flash signals, 
drive the FPGA’s PROG_B input Low with an open-drain 
driver. This action places all FPGA I/O pins, including those 
attached to the parallel Flash, in high-impedance (Hi-Z). If 
the HSWAP input is Low, the I/Os have pull-up resistors to 
the VCCO input on their respective I/O bank. The external 
programming hardware then has direct access to the 
parallel Flash pins. The programming access points are 

highlighted in the gray boxes in Figure 58 and Figure 59.

The FPGA itself can also be used as a parallel Flash PROM 
programmer during development and test phases. Initially, 
an FPGA-based programmer is downloaded into the FPGA 
via JTAG. Then the FPGA performs the Flash PROM 
programming algorithms and receives programming data 
from the host via the FPGA’s JTAG interface. See the 
Embedded System Tools Reference Manual.

Dynamically Loading Multiple Configuration 
Images Using MultiBoot Option

For additional information, refer to the “Reconfiguration and 
MultiBoot” chapter in UG332.

X-Ref Target - Figure 59

Figure 59: Daisy-Chaining from BPI Flash Mode
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The mode select pins, M[2:0], are sampled when the 
FPGA’s INIT_B output goes High and must be at defined 
logic levels during this time. After configuration, when the 
FPGA’s DONE output goes High, the mode pins are 
available as full-featured user-I/O pins.

 Similarly, the FPGA’s HSWAP pin must be Low to 
enable pull-up resistors on all user-I/O pins or High to 
disable the pull-up resistors. The HSWAP control must 
remain at a constant logic level throughout FPGA 
configuration. After configuration, when the FPGA’s DONE 
output goes High, the HSWAP pin is available as 
full-featured user-I/O pin and is powered by the VCCO_0 
supply.

Voltage Compatibility

 Most Slave Serial interface signals are within the 
FPGA’s I/O Bank 2, supplied by the VCCO_2 supply input. 
The VCCO_2 voltage can be 3.3V, 2.5V, or 1.8V to match 
the requirements of the external host, ideally 2.5V. Using 
3.3V or 1.8V requires additional design considerations as 
the DONE and PROG_B pins are powered by the FPGA’s 
2.5V VCCAUX supply. See XAPP453: The 3.3V 
Configuration of Spartan-3 FPGAs for additional 
information.

Daisy-Chaining

If the application requires multiple FPGAs with different 
configurations, then configure the FPGAs using a daisy 
chain, as shown in Figure 64. Use Slave Serial mode 
(M[2:0] = <1:1:1>) for all FPGAs in the daisy-chain. After 
the lead FPGA is filled with its configuration data, the lead 

X-Ref Target - Figure 63

Figure 63: Slave Serial Configuration

+2.5V

TDI TDO

TMS

TCK

VCCINT

VCCAUX +2.5V

VCCO_2

INIT_B

PROG_B DONE

GND

+1.2V

HSWAP VCCO_0P VCCO_0

4.
7k

Spartan-3E
FPGA

+2.5V
JTAG

PROG_B

Recommend
open-drain

driver

TDI

TMS

TCK

TDO

M2

M1

‘1’

‘1’

M0‘1’

DOUT

33
0

DIN

CCLK

VSlave
Serial
Mode

4.
7k

V

CLOCK

SERIAL_OUT

PROG_B

INIT_B
DONE

V

VCC

GND

Configuration
Memory
Source

• Internal memory
• Disk drive
• Over network
• Over RF link

Intelligent
Download Host

• Microcontroller
• Processor
• Tester
• Computer

DS312-2_54_082009

P

V

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp453.pdf


Spartan-3 FPGA Family: DC and Switching Characteristics

DS312 (4.0) October 29, 2012 www.xilinx.com
Product Specification 124

PRODUCT NOT RECOMMENDED FOR NEW DESIGNS

I/O Timing

Table  86: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

Symbol Description Conditions Device

Speed Grade

Units-5 -4

Max(2) Max(2)

Clock-to-Output Times

TICKOFDCM When reading from the Output Flip-Flop 
(OFF), the time from the active transition 
on the Global Clock pin to data appearing 
at the Output pin. The DCM is used.

