E·XFL

AMD Xilinx - XC3S250E-4FT256I Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	612
Number of Logic Elements/Cells	5508
Total RAM Bits	221184
Number of I/O	172
Number of Gates	250000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s250e-4ft256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pull-Up and Pull-Down Resistors

Pull-up and pull-down resistors inside each IOB optionally force a floating I/O or Input-only pin to a determined state. Pull-up and pull-down resistors are commonly applied to unused I/Os, inputs, and three-state outputs, but can be used on any I/O or Input-only pin. The pull-up resistor connects an IOB to V_{CCO} through a resistor. The resistance value depends on the V_{CCO} voltage (see Module 3, DC and Switching Characteristics for the specifications). The pull-down resistor similarly connects an IOB to ground with a resistor. The PULLUP and PULLDOWN attributes and library primitives turn on these optional resistors.

By default, PULLDOWN resistors terminate all unused I/O and Input-only pins. Unused I/O and Input-only pins can alternatively be set to PULLUP or FLOAT. To change the unused I/O Pad setting, set the Bitstream Generator (BitGen) option *UnusedPin* to PULLUP, PULLDOWN, or FLOAT. The *UnusedPin* option is accessed through the Properties for Generate Programming File in ISE. See Bitstream Generator (BitGen) Options.

During configuration a Low logic level on the HSWAP pin activates pull-up resistors on all I/O and Input-only pins not actively used in the selected configuration mode.

Keeper Circuit

Each I/O has an optional keeper circuit (see Figure 12) that keeps bus lines from floating when not being actively driven. The KEEPER circuit retains the last logic level on a line after all drivers have been turned off. Apply the KEEPER attribute or use the KEEPER library primitive to use the KEEPER circuitry. Pull-up and pull-down resistors override the KEEPER settings.

Figure 12: Keeper Circuit

Slew Rate Control and Drive Strength

Each IOB has a slew-rate control that sets the output switching edge-rate for LVCMOS and LVTTL outputs. The SLEW attribute controls the slew rate and can either be set to SLOW (default) or FAST.

Each LVCMOS and LVTTL output additionally supports up to six different drive current strengths as shown in Table 8. To adjust the drive strength for each output, the DRIVE attribute is set to the desired drive strength: 2, 4, 6, 8, 12, and 16. Unless otherwise specified in the FPGA application, the software default IOSTANDARD is LVCMOS25, SLOW slew rate, and 12 mA output drive.

Table	8:	Programmable	Output	Drive	Current
-------	----	--------------	--------	-------	---------

	Output Drive Current (mA)								
IOSTANDAND	2	4	6	8	12	16			
LVTTL	~	~	~	~	~	~			
LVCMOS33	~	~	~	~	~	~			
LVCMOS25	~	~	~	~	~	-			
LVCMOS18	~	~	~	~	-	-			
LVCMOS15	~	~	~	-	-	-			
LVCMOS12	~	-	-	-	-	-			

High output current drive strength and FAST output slew rates generally result in fastest I/O performance. However, these same settings generally also result in transmission line effects on the printed circuit board (PCB) for all but the shortest board traces. Each IOB has independent slew rate and drive strength controls. Use the slowest slew rate and lowest output drive current that meets the performance requirements for the end application.

Likewise, due to lead inductance, a given package supports a limited number of simultaneous switching outputs (SSOs) when using fast, high-drive outputs. Only use fast, high-drive outputs when required by the application.

Notes:

- 1. Options to invert signal polarity as well as other options that enable lines for various functions are not shown.
- 2. The index i can be 6, 7, or 8, depending on the slice. The upper SLICEL has an F8MUX, and the upper SLICEM has an F7MUX. The lower SLICEL and SLICEM both have an F6MUX.

Figure 15: Simplified Diagram of the Left-Hand SLICEM

Table 10: Slice Inputs and Outputs (Cont'd)

Name	Location	Direction	Description
SHIFTOUT	SLICEM Bottom	Output	Shift data output from F-LUT RAM
CIN	SLICEL/M Bottom	Input	Carry chain input
COUT	SLICEL/M Top	Output	Carry chain output
х	SLICEL/M Bottom	Output	Combinatorial output
Y	SLICEL/M Top	Output	Combinatorial output
ХВ	SLICEL/M Bottom	Output	Combinatorial output from carry or F-LUT SRL16 (SLICEM)
YB	SLICEL/M Top	Output	Combinatorial output from carry or G-LUT SRL16 (SLICEM)
XQ	SLICEL/M Bottom	Output	FFX output
YQ	SLICEL/M Top	Output	FFY output

Main Logic Paths

Central to the operation of each slice are two nearly identical data paths at the top and bottom of the slice. The description that follows uses names associated with the bottom path. (The top path names appear in parentheses.) The basic path originates at an interconnect switch matrix outside the CLB. See Interconnect for more information on the switch matrix and the routing connections.

Four lines, F1 through F4 (or G1 through G4 on the upper path), enter the slice and connect directly to the LUT. Once inside the slice, the lower 4-bit path passes through a LUT 'F' (or 'G') that performs logic operations. The LUT Data output, 'D', offers five possible paths:

- 1. Exit the slice via line "X" (or "Y") and return to interconnect.
- Inside the slice, "X" (or "Y") serves as an input to the DXMUX (or DYMUX) which feeds the data input, "D", of the FFX (or FFY) storage element. The "Q" output of the storage element drives the line XQ (or YQ) which exits the slice.
- 3. Control the CYMUXF (or CYMUXG) multiplexer on the carry chain.
- 4. With the carry chain, serve as an input to the XORF (or XORG) exclusive-OR gate that performs arithmetic operations, producing a result on "X" (or "Y").
- 5. Drive the multiplexer F5MUX to implement logic functions wider than four bits. The "D" outputs of both the F-LUT and G-LUT serve as data inputs to this multiplexer.

In addition to the main logic paths described above, there are two bypass paths that enter the slice as BX and BY. Once inside the FPGA, BX in the bottom half of the slice (or BY in the top half) can take any of several possible branches:

1. Bypass both the LUT and the storage element, and then exit the slice as BXOUT (or BYOUT) and return to interconnect.

- Bypass the LUT, and then pass through a storage element via the D input before exiting as XQ (or YQ).
- 3. Control the wide function multiplexer F5MUX (or FiMUX).
- 4. Via multiplexers, serve as an input to the carry chain.
- 5. Drive the DI input of the LUT.
- 6. BY can control the REV inputs of both the FFY and FFX storage elements. See Storage Element Functions.
- 7. Finally, the DIG_MUX multiplexer can switch BY onto the DIG line, which exits the slice.

