E·XF

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	612
Number of Logic Elements/Cells	5508
Total RAM Bits	221184
Number of I/O	158
Number of Gates	250000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s250e-4pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Spartan-3 FPGA Family: Introduction and Ordering Information

DS312 (4.0) October 29, 2012

Product Specification

Introduction

The Spartan®-3E family of Field-Programmable Gate Arrays (FPGAs) is specifically designed to meet the needs of high volume, cost-sensitive consumer electronic applications. The five-member family offers densities ranging from 100,000 to 1.6 million system gates, as shown in Table 1.

The Spartan-3E family builds on the success of the earlier Spartan-3 family by increasing the amount of logic per I/O, significantly reducing the cost per logic cell. New features improve system performance and reduce the cost of configuration. These Spartan-3E FPGA enhancements, combined with advanced 90 nm process technology, deliver more functionality and bandwidth per dollar than was previously possible, setting new standards in the programmable logic industry.

Because of their exceptionally low cost, Spartan-3E FPGAs are ideally suited to a wide range of consumer electronics applications, including broadband access, home networking, display/projection, and digital television equipment.

The Spartan-3E family is a superior alternative to mask programmed ASICs. FPGAs avoid the high initial cost, the lengthy development cycles, and the inherent inflexibility of conventional ASICs. Also, FPGA programmability permits design upgrades in the field with no hardware replacement necessary, an impossibility with ASICs.

Features

- Very low cost, high-performance logic solution for high-volume, consumer-oriented applications
- Proven advanced 90-nanometer process technology
- Multi-voltage, multi-standard SelectIO[™] interface pins
 - Up to 376 I/O pins or 156 differential signal pairs

Table 1: Summary of Spartan-3E FPGA Attributes

- LVCMOS, LVTTL, HSTL, and SSTL single-ended signal standards
- 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling
- 622+ Mb/s data transfer rate per I/O
- True LVDS, RSDS, mini-LVDS, differential HSTL/SSTL differential I/O
- Enhanced Double Data Rate (DDR) support
- DDR SDRAM support up to 333 Mb/s
- Abundant, flexible logic resources
 - Densities up to 33,192 logic cells, including optional shift register or distributed RAM support
 - Efficient wide multiplexers, wide logic
 - Fast look-ahead carry logic
 - Enhanced 18 x 18 multipliers with optional pipeline
 - IEEE 1149.1/1532 JTAG programming/debug port
- Hierarchical SelectRAM[™] memory architecture
 - Up to 648 Kbits of fast block RAM
 - Up to 231 Kbits of efficient distributed RAM
- Up to eight Digital Clock Managers (DCMs)
 - Clock skew elimination (delay locked loop)
 - Frequency synthesis, multiplication, division
 - High-resolution phase shifting
 - Wide frequency range (5 MHz to over 300 MHz)
- Eight global clocks plus eight additional clocks per each half of device, plus abundant low-skew routing
- Configuration interface to industry-standard PROMs
 - Low-cost, space-saving SPI serial Flash PROM
 - x8 or x8/x16 parallel NOR Flash PROM
 - Low-cost Xilinx® Platform Flash with JTAG
- Complete Xilinx <u>ISE</u>® and <u>WebPACK</u>™ software
- MicroBlaze[™] and PicoBlaze[™] embedded processor cores
- Fully compliant 32-/64-bit 33 MHz <u>PCI support</u> (66 MHz in some devices)
- Low-cost QFP and BGA packaging options
- Common footprints support easy density migration
- Pb-free packaging options
- XA Automotive version available

Device System Gates	System	System	System	System	System	System	System	System	System	System	System	System	System	System	Equivalent	(CLB One CLB =	Array Four Slic	es)	Distributed	Block	Dedicated	DCMa	Maximum	Maximum
	Logic Cells	Rows	Columns	Total CLBs	Total Slices	RAM bits ⁽¹⁾	bits ⁽¹⁾	Multipliers	DCINIS	User I/O	I/O Pairs														
XC3S100E	100K	2,160	22	16	240	960	15K	72K	4	2	108	40													
XC3S250E	250K	5,508	34	26	612	2,448	38K	216K	12	4	172	68													
XC3S500E	500K	10,476	46	34	1,164	4,656	73K	360K	20	4	232	92													
XC3S1200E	1200K	19,512	60	46	2,168	8,672	136K	504K	28	8	304	124													
XC3S1600E	1600K	33,192	76	58	3,688	14,752	231K	648K	36	8	376	156													