LVCMOS25(3), 12 mA 
output drive, Fast slew 
rate, with DCM(4)

XC3S100E 2.66 2.79 ns

XC3S250E 3.00 3.45 ns

XC3S500E 3.01 3.46 ns

XC3S1200E 3.01 3.46 ns

XC3S1600E 3.00 3.45 ns

TICKOF When reading from OFF, the time from the 
active transition on the Global Clock pin to 
data appearing at the Output pin. The 
DCM is not used.

LVCMOS25(3), 12 mA 
output drive, Fast slew 
rate, without DCM

XC3S100E 5.60 5.92 ns

XC3S250E 4.91 5.43 ns

XC3S500E 4.98 5.51 ns

XC3S1200E 5.36 5.94 ns

XC3S1600E 5.45 6.05 ns

Notes: 
1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in 

Table 77 and Table 80.
2. For minimums, use the values reported by the Xilinx timing analyzer.
3. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a 

standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate 
Input adjustment from Table 91. If the latter is true, add the appropriate Output adjustment from Table 94.

4. DCM output jitter is included in all measurements.

http://www.xilinx.com
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Table  97: Recommended Number of Simultaneously 
Switching Outputs per VCCO/GND Pair

Signal Standard
(IOSTANDARD)

Package Type

VQ
100

TQ
144

PQ
208

CP
132

FT256
FG320
FG400
FG484

Single-Ended Standards

LVTTL Slow 2 34 20 19 52 60

4 17 10 10 26 41

6 17 10 7 26 29

8 8 6 6 13 22

12 8 6 5 13 13

16 5 5 5 6 11

Fast 2 17 17 17 26 34

4 9 9 9 13 20

6 7 7 7 13 15

8 6 6 6 6 12

12 5 5 5 6 10

16 5 5 5 5 9

LVCMOS33 Slow 2 34 20 20 52 76

4 17 10 10 26 46

6 17 10 7 26 27

8 8 6 6 13 20

12 8 6 5 13 13

16 5 5 5 6 10

Fast 2 17 17 17 26 44

4 8 8 8 13 26

6 8 6 6 13 16

8 6 6 6 6 12

12 5 5 5 6 10

16 8 8 5 5 8

LVCMOS25 Slow 2 28 16 16 42 76

4 13 10 10 19 46

6 13 7 7 19 33

8 6 6 6 9 24

12 6 6 6 9 18

Fast 2 17 16 16 26 42

4 9 9 9 13 20

6 9 7 7 13 15

8 6 6 6 6 13

12 5 5 5 6 11

LVCMOS18 Slow 2 19 11 8 29 64

4 13 7 6 19 34

6 6 5 5 9 22

8 6 4 4 9 18

Fast 2 13 8 8 19 36

4 8 5 5 13 21

6 4 4 4 6 13

8 4 4 4 6 10

LVCMOS15 Slow 2 16 10 10 19 55

4 8 7 7 9 31

6 6 5 5 9 18

Fast 2 9 9 9 13 25

4 7 7 7 7 16

6 5 5 5 5 13

LVCMOS12 Slow 2 17 11 11 16 55

Fast 2 10 10 10 10 31

PCI33_3 8 8 8 16 16

PCI66_3 8 8 8 13 13

PCIX 7 7 7 11 11

HSTL_I_18 10 10 10 16 17

HSTL_III_18 10 10 10 16 16

SSTL18_I 9 9 9 15 15

SSTL2_I 12 12 12 18 18

Differential Standards (Number of I/O Pairs or Channels)

LVDS_25 6 6 6 12 20

BLVDS_25 4 4 4 4 4

MINI_LVDS_25 6 6 6 12 20

LVPECL_25 Input Only

RSDS_25 6 6 6 12 20

DIFF_HSTL_I_18 5 5 5 8 8

DIFF_HSTL_IIII_18 5 5 5 8 8

DIFF_SSTL18_I 4 4 4 7 7

DIFF_SSTL2_I 6 6 6 9 8

Notes: 
1. The numbers in this table are recommendations that assume 

sound board layout practice. This table assumes the following 
parasitic factors: combined PCB trace and land inductance per 
VCCO and GND pin of 1.0 nH, receiver capacitive load of 15 pF. 
Test limits are the VIL/VIH voltage limits for the respective I/O 
standard.