The control inputs CLK, CE, SR, BX and BY have programmable polarity. The LUT inputs do not need programmable polarity because their function can be inverted inside the LUT.

The sections that follow provide more detail on individual functions of the slice.

Look-Up Tables

The Look-Up Table or LUT is a RAM-based function generator and is the main resource for implementing logic functions. Furthermore, the LUTs in each SLICEM pair can be configured as Distributed RAM or a 16-bit shift register, as described later.

Each of the two LUTs (F and G) in a slice have four logic inputs (A1-A4) and a single output (D). Any four-variable Boolean logic operation can be implemented in one LUT. Functions with more inputs can be implemented by cascading LUTs or by using the wide function multiplexers that are described later.

The output of the LUT can connect to the wide multiplexer logic, the carry and arithmetic logic, or directly to a CLB output or to the CLB storage element. See Figure 18.

Figure 37: MULT18X18SIO Primitive

Cascading Multipliers

The MULT18X18SIO primitive has two additional ports called BCIN and BCOUT to cascade or share the multiplier's 'B' input among several multiplier bocks. The 18-bit BCIN "cascade" input port offers an alternate input source from the more typical 'B' input. The B_INPUT attribute specifies whether the specific implementation uses the BCIN or 'B' input path. Setting B_INPUT to DIRECT chooses the 'B' input. Setting B_INPUT to CASCADE selects the alternate BCIN input. The BREG register then optionally holds the selected input value, if required.

BCOUT is an 18-bit output port that always reflects the value that is applied to the multiplier's second input, which is either the 'B' input, the cascaded value from the BCIN input, or the output of the BREG if it is inserted.

Figure 38 illustrates the four possible configurations using different settings for the B_INPUT attribute and the BREG attribute.

Figure 38: Four Configurations of the B Input

Table 30: Direct Clock Input Connections and Optional External Feedback to Associated DCMs

	Differen	tial Pair	Differer	tial Pair]				Differer	tial Pair	Differer	tial Pair
Package	N	Р	Ν	Р					Ν	Р	Ν	Р
	Pin Nu	mber for S	ingle-Ende	d Input					Pin Nu	mber for S	ingle-Ende	d Input
VQ100	P91	P90	P89	P88					P86	P85	P84	P83
CP132	B7	A7	C8	B8					A9	B9	C9	A10
TQ144	P131	P130	P129	P128					P126	P125	P123	P122
PQ208	P186	P185	P184	P183					P181	P180	P178	P177
FT256	D8	C8	B8	A8					A9	A10	F9	E9
FG320	D9	C9	B9	B8					A10	B10	E10	D10
FG400	A9	A10	G10	H10					E10	E11	G11	F11
FG484	B11	C11	H11	H12					C12	B12	E12	F12
	↓	\mathbf{A}	\mathbf{A}	\mathbf{h}	Asso	ciated G	Global E	Buffers	¥	\mathbf{A}	\mathbf{A}	\mathbf{h}
	GCLK11	GCLK10	GCLK9	GCLK8	10	11	10	11	GCLK7	GCLK6	GCLK5	GCLK4
	Top Left DCM XC3S100: N/A XC3S250E, XC3S500E: DCM_X0Y1 XC3S1200E, XC3S1600E: DCM_X1Y3							XC3S2 XC3S12	Top Rig XC3S100: 250E, XC3S 200E, XC3S	INT DCM DCM_X0Y1 500E: DCM 1600E: DCI	_X1Y1 M_X2Y3	
					¥	¥	¥	¥	r			
					Η	G	F	E				
					Cloc	k Line (see Tab	le 41)	-			
					D	С	В	Α				
					↑	1	↑	↑				
	XC3S2 XC3S12	Bottom I XC3S1 250E, XC3S 200E, XC3S	Left DCM 00: N/A 500E: DCM 1600E: DC	I_X0Y0 M_X1Y0	-GMUX_X1Y0	-GMUX_X1Y1	-GMUX_X2Y0	-GMUX_X2Y1	XC3S2 XC3S12	Bottom R XC3S100: 250E, XC3S 200E, XC3S	light DCM DCM_X0Y0 500E: DCM 1600E: DCI	_X1Y0 M_X2Y0
	GCLK12	GCLK13	GCLK14	GCLK15	BUF	BUI	BUI	BUF	GCLK0	GCLK1	GCLK2	GCLK3
	1	↑	1	↑	Asso	ciated C	Global E	Buffers	↑	↑	1	1
	Differen	tial Pair	Differer	tial Pair					Differen	tial Pair	Differer	tial Pair
Package	Р	Ν	Р	Ν					Р	Ν	Р	Ν
	Pin Nu	mber for S	ingle-Ende	d Input					Pin Nu	mber for S	ingle-Ende	d Input
VQ100	P32	P33	P35	P36					P38	P39	P40	P41
CP132	M4	N4	M5	N5					M6	N6	P6	P7
TQ144	P50	P51	P53	P54					P56	P57	P58	P59
PQ208	P74	P75	P77	P78					P80	P81	P82	P83
FT256	M8	L8	N8	P8					Т9	R9	P9	N9
FG320	N9	M9	U9	V9					U10	T10	R10	P10
FG400	W9	W10	R10	P10					P11	P12	V10	V11
FG484	V11	U11	R11	T11					R12	P12	Y12	W12

DLL Clock Output and Feedback Connections

As many as four of the nine DCM clock outputs can simultaneously drive four of the BUFGMUX buffers on the same die edge. All DCM clock outputs can simultaneously drive general routing resources, including interconnect leading to OBUF buffers.

The feedback loop is essential for DLL operation. Either the CLK0 or CLK2X outputs feed back to the CLKFB input via a BUFGMUX global buffer to eliminate the clock distribution delay. The specific BUFGMUX buffer used to feed back the CLK0 or CLK2X signal is ideally one of the BUFGMUX buffers associated with a specific DCM, as shown in Table 30, Table 31, and Table 32.