Notes:

1. By convention, one Kb is equivalent to 1,024 bits.

© Copyright 2005–2012 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, Artix, Kintex, Zynq, Vivado, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

Input Delay Functions

Each IOB has a programmable delay block that optionally delays the input signal. In Figure 6, the signal path has a coarse delay element that can be bypassed. The input signal then feeds a 6-tap delay line. The coarse and tap delays vary; refer to timing reports for specific delay values. All six taps are available via a multiplexer for use as an asynchronous input directly into the FPGA fabric. In this way, the delay is programmable in 12 steps. Three of the six taps are also available via a multiplexer to the D inputs of the synchronous storage elements. The delay inserted in the path to the storage element can be varied in six steps. The first, coarse delay element is common to both asynchronous and synchronous paths, and must be either used or not used for both paths.

The delay values are set up in the silicon once at configuration time—they are non-modifiable in device operation.

The primary use for the input delay element is to adjust the input delay path to ensure that there is no hold time requirement when using the input flip-flop(s) with a global clock. The default value is chosen automatically by the Xilinx software tools as the value depends on device size and the specific device edge where the flip-flop resides. The value set by the Xilinx ISE software is indicated in the Map report generated by the implementation tools, and the resulting effects on input timing are reported using the Timing Analyzer tool.

If the design uses a DCM in the clock path, then the delay element can be safely set to zero because the Delay-Locked Loop (DLL) compensation automatically ensures that there is still no input hold time requirement.

Both asynchronous and synchronous values can be modified, which is useful where extra delay is required on clock or data inputs, for example, in interfaces to various types of RAM.

These delay values are defined through the IBUF_DELAY_VALUE and the IFD_DELAY_VALUE parameters. The default IBUF_DELAY_VALUE is 0, bypassing the delay elements for the asynchronous input. The user can set this parameter to 0-12. The default IFD_DELAY_VALUE is AUTO. IBUF_DELAY_VALUE and IFD_DELAY_VALUE are independent for each input. If the same input pin uses both registered and non-registered input paths, both parameters can be used, but they must both be in the same half of the total delay (both either bypassing or using the coarse delay element).

Figure 6: Programmable Fixed Input Delay Elements

Storage Element Functions

There are three pairs of storage elements in each IOB, one pair for each of the three paths. It is possible to configure each of these storage elements as an edge-triggered D-type flip-flop (FD) or a level-sensitive latch (LD).

The storage-element pair on either the Output path or the Three-State path can be used together with a special multiplexer to produce Double-Data-Rate (DDR) transmission. This is accomplished by taking data synchronized to the clock signal's rising edge and converting it to bits synchronized on both the rising and the falling edge. The combination of two registers and a multiplexer is referred to as a Double-Data-Rate D-type flip-flop (ODDR2).

Table 4 describes the signal paths associated with thestorage element.

Storage Element Signal	Description	Function
D	Data input	Data at this input is stored on the active edge of CK and enabled by CE. For latch operation when the input is enabled, data passes directly to the output Q.
Q	Data output	The data on this output reflects the state of the storage element. For operation as a latch in transparent mode, Q mirrors the data at D.
СК	Clock input	Data is loaded into the storage element on this input's active edge with CE asserted.
CE	Clock Enable input	When asserted, this input enables CK. If not connected, CE defaults to the asserted state.
SR	Set/Reset input	This input forces the storage element into the state specified by the SRHIGH/SRLOW attributes. The SYNC/ASYNC attribute setting determines if the SR input is synchronized to the clock or not. If both SR and REV are active at the same time, the storage element gets a value of 0.
REV	Reverse input	This input is used together with SR. It forces the storage element into the state opposite from what SR does. The SYNC/ASYNC attribute setting determines whether the REV input is synchronized to the clock or not. If both SR and REV are active at the same time, the storage element gets a value of 0.