2. The PQ208 results are based on physical measurements of a 
PQ208 package soldered to a typical printed circuit board. All 
other results are based on worst-case simulation and an 
interpolation of the PQ208 physical results.

3. If more than one signal standard is assigned to the I/Os of a given 
bank, refer to XAPP689: Managing Ground Bounce in Large 
FPGAs for information on how to perform weighted average SSO 
calculations.

Table  97: Recommended Number of Simultaneously 
Switching Outputs per VCCO/GND Pair (Cont’d)

Signal Standard
(IOSTANDARD)

Package Type

VQ
100

TQ
144

PQ
208

CP
132

FT256
FG320
FG400
FG484

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp689.pdf
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Table  121: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol Description Requirement Units

TCE (tELQV) Parallel NOR Flash PROM chip-select 
time

ns

TOE (tGLQV) Parallel NOR Flash PROM 
output-enable time

ns

TACC (tAVQV) Parallel NOR Flash PROM read 
access time

ns

TBYTE (tFLQV, tFHQV) For x8/x16 PROMs only: BYTE# to 
output valid time(3)

ns

Notes: 
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA provides the CCLK frequency. The post 

configuration timing can be different to support the specific needs of the application loaded int o the FPGA and the resulting clock source.
2. Subtract additional printed circuit board routing delay as required by the application.
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor 

value also depends on whether the FPGA’s HSWAP pin is High or Low.

Table  122: MultiBoot Trigger (MBT) Timing

Symbol Description Minimum Maximum Units

TMBT MultiBoot Trigger (MBT) Low pulse width required to initiate MultiBoot 
reconfiguration

300 ∞ ns

Notes: 
1. MultiBoot re-configuration starts on the rising edge after MBT is Low for at least the prescribed minimum period.

TCE TINITADDR≤

TOE TINITADDR≤

TACC 0.5TCCLKn min( ) TCCO TDCC PCB–––≤

TBYTE TINITADDR≤

http://www.xilinx.com
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Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO
APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE
FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR
SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, “CRITICAL APPLICATIONS”). FURTHERMORE,
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A
VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF
SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE
OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL
APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING 
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A 
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN 
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) 
USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY 
USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

08/26/09 3.8 Added reference to XAPP459 in Table 73 note 2. Updated BPI timing in Figure 77, Table 119, and 
Table 120. Removed VREF requirements for differential HSTL and differential SSTL in Table 95. Added 
Spread Spectrum paragraph. Revised hold times for TIOICKPD in Table 88 and setup times for TDICK in 
Table 98. Added note 4 to Table 106 and note 3 to Table 107, and updated note 6 for Table 107 to add 
input jitter.

10/29/12 4.0 Added Notice of Disclaimer. This product is not recommended for new designs.
Revised note 2 in Table 73. Revised note 2 and VIN description in Table 77, and added note 5. Added 
note 3 to Table 78.

Date Version Revision

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
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Package Overview
Table 125 shows the eight low-cost, space-saving 
production package styles for the Spartan-3E family. Each 
package style is available as a standard and an 
environmentally friendly lead-free (Pb-free) option. The 
Pb-free packages include an extra ‘G’ in the package style 
name. For example, the standard “VQ100” package 
becomes “VQG100” when ordered as the Pb-free option. 
The mechanical dimensions of the standard and Pb-free 

packages are similar, as shown in the mechanical drawings 
provided in Table 127. 

Not all Spartan-3E densities are available in all packages. 
For a specific package, however, there is a common 
footprint that supports all the devices available in that 
package. See the footprint diagrams that follow.