The feedback path also phase-aligns the other seven DLL outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X, or CLK2X180. The CLK_FEEDBACK attribute value must agree with the physical feedback connection. Use "1X" for CLK0 feedback and "2X" for CLK2X feedback. If the DFS unit is used stand-alone, without the DLL, then no feedback is required and set the CLK_FEEDBACK attribute to "NONE".

Two basic cases determine how to connect the DLL clock outputs and feedback connections: on-chip synchronization and off-chip synchronization, which are illustrated in Figure 42a through Figure 42d.

In the on-chip synchronization case in Figure 42a and Figure 42b, it is possible to connect any of the DLL's seven output clock signals through general routing resources to the FPGA's internal registers. Either a Global Clock Buffer (BUFG) or a BUFGMUX affords access to the global clock network. As shown in Figure 42a, the feedback loop is created by routing CLK0 (or CLK2X) in Figure 42b to a global clock net, which in turn drives the CLKFB input.

In the off-chip synchronization case in Figure 42c and Figure 42d, CLK0 (or CLK2X) plus any of the DLL's other output clock signals exit the FPGA using output buffers (OBUF) to drive an external clock network plus registers on the board. As shown in Figure 42c, the feedback loop is formed by feeding CLK0 (or CLK2X) in Figure 42d back into the FPGA, then to the DCM's CLKFB input via a Global Buffer Input, specified in Table 30.

(d) Off-Chip with CLK2X Feedback

DS099-2_09_082104

Figure 42: Input Clock, Output Clock, and Feedback Connections for the DLL

The connections for the bottom-edge BUFGMUX elements are similar to the top-edge connections (see Figure 46).

🗶 XILINX.

On the left and right edges, only two clock inputs feed each pair of BUFGMUX elements.

Figure 46: Clock Switch Matrix to BUFGMUX Pair Connectivity

Quadrant Clock Routing

The clock routing within the FPGA is quadrant-based, as shown in Figure 45. Each clock quadrant supports eight total clock signals, labeled 'A' through 'H' in Table 41 and Figure 47. The clock source for an individual clock line originates either from a global BUFGMUX element along the top and bottom edges or from a BUFGMUX element along the associated edge, as shown in Figure 47. The clock lines feed the synchronous resource elements (CLBs, IOBs, block RAM, multipliers, and DCMs) within the quadrant.

The four quadrants of the device are:

- Top Right (TR)
- Bottom Right (BR)
- Bottom Left (BL)
- Top Left (TL)

Note that the quadrant clock notation (TR, BR, BL, TL) is separate from that used for similar IOB placement constraints.

To estimate the quadrant location for a particular I/O, see the footprint diagrams in Module 4, Pinout Descriptions. For exact quadrant locations, use the floorplanning tool. In the QFP packages (VQ100, TQ144 and PQ208) the quadrant borders fall in the middle of each side of the package, at a GND pin. The clock inputs fall on the quadrant boundaries, as indicated in Table 42.

Table 42: QFP Package Clock Quadrant Locations

Clock Pins	Quadrant
GCLK[3:0]	BR
GCLK[7:4]	TR
GCLK[11:8]	TL
GCLK[15:12]	BL
RHCLK[3:0]	BR
RHCLK[7:4]	TR
LHCLK[3:0]	TL
LHCLK[7:4]	BL

In a few cases, a dedicated input is physically in one quadrant of the device but connects to a different clock quadrant:

- FT256, H16 is in clock quadrant BR
- FG320, K2 is in clock quadrant BL
- FG400, L8 is in clock quadrant TL and the I/O at N11 is in clock quadrant BL
- FG484, M2 is in clock quadrant TL and L15 is in clock quadrant BR

P Similarly, the FPGA's HSWAP pin must be Low to enable pull-up resistors on all user-I/O pins during configuration or High to disable the pull-up resistors. The HSWAP control must remain at a constant logic level throughout FPGA configuration. After configuration, when the FPGA's DONE output goes High, the HSWAP pin is

available as full-featured user-I/O pin and is powered by the VCCO_0 supply.

The FPGA's DOUT pin is used in daisy-chain applications, described later. In a single-FPGA application, the FPGA's DOUT pin is not used but is actively driving during the configuration process.

Pin Name	FPGA Direction	Description	During Configuration	After Configuration
HSWAP P	Input	User I/O Pull-Up Control . When Low during configuration, enables pull-up resistors in all I/O pins to respective I/O bank V _{CCO} input. 0: Pull-ups during configuration 1: No pull-ups	Drive at valid logic level throughout configuration.	User I/O
M[2:0]	Input	Mode Select . Selects the FPGA configuration mode. See Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins.	M2 = 0, M1 = 0, M0 = 0. Sampled when INIT_B goes High.	User I/O
DIN	Input	Serial Data Input.	Receives serial data from PROM's D0 output.	User I/O
CCLK	Output	Configuration Clock . Generated by FPGA internal oscillator. Frequency controlled by <i>ConfigRate</i> bitstream generator option. If CCLK PCB trace is long or has multiple connections, terminate this output to maintain signal integrity. See CCLK Design Considerations.	Drives PROM's CLK clock input.	User I/O
DOUT	Output	Serial Data Output.	Actively drives. Not used in single-FPGA designs. In a daisy-chain configuration, this pin connects to DIN input of the next FPGA in the chain.	User I/O
INIT_B	Open-drain bidirectional I/O	Initialization Indicator . Active Low. Goes Low at start of configuration during Initialization memory clearing process. Released at end of memory clearing, when mode select pins are sampled. Requires external 4.7 k Ω pull-up resistor to VCCO_2.	Connects to PROM's OE/RESET input. FPGA clears PROM's address counter at start of configuration, enables outputs during configuration. PROM also holds FPGA in Initialization state until PROM reaches Power-On Reset (POR) state. If CRC error detected during configuration, FPGA drives INIT_B Low.	User I/O. If unused in the application, drive INIT_B High.
DONE	Open-drain bidirectional I/O	FPGA Configuration Done . Low during configuration. Goes High when FPGA successfully completes configuration. Requires external 330 Ω pull-up resistor to 2.5V.	Connects to PROM's chip-enable (CE) input. Enables PROM during configuration. Disables PROM after configuration.	Pulled High via external pull-up. When High, indicates that the FPGA successfully configured.
PROG_B	Input	Program FPGA. Active Low. When asserted Low for 500 ns or longer, forces the FPGA to restart its configuration process by clearing configuration memory and resetting the DONE and INIT_B pins once PROG_B returns High. Recommend external 4.7 k Ω pull-up resistor to 2.5V. Internal pull-up value may be weaker (see Table 78). If driving externally with a 3.3V output, use an open-drain or open-collector driver or use a current limiting series resistor.	Must be High during configuration to allow configuration to start. Connects to PROM's CF pin, allowing JTAG PROM programming algorithm to reprogram the FPGA.	Drive PROG_B Low and release to reprogram FPGA.