Table 4: Storage Element Signal Description

As shown in Figure 5, the upper registers in both the output and three-state paths share a common clock. The OTCLK1 clock signal drives the CK clock inputs of the upper registers on the output and three-state paths. Similarly, OTCLK2 drives the CK inputs for the lower registers on the output and three-state paths. The upper and lower registers on the input path have independent clock lines: ICLK1 and ICLK2.

The OCE enable line controls the CE inputs of the upper and lower registers on the output path. Similarly, TCE

controls the CE inputs for the register pair on the three-state path and ICE does the same for the register pair on the input path.

The Set/Reset (SR) line entering the IOB controls all six registers, as is the Reverse (REV) line.

In addition to the signal polarity controls described in IOB Overview, each storage element additionally supports the controls described in Table 5.

Option Switch	Function	Specificity
FF/Latch	Chooses between an edge-triggered flip-flop or a level-sensitive latch	Independent for each storage element
SYNC/ASYNC	Determines whether the SR set/reset control is synchronous or asynchronous	Independent for each storage element
SRHIGH/SRLOW	Determines whether SR acts as a Set, which forces the storage element to a logic 1 (SRHIGH) or a Reset, which forces a logic 0 (SRLOW)	Independent for each storage element, except when using ODDR2. In the latter case, the selection for the upper element will apply to both elements.
INIT1/INIT0	When Global Set/Reset (GSR) is asserted or after configuration this option specifies the initial state of the storage element, either set (INIT1) or reset (INIT0). By default, choosing SRLOW also selects INIT0; choosing SRHIGH also selects INIT1.	Independent for each storage element, except when using ODDR2, which uses two IOBs. In the ODDR2 case, selecting INIT0 for one IOBs applies to both elements within the IOB, although INIT1 could be selected for the elements in the other IOB.

Table 5: Storage Element Options

Table 7: Differential IOSTANDARD Bank Compatibility

Differential		V _{CCO} Supply		Input	Differential Bank	
IOSTANDARD	1.8V	2.5V	3.3V	Requirements: V _{REF}	Restriction ⁽¹⁾	
LVDS_25	Input	Input, On-chip Differential Termination, Output	t, al Termination, Input ut		Applies to Outputs Only	
RSDS_25	Input	Input, On-chip Differential Termination, Output	Input		Applies to Outputs Only	
MINI_LVDS_25 Input		Input, On-chip Differential Termination, Input Output			Applies to Outputs Only	
LVPECL_25	Input	Input	Input	V _{BEE} is not used for		
BLVDS_25	Input	Input, Output	Input	these I/O standards		
DIFF_HSTL_I_18	Input, Output	Input	Input		No Differential Bank Restriction	
DIFF_HSTL_III_18 Input, Output		Input	Input		(other I/O bank restrictions might	
DIFF_SSTL18_I	Input, Output	Input	Input		appiy)	
DIFF_SSTL2_I	Input	Input, Output	Input			

Notes:

Each bank can support any two of the following: LVDS_25 outputs, MINI_LVDS_25 outputs, RSDS_25 outputs. 1.

HSTL and SSTL inputs use the Reference Voltage (V_{REF}) to bias the input-switching threshold. Once a configuration data file is loaded into the FPGA that calls for the I/Os of a given bank to use HSTL/SSTL, a few specifically reserved I/O pins on the same bank automatically convert to V_{BFF} inputs. For banks that do not contain HSTL or SSTL, V_{RFF} pins remain available for user I/Os or input pins.

Differential standards employ a pair of signals, one the opposite polarity of the other. The noise canceling properties (for example, Common-Mode Rejection) of these standards permit exceptionally high data transfer rates. This subsection introduces the differential signaling capabilities of Spartan-3E devices.

Each device-package combination designates specific I/O pairs specially optimized to support differential standards. A unique L-number, part of the pin name, identifies the line-pairs associated with each bank (see Module 4, Pinout Descriptions). For each pair, the letters P and N designate the true and inverted lines, respectively. For example, the pin names IO_L43P_3 and IO_L43N_3 indicate the true and inverted lines comprising the line pair L43 on Bank 3.

V_{CCO} provides current to the outputs and additionally powers the On-Chip Differential Termination. V_{CCO} must be 2.5V when using the On-Chip Differential Termination. The V_{BFF} lines are not required for differential operation.

To further understand how to combine multiple IOSTANDARDs within a bank, refer to IOBs Organized into Banks, page 18.