For additional package information, see UG112: Device 
Package User Guide.

Selecting the Right Package Option

Spartan-3E FPGAs are available in both quad-flat pack 
(QFP) and ball grid array (BGA) packaging options. While 
QFP packaging offers the lowest absolute cost, the BGA 

packages are superior in almost every other aspect, as 
summarized in Table 126. Consequently, Xilinx 
recommends using BGA packaging whenever possible.

Table  125: Spartan-3E Family Package Options

Package Leads Type Maximum 
I/O

Lead 
Pitch 
(mm)

Footprint 
Area (mm)

Height 
(mm)

Mass(1)

(g)

VQ100 / VQG100 100 Very-thin Quad Flat Pack (VQFP) 66 0.5 16 x 16 1.20 0.6

CP132 / CPG132 132 Chip-Scale Package (CSP) 92 0.5 8.1 x 8.1 1.10 0.1

TQ144 / TQG144 144 Thin Quad Flat Pack (TQFP) 108 0.5 22 x 22 1.60 1.4

PQ208 / PQG208 208 Plastic Quad Flat Pack (PQFP) 158 0.5 30.6 x 30.6 4.10  5.3

FT256 / FTG256 256 Fine-pitch, Thin Ball Grid Array (FBGA) 190 1.0 17 x 17 1.55 0.9

FG320 / FGG320 320 Fine-pitch Ball Grid Array (FBGA) 250 1.0 19 x 19 2.00 1.4

FG400 / FGG400 400 Fine-pitch Ball Grid Array (FBGA) 304 1.0 21 x 21 2.43 2.2

FG484 / FGG484 484 Fine-pitch Ball Grid Array (FBGA) 376 1.0 23 x 23 2.60 2.2

Notes: 
1. Package mass is ±10%.

Table  126: QFP and BGA Comparison

Characteristic Quad Flat Pack (QFP) Ball Grid Array (BGA)

Maximum User I/O 158 376

Packing Density (Logic/Area) Good Better

Signal Integrity Fair Better

Simultaneous Switching Output (SSO) Support Fair Better

Thermal Dissipation Fair Better

Minimum Printed Circuit Board (PCB) Layers 4 4-6

Hand Assembly/Rework Possible Difficult

http://www.xilinx.com/support/documentation/user_guides/ug112.pdf
http://www.xilinx.com
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Footprint Migration Differences

Table 136 summarizes any footprint and functionality 
differences between the XC3S100E, the XC3S250E, and 
the XC3S500E FPGAs that may affect easy migration 
between devices in the CP132 package. There are 14 such 
balls. All other pins not listed in Table 136 unconditionally 
migrate between Spartan-3E devices available in the 
CP132 package.

The XC3S100E is duplicated on both the left and right sides 
of the table to show migrations to and from the XC3S250E 
and the XC3S500E. The arrows indicate the direction for 
easy migration. A double-ended arrow () indicates that 

the two pins have identical functionality. A left-facing arrow 
() indicates that the pin on the device on the right 
unconditionally migrates to the pin on the device on the left. 
It may be possible to migrate the opposite direction 
depending on the I/O configuration. For example, an I/O pin 
(Type = I/O) can migrate to an input-only pin 
(Type = INPUT) if the I/O pin is configured as an input.

The XC3S100E FPGA in the CP132 package has four fewer 
BPI-mode address lines than the XC3S250E and 
XC3S500E.

Table  136: CP132 Footprint Migration Differences

CP132 
Ball Bank XC3S100E 

Type Migration XC3S250E 
Type Migration XC3S500E 

Type Migration XC3S100E 
Type

A12 0 N.C.  I/O  I/O  N.C.

B4 0 INPUT  I/O  I/O  INPUT

B11 0 N.C.  I/O  I/O  N.C.

B12 0 N.C.  I/O  I/O  N.C.

C4 0 N.C.  I/O  I/O  N.C.

C11 0 INPUT  I/O  I/O  INPUT

D1 3 N.C.  I/O  I/O  N.C.