Table 50: Serial Master Mode Connections

E XILINX.

SPI serial Flash PROMs and the Atmel AT45DB-series Data Flash PROMs using the <u>Platform Cable USB</u>, <u>Xilinx</u> <u>Parallel IV</u>, or other compatible programming cable.

Byte-Wide Peripheral Interface (BPI) Parallel Flash Mode

For additional information, refer to the "Master BPI Mode" chapter in UG332.

In Byte-wide Peripheral Interface (BPI) mode (M[2:0] = <0:1:0> or <0:1:1>), a Spartan-3E FPGA configures itself from an industry-standard parallel NOR Flash PROM, as illustrated in Figure 58. The FPGA generates up to a 24-bit address lines to access an attached parallel Flash. Only 20 address lines are generated for Spartan-3E FPGAs in the TQ144 package. Similarly, the XC3S100E FPGA in the CP132 package only has 20 address lines while the XC3S250E and XC3S500E FPGAs in the same package have 24 address lines. When using the VQ100 package, the BPI mode is not available when using parallel NOR Flash, but is supported using parallel Platform Flash (XCFxxP).

The BPI configuration interface is primarily designed for standard parallel NOR Flash PROMs and supports both byte-wide (x8) and byte-wide/halfword (x8/x16) PROMs. The interface functions with halfword-only (x16) PROMs, but the upper byte in a portion of the PROM remains unused. For configuration, the BPI interface does not require any specific Flash PROM features, such as boot block or a specific sector size.

The BPI interface also functions with Xilinx parallel Platform Flash PROMs (XCFxxP), although the FPGA's address lines are left unconnected.

The BPI interface also works equally wells with other asynchronous memories that use a similar SRAM-style interface such as SRAM, NVRAM, EEPROM, EPROM, or masked ROM.

NAND Flash memory is commonly used in memory cards for digital cameras. Spartan-3E FPGAs do not configure directly from NAND Flash memories.

The FPGA's internal oscillator controls the interface timing and the FPGA supplies the clock on the CCLK output pin. However, the CCLK signal is not used in single FPGA applications. Similarly, the FPGA drives three pins Low during configuration (LDC[2:0]) and one pin High during configuration (HDC) to the PROM's control inputs.

Maximum Bitstream Size for Daisy-Chains

The maximum bitstream length supported by Spartan-3E FPGAs in serial daisy-chains is 4,294,967,264 bits (4 Gbits), roughly equivalent to a daisy-chain with 720 XC3S1600E FPGAs. This is a limit only for serial daisy-chains where configuration data is passed via the FPGA's DOUT pin. There is no such limit for JTAG chains.

Configuration Sequence

For additional information including I/O behavior before and during configuration, refer to the "Sequence of Events" chapter in <u>UG332</u>.

The Spartan-3E configuration process is three-stage process that begins after the FPGA powers on (a POR event) or after the PROG_B input is asserted. Power-On Reset (POR) occurs after the V_{CCINT} , V_{CCAUX} , and the V_{CCO} Bank 2 supplies reach their respective input threshold levels. After either a POR or PROG_B event, the three-stage configuration process begins.

- 1. The FPGA clears (initializes) the internal configuration memory.
- 2. Configuration data is loaded into the internal memory.
- 3. The user-application is activated by a start-up process.

Figure 66 is a generalized block diagram of the Spartan-3E configuration logic, showing the interaction of different device inputs and Bitstream Generator (BitGen) options. A flow diagram for the configuration sequence of the Serial and Parallel modes appears in Figure 66. Figure 67 shows the Boundary-Scan or JTAG configuration sequence.

Initialization

Configuration automatically begins after power-on or after asserting the FPGA PROG_B pin, unless delayed using the FPGA's INIT_B pin. The FPGA holds the open-drain INIT_B signal Low while it clears its internal configuration memory. Externally holding the INIT_B pin Low forces the configuration sequencer to wait until INIT_B again goes High.

The FPGA signals when the memory-clearing phase is complete by releasing the open-drain INIT_B pin, allowing the pin to go High via the external pull-up resistor to VCCO_2.

Loading Configuration Data

After initialization, configuration data is written to the FPGA's internal memory. The FPGA holds the Global Set/Reset (GSR) signal active throughout configuration, holding all FPGA flip-flops in a reset state. The FPGA signals when the entire configuration process completes by releasing the DONE pin, allowing it to go High. The FPGA configuration sequence can also be initiated by asserting PROG_B. Once released, the FPGA begins clearing its internal configuration memory, and progresses through the remainder of the configuration process.

Single-Ended I/O Standards

Table 80: Recommended Operating Conditions for User I/Os Using Single-Ended Standards

IOSTANDARD	V	V _{CCO} for Drivers ⁽²⁾			V _{REF}			V _{IH} ⁽³⁾
Attribute	Min (V)	Nom (V)	Max (V)	Min (V)	Nom (V)	Max (V)	Max (V)	Min (V)
LVTTL	3.0	3.3	3.465				0.8	2.0
LVCMOS33 ⁽⁴⁾	3.0	3.3	3.465				0.8	2.0
LVCMOS25 ^(4,5)	2.3	2.5	2.7				0.7	1.7
LVCMOS18	1.65	1.8	1.95	V _B	_{EF} is not used	d for	0.4	0.8
LVCMOS15	1.4	1.5	1.6	the	ese I/O standa	ards	0.4	0.8
LVCMOS12	1.1	1.2	1.3				0.4	0.7
PCI33_3 ⁽⁶⁾	3.0	3.3	3.465				0.3 • V _{CCO}	0.5 • V _{CCO}
PCI66_3 ⁽⁶⁾	3.0	3.3	3.465				0.3 • V _{CCO}	0.5 • V _{CCO}
HSTL_I_18	1.7	1.8	1.9	0.8	0.9	1.1	V _{REF} - 0.1	V _{REF} + 0.1
HSTL_III_18	1.7	1.8	1.9	-	- 1.1 -			V _{REF} + 0.1
SSTL18_I	1.7	1.8	1.9	0.833	0.900	0.969	V _{REF} - 0.125	V _{REF} + 0.125
SSTL2_I	2.3	2.5	2.7	1.15	1.25	1.35	V _{REF} - 0.125	V _{REF} + 0.125

Notes:

- Descriptions of the symbols used in this table are as follows: 1.