On-Chip Differential Termination

Spartan-3E devices provide an on-chip ~120 Ω differential termination across the input differential receiver terminals. The on-chip input differential termination in Spartan-3E devices potentially eliminates the external 100Ω termination resistor commonly found in differential receiver circuits. Differential termination is used for LVDS, mini-LVDS, and RSDS as applications permit.

On-chip Differential Termination is available in banks with $V_{CCO} = 2.5V$ and is not supported on dedicated input pins. Set the DIFF_TERM attribute to TRUE to enable Differential Termination on a differential I/O pin pair.

The DIFF_TERM attribute uses the following syntax in the UCF file:

INST <1/0_BUFFER_INSTANTIATION_NAME> DIFF_TERM = "<TRUE/FALSE>";

Pull-Up and Pull-Down Resistors

Pull-up and pull-down resistors inside each IOB optionally force a floating I/O or Input-only pin to a determined state. Pull-up and pull-down resistors are commonly applied to unused I/Os, inputs, and three-state outputs, but can be used on any I/O or Input-only pin. The pull-up resistor connects an IOB to V_{CCO} through a resistor. The resistance value depends on the V_{CCO} voltage (see Module 3, DC and Switching Characteristics for the specifications). The pull-down resistor similarly connects an IOB to ground with a resistor. The PULLUP and PULLDOWN attributes and library primitives turn on these optional resistors.

By default, PULLDOWN resistors terminate all unused I/O and Input-only pins. Unused I/O and Input-only pins can alternatively be set to PULLUP or FLOAT. To change the unused I/O Pad setting, set the Bitstream Generator (BitGen) option *UnusedPin* to PULLUP, PULLDOWN, or FLOAT. The *UnusedPin* option is accessed through the Properties for Generate Programming File in ISE. See Bitstream Generator (BitGen) Options.

During configuration a Low logic level on the HSWAP pin activates pull-up resistors on all I/O and Input-only pins not actively used in the selected configuration mode.

Keeper Circuit

Each I/O has an optional keeper circuit (see Figure 12) that keeps bus lines from floating when not being actively driven. The KEEPER circuit retains the last logic level on a line after all drivers have been turned off. Apply the KEEPER attribute or use the KEEPER library primitive to use the KEEPER circuitry. Pull-up and pull-down resistors override the KEEPER settings.

Figure 12: Keeper Circuit

Slew Rate Control and Drive Strength

Each IOB has a slew-rate control that sets the output switching edge-rate for LVCMOS and LVTTL outputs. The SLEW attribute controls the slew rate and can either be set to SLOW (default) or FAST.

Each LVCMOS and LVTTL output additionally supports up to six different drive current strengths as shown in Table 8. To adjust the drive strength for each output, the DRIVE attribute is set to the desired drive strength: 2, 4, 6, 8, 12, and 16. Unless otherwise specified in the FPGA application, the software default IOSTANDARD is LVCMOS25, SLOW slew rate, and 12 mA output drive.

Table	8:	Programmable	Output	Drive	Current
-------	----	--------------	--------	-------	---------

	Output Drive Current (mA)							
IOSTANDAND	2	4	6	8	12	16		
LVTTL	~	~	~	~	~	~		
LVCMOS33	~	~	~	~	~	~		
LVCMOS25	~	~	~	~	~	-		
LVCMOS18	~	~	~	~	-	-		
LVCMOS15	~	~	~	-	-	-		
LVCMOS12	~	-	-	-	-	-		

High output current drive strength and FAST output slew rates generally result in fastest I/O performance. However, these same settings generally also result in transmission line effects on the printed circuit board (PCB) for all but the shortest board traces. Each IOB has independent slew rate and drive strength controls. Use the slowest slew rate and lowest output drive current that meets the performance requirements for the end application.

Likewise, due to lead inductance, a given package supports a limited number of simultaneous switching outputs (SSOs) when using fast, high-drive outputs. Only use fast, high-drive outputs when required by the application. There are a number of different conditions under which data can be accessed at the DO outputs. Basic data access always occurs when the WE input is inactive. Under this condition, data stored in the memory location addressed by the ADDR lines passes through a output latch to the DO outputs. The timing for basic data access is shown in the

XILINX.

portions of Figure 33, Figure 34, and Figure 35 during which WE is Low.