D2 3 I/O  I/O (Diff)  I/O (Diff)  I/O

K3 3 VREF(INPUT)  VREF(I/O)  VREF(I/O)  VREF(INPUT)

M9 2 N.C.  DUAL  DUAL  N.C.

M10 2 N.C.  DUAL  DUAL  N.C.

N9 2 N.C.  DUAL  DUAL  N.C.

N10 2 N.C.  DUAL  DUAL  N.C.

P11 2 VREF(INPUT)  VREF(I/O)  VREF(I/O)  VREF(INPUT)

DIFFERENCES 14 0 14

Legend:

 This pin is identical on the device on the left and the right.

 This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction may be 
possible depending on how the pin is configured for the device on the right.

 This pin can unconditionally migrate from the device on the right to the device on the left. Migration in the other direction may be 
possible depending on how the pin is configured for the device on the left.

http://www.xilinx.com
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GND GND GND P27 GND

GND GND GND P37 GND

GND GND GND P46 GND

GND GND GND P55 GND

GND GND GND P61 GND

GND GND GND P73 GND

GND GND GND P90 GND

GND GND GND P99 GND

GND GND GND P118 GND

GND GND GND P127 GND

GND GND GND P133 GND

VCCAUX DONE DONE P72 CONFIG

VCCAUX PROG_B PROG_B P1 CONFIG

VCCAUX TCK TCK P110 JTAG

VCCAUX TDI TDI P144 JTAG

VCCAUX TDO TDO P109 JTAG

VCCAUX TMS TMS P108 JTAG

VCCAUX VCCAUX VCCAUX P30 VCCAUX

VCCAUX VCCAUX VCCAUX P65 VCCAUX

VCCAUX VCCAUX VCCAUX P102 VCCAUX

VCCAUX VCCAUX VCCAUX P137 VCCAUX

VCCINT VCCINT VCCINT P9 VCCINT

VCCINT VCCINT VCCINT P45 VCCINT

VCCINT VCCINT VCCINT P80 VCCINT

VCCINT VCCINT VCCINT P115 VCCINT

Table  137: TQ144 Package Pinout (Cont’d)

Bank XC3S100E Pin Name XC3S250E Pin Name TQ144 Pin Type

http://www.xilinx.com


Spartan-3 FPGA Family: Pinout Descriptions

DS312 (4.0) October 29, 2012 www.xilinx.com
Product Specification 185

PRODUCT NOT RECOMMENDED FOR NEW DESIGNS

FT256: 256-ball Fine-pitch, Thin Ball Grid Array
The 256-ball fine-pitch, thin ball grid array package, FT256, 
supports three different Spartan-3E FPGAs, including the 
XC3S250E, the XC3S500E, and the XC3S1200E.

Table 143 lists all the package pins. They are sorted by 
bank number and then by pin name of the largest device. 
Pins that form a differential I/O pair appear together in the 
table. The table also shows the pin number for each pin and 
the pin type, as defined earlier.

The highlighted rows indicate pinout differences between 
the XC3S250E, the XC3S500E, and the XC3S1200E 
FPGAs. The XC3S250E has 18 unconnected balls, 
indicated as N.C. (No Connection) in Table 143 and with the 
black diamond character () in Table 143 and Figure 83.

If the table row is highlighted in tan, then this is an instance 
where an unconnected pin on the XC3S250E FPGA maps 

to a VREF pin on the XC3S500E and XC3S1200E FPGA. If 
the FPGA application uses an I/O standard that requires a 
VREF voltage reference, connect the highlighted pin to the 
VREF voltage supply, even though this does not actually 
connect to the XC3S250E FPGA. This VREF connection on 
the board allows future migration to the larger devices 
without modifying the printed-circuit board.

All other balls have nearly identical functionality on all three 
devices. Table 147 summarizes the Spartan-3E footprint 
migration differences for the FT256 package.