 - $\begin{array}{l} V_{CCO} \mbox{the symbols dised in this table are as follows.} \\ V_{CCO} \mbox{the supply voltage for output drivers} \\ V_{REF} \mbox{the reference voltage for setting the input switching threshold} \\ V_{IL} \mbox{the input voltage that indicates a Low logic level} \\ V_{IH} \mbox{the input voltage that indicates a High logic level} \end{array}$
- The V_{CCO} rails supply only output drivers, not input circuits. 2.
- For device operation, the maximum signal voltage (V_{IH} max) may be as high as V_{IN} max. See Table 73. З.
- There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. 4.
- All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the V_{CCAUX} rail (2.5V). The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a standard 2.5V 5. configuration interface, apply 2.5V to the V_{CCO} lines of Banks 0, 1, and 2 at power-on as well as throughout configuration.
- For information on PCI IP solutions, see www.xilinx.com/pci. The PCIX IOSTANDARD is available and has equivalent characteristics but no 6. PCI-X IP is supported.

Table 97: Recommended Number of SimultaneouslySwitching Outputs per V_{CCO}/GND Pair

			Package Type					
Signal Si (IOSTAN	tandaro IDARD)	1)	VQ 100	TQ 144	PQ 208	CP 132	FT256 FG320 FG400 FG484	
Single-Ende	ed Star	ndar	ds	l				
LVTTL	Slow	2	34	20	19	52	60	
		4	17	10	10	26	41	
		6	17	10	7	26	29	
		8	8	6	6	13	22	
		12	8	6	5	13	13	
		16	5	5	5	6	11	
	Fast	2	17	17	17	26	34	
		4	9	9	9	13	20	
		6	7	7	7	13	15	
		8	6	6	6	6	12	
		12	5	5	5	6	10	
		16	5	5	5	5	9	
LVCMOS33	Slow	2	34	20	20	52	76	
		4	17	10	10	26	46	
		6	17	10	7	26	27	
		8	8	6	6	13	20	
		12	8	6	5	13	13	
		16	5	5	5	6	10	
	Fast	2	17	17	17	26	44	
		4	8	8	8	13	26	
		6	8	6	6	13	16	
		8	6	6	6	6	12	
		12	5	5	5	6	10	
		16	8	8	5	5	8	
LVCMOS25	Slow	2	28	16	16	42	76	
		4	13	10	10	19	46	
		6	13	7	7	19	33	
		8	6	6	6	9	24	
		12	6	6	6	9	18	
	Fast	2	17	16	16	26	42	
		4	9	9	9	13	20	
		6	9	7	7	13	15	
		8	6	6	6	6	13	
		12	5	5	5	6	11	
LVCMOS18	Slow	2	19	11	8	29	64	
		4	13	7	6	19	34	
		6	6	5	5	9	22	
		8	6	4	4	9	18	
	Fast	2	13	8	8	19	36	
		4	8	5	5	13	21	
		6	4	4	4	6	13	
		8	4	4	4	6	10	

Table 97: Recommended Number of SimultaneouslySwitching Outputs per V_{CCO}/GND Pair (Cont'd)

			Package Type							
Signal Standard (IOSTANDARD)			VQ 100	TQ 144	PQ 208	CP 132	FT256 FG320 FG400 FG484			
LVCMOS15	Slow	2	16	10	10	19	55			
		4	8	7	7	9	31			
		6	6	5	5	9	18			
	Fast	2	9	9	9	13	25			
		4	7	7	7	7	16			
		6	5	5	5	5	13			
LVCMOS12	Slow	2	17	11	11	16	55			
	Fast	2	10	10	10	10	31			
PCI33_3			8	8	8	16	16			
PCI66_3			8	8	8	13	13			
PCIX			7	7	7	11	11			
HSTL_I_18			10	10	10	16	17			
HSTL_III_18			10	10	10	16	16			
SSTL18_I			9	9	9	15	15			
SSTL2_I			12	12	12	18	18			
Differential	Standa	Irds	(Numb	er of I/	O Pairs	or Cha	nnels)			
LVDS_25			6	6	6	12	20			
BLVDS_25			4	4	4	4	4			
MINI_LVDS_2	25		6	6	6	12	20			
LVPECL_25					Input O	nly				
RSDS_25			6	6	6	12	20			
DIFF_HSTL_	18		5	5	5	8	8			
DIFF_HSTL_	III <mark>_</mark> 18		5	5	5	8	8			
DIFF_SSTL18	3_I		4	4	4	7	7			
DIFF_SSTL2	_I		6	6	6	9	8			

Notes:

- The numbers in this table are recommendations that assume sound board layout practice. This table assumes the following parasitic factors: combined PCB trace and land inductance per VCCO and GND pin of 1.0 nH, receiver capacitive load of 15 pF. Test limits are the VIL/VIH voltage limits for the respective I/O standard.
- 2. The PQ208 results are based on physical measurements of a PQ208 package soldered to a typical printed circuit board. All other results are based on worst-case simulation and an interpolation of the PQ208 physical results.
- 3. If more than one signal standard is assigned to the I/Os of a given bank, refer to XAPP689: Managing Ground Bounce in Large FPGAs for information on how to perform weighted average SSO calculations.

Byte Peripheral Interface (BPI) Configuration Timing

Shaded values indicate specifications on attached parallel NOR Flash PROM.