Data also can be accessed on the DO outputs when asserting the WE input based on the value of the WRITE_MODE attribute as described in Table 26.

Table 26: WRITE_MODE Effect on Data Output Latches During Write Operations

Write Mode	Effect on Same Port	Effect on Opposite Port (dual-port only with same address)
WRITE_FIRST Read After Write	Data on DI and DIP inputs is written into specified RAM location and simultaneously appears on DO and DOP outputs.	Invalidates data on DO and DOP outputs.
READ_FIRST Read Before Write	Data from specified RAM location appears on DO and DOP outputs. Data on DI and DIP inputs is written into specified location.	Data from specified RAM location appears on DO and DOP outputs.
NO_CHANGE No Read on Write	Data on DO and DOP outputs remains unchanged. Data on DI and DIP inputs is written into specified location.	Invalidates data on DO and DOP outputs.

Setting the WRITE_MODE attribute to a value of WRITE_FIRST, data is written to the addressed memory location on an enabled active CLK edge and is also passed to the DO outputs. WRITE_FIRST timing is shown in the portion of Figure 33 during which WE is High.

Setting the WRITE_MODE attribute to a value of READ_FIRST, data already stored in the addressed location passes to the DO outputs before that location is overwritten with new data from the DI inputs on an enabled active CLK edge. READ_FIRST timing is shown in the portion of Figure 34 during which WE is High.

cancel out the clock skew. When the DLL phase-aligns the CLK0 signal with the CLKIN signal, it asserts the LOCKED output, indicating a lock on to the CLKIN signal.

DLL Attributes and Related Functions

The DLL unit has a variety of associated attributes as described in Table 29. Each attribute is described in detail in the sections that follow.

Table 29: DLL Attributes

EXILINX

Attribute	Description	Values
CLK_FEEDBACK	Chooses either the CLK0 or CLK2X output to drive the CLKFB input	NONE, <u>1X</u> , 2X
CLKIN_DIVIDE_BY_2	Halves the frequency of the CLKIN signal just as it enters the DCM	FALSE, TRUE
CLKDV_DIVIDE	Selects the constant used to divide the CLKIN input frequency to generate the CLKDV output frequency	1.5, 2 , 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.0, 6.5, 7.0, 7.5, 8 , 9, 10, 11, 12, 13, 14, 15, and 16
CLKIN_PERIOD	Additional information that allows the DLL to operate with the most efficient lock time and the best jitter tolerance	Floating-point value representing the CLKIN period in nanoseconds

DLL Clock Input Connections

For best results, an external clock source enters the FPGA via a Global Clock Input (GCLK). Each specific DCM has four possible direct, optimal GCLK inputs that feed the DCM's CLKIN input, as shown in Table 30. Table 30 also provides the specific pin numbers by package for each GCLK input. The two additional DCM's on the XC3S1200E and XC3S1600E have similar optimal connections from the left-edge LHCLK and the right-edge RHCLK inputs, as described in Table 31 and Table 32.

 The DCM supports differential clock inputs (for example, LVDS, LVPECL_25) via a pair of GCLK inputs that feed an internal single-ended signal to the DCM's CLKIN input.

Design Note

Avoid using global clock input GCLK1 as it is always shared with the M2 mode select pin. Global clock inputs GCLK0, GCLK2, GCLK3, GCLK12, GCLK13, GCLK14, and GCLK15 have shared functionality in some configuration modes.

FIXED Phase Shift Mode

The FIXED phase shift mode shifts the DCM outputs by a fixed amount (T_{PS}), controlled by the user-specified PHASE_SHIFT attribute. The PHASE_SHIFT value (shown as P in Figure 44) must be an integer ranging from –255 to +255. PHASE_SHIFT specifies a phase shift delay as a fraction of the T_{CLKIN}. The phase shift behavior is different between ISE 8.1, Service Pack 3 and prior software versions, as described below.

Design Note

Prior to ISE 8.1i, Service Pack 3, the FIXED phase shift feature operated differently than the Spartan-3 DCM design primitive and simulation model. Designs using software prior to ISE 8.1i, Service Pack 3 require recompilation using the latest ISE software release. The following Answer Record contains additional information:

http://www.xilinx.com/support/answers/23153.htm.