An electronic version of this package pinout table and 
footprint diagram is available for download from the Xilinx 
web site at:

http://www.xilinx.com/support/documentation/data_sheets
/s3e_pin.zip

Pinout Table

Table  143: FT256 Package Pinout

Bank XC3S250E Pin Name XC3S500E Pin Name XC3S1200E Pin Name FT256 
Ball Type

0 IO IO IO A7 I/O

0 IO IO IO A12 I/O

0 IO IO IO B4 I/O

0 IP IP IO B6 250E: INPUT
500E: INPUT
1200E: I/O

0 IP IP IO B10 250E: INPUT
500E: INPUT
1200E: I/O

0 IO/VREF_0 IO/VREF_0 IO/VREF_0 D9 VREF

0 IO_L01N_0 IO_L01N_0 IO_L01N_0 A14 I/O

0 IO_L01P_0 IO_L01P_0 IO_L01P_0 B14 I/O

0 IO_L03N_0/VREF_0 IO_L03N_0/VREF_0 IO_L03N_0/VREF_0 A13 VREF

0 IO_L03P_0 IO_L03P_0 IO_L03P_0 B13 I/O

0 IO_L04N_0 IO_L04N_0 IO_L04N_0 E11 I/O

0 IO_L04P_0 IO_L04P_0 IO_L04P_0 D11 I/O

0 IO_L05N_0/VREF_0 IO_L05N_0/VREF_0 IO_L05N_0/VREF_0 B11 VREF

0 IO_L05P_0 IO_L05P_0 IO_L05P_0 C11 I/O

0 IO_L06N_0 IO_L06N_0 IO_L06N_0 E10 I/O

0 IO_L06P_0 IO_L06P_0 IO_L06P_0 D10 I/O

0 IO_L08N_0/GCLK5 IO_L08N_0/GCLK5 IO_L08N_0/GCLK5 F9 GCLK

0 IO_L08P_0/GCLK4 IO_L08P_0/GCLK4 IO_L08P_0/GCLK4 E9 GCLK

0 IO_L09N_0/GCLK7 IO_L09N_0/GCLK7 IO_L09N_0/GCLK7 A9 GCLK

0 IO_L09P_0/GCLK6 IO_L09P_0/GCLK6 IO_L09P_0/GCLK6 A10 GCLK

0 IO_L11N_0/GCLK11 IO_L11N_0/GCLK11 IO_L11N_0/GCLK11 D8 GCLK

0 IO_L11P_0/GCLK10 IO_L11P_0/GCLK10 IO_L11P_0/GCLK10 C8 GCLK

0 IO_L12N_0 IO_L12N_0 IO_L12N_0 F8 I/O

http://www.xilinx.com/support/documentation/data_sheets/s3e_pin.zip
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3 IP IP IP N3 INPUT

3 IP/VREF_3 IP/VREF_3 IP/VREF_3 G1 VREF

3 IO/VREF_3 IO/VREF_3 IP/VREF_3 N2 250E: VREF(I/O)
500E: VREF(I/O)

1200E: 
VREF(INPUT)