DS312-3_08_032409

Figure 77: Waveforms for Byte-wide Peripheral Interface (BPI) Configuration (BPI-DN mode shown)

Table	120:	Timing f	or Byte-v	vide Periphera	I Interface	(BPI)	Configuration	Mode
-------	------	----------	-----------	----------------	-------------	-------	---------------	------

Symbol	Description		Minimum	Maximum	Units	
T _{CCLK1}	Initial CCLK clock period		See Table 112			
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting		S	ee Table 112		
T _{MINIT}	Setup time on CSI_B, RDWR_B, and M[2:0] mode pins before INIT_B	50	-	ns		
T _{INITM}	Hold time on CSI_B, RDWR_B, and M[2:0] mode pins after INIT_B	0	-	ns		
T _{INITADDR}	Minimum period of initial A[23:0] address cycle; LDC[2:0] and HDC are asserted and valid	BPI-UP: (M[2:0] = <0:1:0>)	5	5	T _{CCLK1} cycles	
		BPI-DN: (M[2:0] = <0:1:1>)	2	2		
T _{CCO}	Address A[23:0] outputs valid after CCLK falling edge		S	ee Table 116		
T _{DCC}	Setup time on D[7:0] data inputs before CCLK rising edge		See Table 116			
T _{CCD}	Hold time on D[7:0] data inputs after CCLK rising edge		S	ee Table 116		

Spartan-3 FPGA Family: Pinout Descriptions

DS312 (4.0) October 29, 2012

Product Specification

Introduction

This section describes the various pins on a Spartan®-3E FPGA and how they connect within the supported component packages.

Pin Types

Most pins on a Spartan-3E FPGA are general-purpose, user-defined I/O pins. There are, however, up to 11 different functional types of pins on Spartan-3E packages, as outlined in Table 124. In the package footprint drawings that follow, the individual pins are color-coded according to pin type as in the table.

Type / Color Code	Description	Pin Name(s) in Type ⁽¹⁾
I/O	Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form differential I/Os.	IO IO_Lxxy_#
INPUT	Unrestricted, general-purpose input-only pin. This pin does not have an output structure, differential termination resistor, or PCI clamp diode.	IP IP_Lxxy_#
DUAL	Dual-purpose pin used in some configuration modes during the configuration process and then usually available as a user I/O after configuration. If the pin is not used during configuration, this pin behaves as an I/O-type pin. Some of the dual-purpose pins are also shared with bottom-edge global (GCLK) or right-half (RHCLK) clock inputs. See the Configuration section in Module 2 for additional information on these signals.	M[2:0] HSWAP CCLK MOSI/CSI_B D[7:1] D0/DIN CSO_B RDWR_B BUSY/DOUT INIT_B A[23:20] A19/VS2 A18/VS1 A17/VS0 A[16:0] LDC[2:0] HDC
VREF	Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other VREF pins in the same bank, provides a reference voltage input for certain I/O standards. If used for a reference voltage within a bank, all VREF pins within the bank must be connected.	IP/VREF_# IP_Lxxy_#/VREF_# IO/VREF_# IO_Lxxy_#/VREF_#
CLK	Either a user-I/O pin or Input-only pin, or an input to a specific clock buffer driver. Every package has 16 global clock inputs that optionally clock the entire device. The RHCLK inputs optionally clock the right-half of the device. The LHCLK inputs optionally clock the left-half of the device. Some of the clock pins are shared with the dual-purpose configuration pins and are considered DUAL-type. See the Clocking Infrastructure section in Module 2 for additional information on these signals.	IO_Lxxy_#/GCLK[15:10, 7:2] IP_Lxxy_#/GCLK[9:8, 1:0] IO_Lxxy_#/LHCLK[7:0] IO_Lxxy_#/RHCLK[7:0]
CONFIG	Dedicated configuration pin. Not available as a user-I/O pin. Every package has two dedicated configuration pins. These pins are powered by VCCAUX. See the Configuration section in Module 2 for details.	DONE, PROG_B
JTAG	Dedicated JTAG pin. Not available as a user-I/O pin. Every package has four dedicated JTAG pins. These pins are powered by VCCAUX.	TDI, TMS, TCK, TDO
GND	Dedicated ground pin. The number of GND pins depends on the package used. All must be connected.	GND

Table 124: Types of Pins on Spartan-3E FPGAs

© Copyright 2005–2012 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

PQ208 Footprint (Right)

User I/Os by Bank

Table 144, Table 145, and Table 146 indicate how the available user-I/O pins are distributed between the four I/O banks on the FT256 package.

The XC3S250E FPGA in the FT256 package has 18 unconnected balls, labeled with an "N.C." type. These pins are also indicated with the black diamond (♦) symbol in Figure 85.

Table 144: User I/Os Per Bank on XC3S250E in the FT256 Package

Package	I/O Bank	Maximum I/O	All Possible I/O Pins by Type						
Edge			I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾		
Тор	0	44	20	10	1	5	8		
Right	1	42	10	7	21	4	0 ⁽²⁾		
Bottom	2	44	8	9	24	3	0 ⁽²⁾		
Left	3	42	24	7	0	3	8		
TOTAL		172	62	33	46	15	16		

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 145: User I/Os Per Bank on XC3S500E in the FT256 Package

Package	I/O Bank	Maximum I/O	All Possible I/O Pins by Type					
Edge	1/O Balik		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾	
Тор	0	46	22	10	1	5	8	
Right	1	48	15	7	21	5	0 ⁽²⁾	
Bottom	2	48	11	9	24	4	0(2)	
Left	3	48	28	7	0	5	8	
TOTAL		190	76	33	46	19	16	

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 146: User I/Os Per Bank on XC3S1200E in the FT256 Package

Package	I/O Bank	Maximum I/O	All Possible I/O Pins by Type						
Edge	I/O Ballk		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾		
Тор	0	46	24	8	1	5	8		
Right	1	48	14	8	21	5	0 ⁽²⁾		
Bottom	2	48	13	7	24	4	0 ⁽²⁾		
Left	3	48	27	8	0	5	8		
TOTAL		190	78	31	46	19	16		

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

User I/Os by Bank

Table 149 and Table 150 indicate how the available user-I/O pins are distributed between the four I/O banks on the FG320 package.

Table 149: User I/Os Per Bank for XC3S500E in the FG320 Package

Package	VO Bonk	Maximum I/O	All Possible I/O Pins by Type						
Edge	I/O Balik		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾		
Тор	0	58	29	14	1	6	8		
Right	1	58	22	10	21	5	0 ⁽²⁾		
Bottom	2	58	17	13	24	4	0 ⁽²⁾		
Left	3	58	34	11	0	5	8		
TOTAL		232	102	48	46	20	16		

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 150: User I/Os Per Bank for XC3S1200E and XC3S1600E in the FG320 Package

Package	I/O Bank	Maximum I/O	All Possible I/O Pins by Type						
Edge			I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾		
Тор	0	61	34	12	1	6	8		
Right	1	63	25	12	21	5	0 ⁽²⁾		
Bottom	2	63	23	11	24	5	0(2)		
Left	3	63	38	12	0	5	8		
TOTAL		250	120	47	46	21	16		

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Footprint Migration Differences

Table 151 summarizes any footprint and functionalitydifferences between the XC3S500E, the XC3S1200E, andthe XC3S1600E FPGAs that may affect easy migrationbetween devices available in the FG320 package. There are26 such balls. All other pins not listed in Table 151unconditionally migrate between Spartan-3E devicesavailable in the FG320 package.