FIXED Phase Shift using ISE 8.1i, Service Pack 3 and later: See Equation 2. The value corresponds to a phase shift range of -360° to $+360^{\circ}$, which matches behavior of the Spartan-3 DCM design primitive and simulation model.

$$t_{PS} = \left(\frac{PHASESHIFT}{256}\right) \bullet T_{CLKIN} \qquad Eq 2$$

FIXED Phase Shift prior to ISE 8.1i, Service Pack 3: See Equation 3. The value corresponds to a phase shift range of -180° to $+180^{\circ}$ degrees, which is different from the Spartan-3 DCM design primitive and simulation model. Designs created prior to ISE 8.1i, Service Pack 3 must be recompiled using the most recent ISE development software.

$$t_{PS} = \left(\frac{PHASESHIFT}{512}\right) \bullet T_{CLKIN} \qquad Eq 3$$

When the PHASE_SHIFT value is zero, CLKFB and CLKIN are in phase, the same as when the PS unit is disabled. When the PHASE_SHIFT value is positive, the DCM outputs are shifted later in time with respect to CLKIN input. When the attribute value is negative, the DCM outputs are shifted earlier in time with respect to CLKIN.

Figure 44b illustrates the relationship between CLKFB and CLKIN in the Fixed Phase mode. In the Fixed Phase mode, the PSEN, PSCLK, and PSINCDEC inputs are not used and must be tied to GND.

Equation 2 or Equation 3 applies only to FIXED phase shift mode. The VARIABLE phase shift mode operates differently.

Figure 44: NONE and FIXED Phase Shifter Waveforms (ISE 8.1i, Service Pack 3 and later)

Configuration Bitstream Image Sizes

A specific Spartan-3E part type always requires a constant number of configuration bits, regardless of design complexity, as shown in Table 45. The configuration file size for a multiple-FPGA daisy-chain design roughly equals the sum of the individual file sizes.

Table 45: Number of Bits to Program a Spartan-3EFPGA (Uncompressed Bitstreams)

Spartan-3E FPGA	Number of Configuration Bits
XC3S100E	581,344
XC3S250E	1,353,728
XC3S500E	2,270,208
XC3S1200E	3,841,184
XC3S1600E	5,969,696

Pin Behavior During Configuration

For additional information, refer to the "Configuration Pins and Behavior during Configuration" chapter in <u>UG332</u>.

Table 46 shows how various pins behave during the FPGAconfiguration process. The actual behavior depends on the

Table 46: Pin Behavior during Configuration

values applied to the M2, M1, and M0 mode select pins and the HSWAP pin. The mode select pins determine which of the I/O pins are borrowed during configuration and how they function. In JTAG configuration mode, no user-I/O pins are borrowed for configuration.

All user-I/O pins, input-only pins, and dual-purpose pins that are not actively involved in the currently-select configuration mode are high impedance (floating, three-stated, Hi-Z) during the configuration process. These pins are indicated in Table 46 as gray shaded table entries or cells.

The HSWAP input controls whether all user-I/O pins, input-only pins, and dual-purpose pins have a pull-up resistor to the supply rail or not. When HSWAP is Low, each pin has an internal pull-up resistor that is active throughout configuration. After configuration, pull-up and pull-down resistors are available in the FPGA application as described in Pull-Up and Pull-Down Resistors.

The yellow-shaded table entries or cells represent pins where the pull-up resistor is always enabled during configuration, regardless of the HSWAP input. The post-configuration behavior of these pins is defined by Bitstream Generator options as defined in Table 69.