3 VCCO_3 VCCO_3 VCCO_3 E2 VCCO

3 VCCO_3 VCCO_3 VCCO_3 G6 VCCO

3 VCCO_3 VCCO_3 VCCO_3 K6 VCCO

3 VCCO_3 VCCO_3 VCCO_3 M2 VCCO

GND GND GND GND A1 GND

GND GND GND GND A16 GND

GND GND GND GND B9 GND

GND GND GND GND F6 GND

GND GND GND GND F11 GND

GND GND GND GND G7 GND

GND GND GND GND G8 GND

GND GND GND GND G9 GND

GND GND GND GND G10 GND

GND GND GND GND H2 GND

GND GND GND GND H7 GND

GND GND GND GND H8 GND

GND GND GND GND H9 GND

GND GND GND GND H10 GND

GND GND GND GND J7 GND

GND GND GND GND J8 GND

GND GND GND GND J9 GND

GND GND GND GND J10 GND

GND GND GND GND J15 GND

GND GND GND GND K7 GND

GND GND GND GND K8 GND

GND GND GND GND K9 GND

GND GND GND GND K10 GND

GND GND GND GND L6 GND

GND GND GND GND L11 GND

GND GND GND GND R8 GND

GND GND GND GND T1 GND

GND GND GND GND T16 GND

VCCAUX DONE DONE DONE T15 CONFIG

VCCAUX PROG_B PROG_B PROG_B D3 CONFIG

VCCAUX TCK TCK TCK A15 JTAG

VCCAUX TDI TDI TDI A2 JTAG

VCCAUX TDO TDO TDO C14 JTAG

VCCAUX TMS TMS TMS B15 JTAG

VCCAUX VCCAUX VCCAUX VCCAUX A6 VCCAUX

Table  143: FT256 Package Pinout (Cont’d)

Bank XC3S250E Pin Name XC3S500E Pin Name XC3S1200E Pin Name FT256 
Ball Type
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User I/Os by Bank 

Table 155 indicates how the 304 available user-I/O pins are 
distributed between the four I/O banks on the FG484 
package.

GND GND E10 GND

GND GND E13 GND

GND GND F6 GND

GND GND F17 GND

GND GND G2 GND

GND GND G21 GND

GND GND J4 GND

GND GND J9 GND

GND GND J12 GND

GND GND J14 GND

GND GND J19 GND

GND GND K10 GND

GND GND K12 GND

GND GND L2 GND

GND GND L6 GND

GND GND L9 GND

GND GND L13 GND

GND GND M10 GND

GND GND M14 GND

GND GND M17 GND

GND GND M21 GND

GND GND N11 GND

GND GND N13 GND

GND GND P4 GND

GND GND P9 GND

GND GND P11 GND

GND GND P14 GND

GND GND P19 GND

GND GND T2 GND

GND GND T21 GND

GND GND U6 GND

GND GND U17 GND

GND GND V10 GND

GND GND V13 GND

GND GND Y3 GND

GND GND Y20 GND

GND GND AA7 GND

GND GND AA16 GND

Table  154: FG484 Package Pinout (Cont’d)

Bank XC3S1600E
Pin Name

FG484 
Ball Type

GND GND AB1 GND

GND GND AB12 GND

GND GND AB22 GND

VCCAUX DONE AA21 CONFIG

VCCAUX PROG_B B1 CONFIG

VCCAUX TCK E17 JTAG

VCCAUX TDI B2 JTAG

VCCAUX TDO B20 JTAG

VCCAUX TMS D19 JTAG

VCCAUX VCCAUX D12 VCCAUX

VCCAUX VCCAUX E5 VCCAUX

VCCAUX VCCAUX E18 VCCAUX

VCCAUX VCCAUX K14 VCCAUX

VCCAUX VCCAUX L4 VCCAUX

VCCAUX VCCAUX M19 VCCAUX

VCCAUX VCCAUX N9 VCCAUX

VCCAUX VCCAUX V5 VCCAUX

VCCAUX VCCAUX V18 VCCAUX

VCCAUX VCCAUX W11 VCCAUX

VCCINT VCCINT J10 VCCINT

VCCINT VCCINT K9 VCCINT

VCCINT VCCINT K11 VCCINT

VCCINT VCCINT K13 VCCINT

VCCINT VCCINT L10 VCCINT

VCCINT VCCINT L11 VCCINT

VCCINT VCCINT L12 VCCINT

VCCINT VCCINT L14 VCCINT

VCCINT VCCINT M9 VCCINT

VCCINT VCCINT M11 VCCINT

VCCINT VCCINT M12 VCCINT

VCCINT VCCINT M13 VCCINT

VCCINT VCCINT N10 VCCINT

VCCINT VCCINT N12 VCCINT

VCCINT VCCINT N14 VCCINT

VCCINT VCCINT P13 VCCINT

Table  154: FG484 Package Pinout (Cont’d)

Bank XC3S1600E
Pin Name

FG484 
Ball Type
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