The XC3S500E is duplicated on both the left and right sides of the table to show migrations to and from the XC3S1200E

and the XC3S1600E. The arrows indicate the direction for easy migration. A double-ended arrow $(\leftarrow \rightarrow)$ indicates that the two pins have identical functionality. A left-facing arrow (\leftarrow) indicates that the pin on the device on the right unconditionally migrates to the pin on the device on the left. It may be possible to migrate the opposite direction depending on the I/O configuration. For example, an I/O pin (Type = I/O) can migrate to an input-only pin (Type = INPUT) if the I/O pin is configured as an input.

Table 1	51: FG3	20 Footprint	Migration	Differences

Pin	Bank	XC3S500E	Migration	XC3S1200E	Migration XC3S1600E		Migration	XC3S500E
A7	0	INPUT	\rightarrow	I/O	\leftrightarrow	I/O	÷	INPUT
A12	0	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
D4	3	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
D6	0	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
D13	0	INPUT	\rightarrow	I/O	\leftrightarrow	I/O	÷	INPUT
E3	3	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
E4	3	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
E6	0	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
E15	1	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
E16	1	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
E17	1	I/O	÷	INPUT	\leftrightarrow	INPUT	\rightarrow	I/O
F4	3	I/O	÷	INPUT	\leftrightarrow	INPUT	\rightarrow	I/O
N12	2	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
N14	1	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
N15	1	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
P3	3	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
P4	3	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
P12	2	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
P15	1	I/O	÷	INPUT	\leftrightarrow	INPUT	\rightarrow	I/O
P16	1	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
R4	3	VREF(I/O)	÷	VREF(INPUT)	\leftrightarrow	VREF(INPUT)	\rightarrow	VREF(I/O)
U6	2	INPUT	\rightarrow	I/O	\leftrightarrow	I/O	÷	INPUT
U13	2	INPUT	\rightarrow	I/O	\leftrightarrow	I/O	÷	INPUT
V5	2	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
V6	2	N.C.	\rightarrow	VREF	\leftrightarrow	VREF	÷	N.C.
V7	2	N.C.	\rightarrow	I/O	\leftrightarrow	I/O	÷	N.C.
	DIFFERE	NCES	26		0		26	

Legend:

 \leftrightarrow This pin is identical on the device on the left and the right.

+ This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction may be possible depending on how the pin is configured for the device on the right.

+ This pin can unconditionally migrate from the device on the right to the device on the left. Migration in the other direction may be possible depending on how the pin is configured for the device on the left.

FG484: 484-ball Fine-pitch Ball Grid Array

The 484-ball fine-pitch ball grid array, FG484, supports the XC3S1600E FPGA.

Table 154 lists all the FG484 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at:

http://www.xilinx.com/support/documentation/data_sheets /s3e_pin.zip

Pinout Table

Table 154	: FG484 Package Pinout		
Bank	XC3S1600E Pin Name	FG484 Ball	Туре
0	Ю	B6	I/O
0	Ю	B13	I/O
0	Ю	C5	I/O
0	Ю	C14	I/O
0	Ю	E16	I/O
0	Ю	F9	I/O
0	Ю	F16	I/O
0	Ю	G8	I/O
0	Ю	H10	I/O
0	Ю	H15	I/O
0	Ю	J11	I/O
0	IO/VREF_0	G12	VREF
0	IO_L01N_0	C18	I/O
0	IO_L01P_0	C19	I/O
0	IO_L03N_0/VREF_0	A20	VREF
0	IO_L03P_0	A21	I/O
0	IO_L04N_0	A19	I/O
0	IO_L04P_0	A18	I/O
0	IO_L06N_0	C16	I/O
0	IO_L06P_0	D16	I/O
0	IO_L07N_0	A16	I/O
0	IO_L07P_0	A17	I/O
0	IO_L09N_0/VREF_0	B15	VREF
0	IO_L09P_0	C15	I/O
0	IO_L10N_0	G15	I/O
0	IO_L10P_0	F15	I/O
0	IO_L11N_0	D14	I/O
0	IO_L11P_0	E14	I/O
0	IO_L12N_0/VREF_0	A14	VREF

Table 154	: FG484 Package Pinout (0	Cont'd)	
Bank	XC3S1600E Pin Name	FG484 Ball	Туре
0	IO_L12P_0	A15	I/O
0	IO_L13N_0	H14	I/O
0	IO_L13P_0	G14	I/O
0	IO_L15N_0	G13	I/O
0	IO_L15P_0	F13	I/O
0	IO_L16N_0	J13	I/O
0	IO_L16P_0	H13	I/O
0	IO_L18N_0/GCLK5	E12	GCLK
0	IO_L18P_0/GCLK4	F12	GCLK
0	IO_L19N_0/GCLK7	C12	GCLK
0	IO_L19P_0/GCLK6	B12	GCLK
0	IO_L21N_0/GCLK11	B11	GCLK
0	IO_L21P_0/GCLK10	C11	GCLK
0	IO_L22N_0	D11	I/O
0	IO_L22P_0	E11	I/O
0	IO_L24N_0	A9	I/O
0	IO_L24P_0	A10	I/O
0	IO_L25N_0/VREF_0	D10	VREF
0	IO_L25P_0	C10	I/O
0	IO_L27N_0	H8	I/O
0	IO_L27P_0	H9	I/O
0	IO_L28N_0	C9	I/O
0	IO_L28P_0	B9	I/O
0	IO_L29N_0	E9	I/O
0	IO_L29P_0	D9	I/O
0	IO_L30N_0	B8	I/O
0	IO_L30P_0	A8	I/O
0	IO_L32N_0/VREF_0	F7	VREF
0	IO_L32P_0	F8	I/O
0	IO_L33N_0	A6	I/O
0	IO_L33P_0	A7	I/O
0	IO_L35N_0	A4	I/O
0	IO_L35P_0	A5	I/O
0	IO_L36N_0	E7	I/O
0	IO_L36P_0	D7	I/O
0	IO_L38N_0/VREF_0	D6	VREF
0	IO_L38P_0	D5	I/O
0	IO_L39N_0	B4	I/O
0	IO_L39P_0	B3	I/O
0	IO_L40N_0/HSWAP	D4	DUAL
0	IO_L40P_0	C4	I/O
0	IP	B19	INPUT