Pin Name	Master Serial	SPI (Serial Flash)	BPI (Parallel NOR Flash)	JTAG	Slave Parallel	Slave Serial	I/O Bank ⁽³⁾
IO* (user-I/O) IP* (input-only)							-
TDI	TDI	TDI	TDI	TDI	TDI	TDI	V _{CCAUX}
TMS	TMS	TMS	TMS	TMS	TMS	TMS	V _{CCAUX}
ТСК	TCK	ТСК	TCK	TCK	ТСК	TCK	V _{CCAUX}
TDO	TDO	TDO	TDO	TDO	TDO	TDO	V _{CCAUX}
PROG_B	PROG_B	PROG_B	PROG_B	PROG_B	PROG_B	PROG_B	V _{CCAUX}
DONE	DONE	DONE	DONE	DONE	DONE	DONE	V _{CCAUX}
HSWAP	HSWAP	HSWAP	HSWAP	HSWAP	HSWAP	HSWAP	0
M2	0	0	0	1	1	1	2
M1	0	0	1	0	1	1	2
МО	0	1	0 = Up 1 = Down	1	0	1	2
CCLK	CCLK (I/O)	CCLK (I/O)	CCLK (I/O)		CCLK (I)	CCLK (I)	2
INIT_B	INIT_B	INIT_B	INIT_B		INIT_B	INIT_B	2
CSO_B		CSO_B	CSO_B		CSO_B		2
DOUT/BUSY	DOUT	DOUT	BUSY		BUSY	DOUT	2
MOSI/CSI_B		MOSI	CSI_B		CSI_B		2
D7			D7		D7		2
D6			D6		D6		2
D5			D5		D5		2
D4			D4		D4		2
D3			D3		D3		2
D2			D2		D2		2
D1			D1		D1		2

Table 46: Pin Behavior during Configuration (Cont'd)

Pin Name	Master Serial	SPI (Serial Flash)	BPI (Parallel NOR Flash)	JTAG	Slave Parallel	Slave Serial	I/O Bank ⁽³⁾
D0/DIN	DIN	DIN	D0		D0	DIN	2
RDWR_B			RDWR_B		RDWR_B		2
A23			A23				2
A22			A22				2
A21			A21				2
A20			A20				2
A19/VS2		VS2	A19				2
A18/VS1		VS1	A18				2
A17/VS0		VS0	A17				2
A16			A16				1
A15			A15				1
A14			A14				1
A13			A13				1
A12			A12				1
A11			A11				1
A10			A10				1
A9			A9				1
A8			A8				1
A7			A7				1
A6			A6				1
A5			A5				1
A4			A4				1
A3			A3				1
A2			A2				1
A1			A1				1
A0			A0				1
LDC0			LDC0				1
LDC1			LDC1				1
LDC2			LDC2				1
HDC			HDC				1

Notes:

1. Gray shaded cells represent pins that are in a high-impedance state (Hi-Z, floating) during configuration. These pins have an optional internal pull-up resistor to their respective V_{CCO} supply pin that is active throughout configuration if the HSWAP input is Low.

2. Yellow shaded cells represent pins with an internal pull-up resistor to its respective voltage supply rail that is active during configuration, regardless of the HSWAP pin.

3. Note that dual-purpose outputs are supplied by V_{CCO} , and configuration inputs are supplied by V_{CCAUX} .

The HSWAP pin itself has a pull-up resistor enabled during configuration. However, the VCCO_0 supply voltage must be applied before the pull-up resistor becomes active. If the VCCO_0 supply ramps after the VCCO_2 power supply, do not let HSWAP float; tie HSWAP to the desired logic level externally.

Spartan-3E FPGAs have only six dedicated configuration pins, including the DONE and PROG_B pins, and the four JTAG boundary-scan pins: TDI, TDO, TMS, and TCK. All other configuration pins are dual-purpose I/O pins and are available to the FPGA application after the DONE pin goes High. See <u>Start-Up</u> for additional information. Table 47 shows the default I/O standard setting for the various configuration pins during the configuration process. The configuration interface is designed primarily for 2.5V operation when the VCCO_2 (and VCCO_1 in BPI mode) connects to 2.5V.

Table 4	7: Defa	ult I/O Star	ndard Set	tting Du	ring Config-	-
uration	(VCCO_	_2 = 2.5V)				

Pin(s)	I/O Standard	Output Drive	Slew Rate
All, including CCLK	LVCMOS25	8 mA	Slow

Figure 57, page 82 demonstrates how to configure multiple FPGAs with different configurations, all stored in a single SPI Flash. The diagram uses standard SPI Flash memories but the same general technique applies for Atmel DataFlash.

DS312-2_50a_082009

Figure 54: Atmel SPI-based DataFlash Configuration Interface

support byte-wide data. However, after configuration, the FPGA supports either x8 or x16 modes. In x16 mode, up to eight additional user I/O pins are required for the upper data bits, D[15:8].