Spartan-3 FPGA Family: Pinout Descriptions

Bank 0												
12	13	14	15	16	17	18	19	20	21	22	ľ	
INPUT L17N_0	INPUT L17P_0	1/O L12N_0 VREF_0	I/O L12P_0	I/O L07N_0	I/O L07P_0	I/O L04P_0	I/O L04N_0	L03N_0 VREF_0	I/O L03P_0	GND	A	
I/O L19P_0 GCLK6	I/O	VCCO_0	I/O L09N_0 VREF_0	GND	INPUT L05P_0	VCCO_0	INPUT	TDO	I/O L38N_1 LDC2	I/O L38P_1 LDC1	в	
I/O L19N_0 GCLK7	INPUT L14P_0	I/O	I/O L09P_0	I/O L06N_0	INPUT L05N_0	I/O L01N_0	I/O L01P_0	GND	I/O L37N_1 LDC0	I/O L37P_1 HDC	с	
VCCAUX	INPUT L14N_0	I/O L11N_0	INPUT L08P_0	I/O L06P_0	INPUT L02N_0	INPUT L02P_0	TMS	INPUT	INPUT VREF_1	I/O L34N_1	D	
I/O L18N_0 GCLK5	GND	I/O L11P_0	INPUT L08N_0	I/O	тск	VCCAUX	I/O L36P_1	I/O L36N_1	VCCO_1	I/O L34P_1	Е	
I/O L18P_0 GCLK4	I/O L15P_0	VCCO_0	I/O L10P_0	I/O	GND	I/O L35P_1	I/O L35N_1	I/O L32N_1	INPUT	I/O L31N_1	F	
I/O VREF_0	I/O L15N_0	I/O L13P_0	I/O L10N_0	INPUT	I/O L30P_1	I/O L33N_1	I/O L33P_1	I/O L32P_1	GND	I/O L31P_1	G	
INPUT L20P_0 GCLK8	I/O L16P_0	I/O L13N_0	1/0	INPUT	I/O L30N_1	VCCO_1	I/O L29P_1	I/O L29N_1	I/O L28N_1 VREF_1	I/O L28P_1	н	
GND	I/O L16N_0	GND	I/O L25P_1	INPUT	I/O L27N_1	I/O L27P_1	GND	I/O L26N_1	I/O L26P_1	INPUT	J	
GND	VCCINT	VCCAUX	I/O L25N_1	I/O L23P_1	I/O L23N_1 A0	I/O L24P_1	I/O L24N_1	INPUT	VCCO_1	I/O L22N_1 A1	к	
VCCINT	GND	VCCINT	INPUT	VCCO_1	INPUT VREF_1	I/O L21P_1 A4 RHCLK6	I/O L21N_1 A3 RHCLK7	I/O L20P_1 A6 RHCLK4 IRDY1	I/O L20N_1 A5 RHCLK5	I/O L22P_1 A2	L	k 1
VCCINT	VCCINT	GND	I/O L19P_1 A8 RHCLK2	I/O L19N_1 A7 RHCLK3 TRDY1	GND	INPUT	VCCAUX	I/O L17N_1 VREF_1	GND	I/O L18N_1 A9 RHCLK1	м	Bar
VCCINT	GND	VCCINT	INPUT	I/O L16N_1 A11	I/O L16P_1 A12	I/O L15N_1	I/O L15P_1	I/O L17P_1	INPUT	I/O L18P_1 A10 RHCLK0	N	
INPUT L21N_2 M2 GCLK1	VCCINT	GND	I/O L14N_1	I/O L14P_1	I/O L12P_1	I/O L12N_1 VREF_1	GND	INPUT	VCCO_1	I/O L13N_1	Ρ	
INPUT L21P_2 RDWR_B GCLK0	INPUT L24N_2	I/O L27P_2	INPUT	I/O L10N_1	VCCO_1	I/O L09P_1	I/O L09N_1	I/O L11P_1	I/O L11N_1	I/O L13P_1	R	
VCCO_2	INPUT L24P_2	I/O L27N_2	INPUT L31N_2 VREF_2	I/O L10P_1	INPUT	I/O L06P_1	I/O L06N_1	INPUT	GND	I/O L08N_1	т	
I/O L23N_2 DIN D0	I/O L26P_2	I/O L26N_2 VREF_2	INPUT L31P_2	I/O L33N_2	GND	INPUT	I/O L04N_1	I/O L07N_1 VREF_1	I/O L07P_1	I/O L08P_1	U	
I/O L23P_2 M0	GND	I/O L29P_2	VCCO_2	I/O L33P_2	INPUT	VCCAUX	I/O L04P_1	I/O L03P_1	VCCO_1	I/O L05N_1	v	
I/O L22N_2 D1 GCLK3	I/O L25P_2	I/O L29N_2	I/O L32N_2	INPUT L34P_2	I/O L36N_2	I/O L38P_2 A21	I/O L40N_2 CCLK	I/O L03N_1 VREF_1	I/O L02N_1 A13	I/O L05P_1	w	
I/O L22P_2 D2 GCLK2	I/O L25N_2	I/O L28N_2	I/O L32P_2	INPUT L34N_2	I/O L36P_2	I/O L38N_2 A20	I/O L40P_2 VS0 A17	GND	I/O L02P_1 A14	I/O L01N_1 A15	Y	
I/O M1	VCCO_2	I/O L28P_2	I/O L30P_2	GND	I/O L35P_2 A23	VCCO_2	INPUT L37N_2	I/O L39N_2 VS1 A18		I/O L01P_1 A16	A A	
GND	I/O	I/O	I/O L30N_2	I/O	I/O L35N_2 A22	I/O	INPUT L37P_2	I/O L39P_2 VS2 A19	I/O VREF_2	GND	A B	

FG484 Footprint

Right Half of Package (top view)

Bank 2

DS312_11_101905

www.xilinx.com