Connecting a Spartan-3E FPGA to a x8/x16 Flash PROM is simple, but does require a precaution. Various Flash PROM vendors use slightly different interfaces to support both x8 and x16 modes. Some vendors (Intel, Micron, some STMicroelectronics devices) use a straightforward interface with pin naming that matches the FPGA connections. However, the PROM's A0 pin is wasted in x16 applications and a separate FPGA user-I/O pin is required for the D15 data line. Fortunately, the FPGA A0 pin is still available as a user I/O after configuration, even though it connects to the Flash PROM. Other vendors (AMD, Atmel, Silicon Storage Technology, some STMicroelectronics devices) use a pin-efficient interface but change the function of one pin, called IO15/A-1, depending if the PROM is in x8 or x16 mode. In x8 mode, BYTE# = 0, this pin is the least-significant address line. The A0 address line selects the halfword location. The A-1 address line selects the byte location. When in x16 mode, BYTE# = 1, the IO15/A-1 pin becomes the most-significant data bit, D15 because byte addressing is not required in this mode. Check to see if the Flash PROM has a pin named "IO15/A-1" or "DQ15/A-1". If so, be careful to connect x8/x16 Flash PROMs correctly, as shown in Table 63. Also, remember that the D[14:8] data connections require FPGA user I/O pins but that the D15 data is already connected for the FPGA's A0 pin.

FPGA Pin	Connection to Flash PROM with IO15/A-1 Pin	x8 Flash PROM Interface After FPGA Configuration	x16 Flash PROM Interface After FPGA Configuration
LDC2	BYTE#	Drive LDC2 Low or leave unconnected and tie PROM BYTE# input to GND	Drive LCD2 High
LDC1	OE#	Active-Low Flash PROM output-enable control	Active-Low Flash PROM output-enable control
LDC0	CS#	Active-Low Flash PROM chip-select control	Active-Low Flash PROM chip-select control
HDC	WE#	Flash PROM write-enable control	Flash PROM write-enable control
A[23:1]	A[n:0]	A[n:0]	A[n:0]
A0	IO15/A-1	IO15/A-1 is the least-significant address input	IO15/A-1 is the most-significant data line, IO15
D[7:0]	IO[7:0]	IO[7:0]	IO[7:0]
User I/O	Upper data lines IO[14:8] not required unless used as x16 Flash interface after configuration	Upper data lines IO[14:8] not required	IO[14:8]

Table 63: FPGA Connections to Flash PROM with IO15/A-1 Pin

Some x8/x16 Flash PROMs have a long setup time requirement on the BYTE# signal. For the FPGA to configure correctly, the PROM must be in x8 mode with BYTE# = 0 at power-on or when the FPGA's PROG_B pin is pulsed Low. If required, extend the BYTE# setup time for a 3.3V PROM using an external 680 Ω pull-down resistor on the FPGA's LDC2 pin or by delaying assertion of the CSI_B select input to the FPGA.

Daisy-Chaining

If the application requires multiple FPGAs with different configurations, then configure the FPGAs using a daisy chain, as shown in Figure 59. Use BPI mode (M[2:0] = <0:1:0> or <0:1:1>) for the FPGA connected to the parallel NOR Flash PROM and Slave Parallel mode (M[2:0] = <1:1:0>) for all downstream FPGAs in the daisy-chain. If there are more than two FPGAs in the chain, then last FPGA in the chain can be from any Xilinx FPGA family. However, all intermediate FPGAs located in the

chain between the first and last FPGAs must from either the Spartan-3E or Virtex®-5 FPGA families.

After the master FPGA—the FPGA on the left in the diagram—finishes loading its configuration data from the parallel Flash PROM, the master device continues generating addresses to the Flash PROM and asserts its CSO_B output Low, enabling the next FPGA in the daisy-chain. The next FPGA then receives parallel configuration data from the Flash PROM. The master FPGA's CCLK output synchronizes data capture.

If HSWAP = 1, an external $4.7k\Omega$ pull-up resistor must be added on the CSO_B pin. If HSWAP = 0, no external pull-up is necessary.

Design Note

BPI mode daisy chain software support is available starting in ISE 8.2i.

http://www.xilinx.com/support/answers/23061.htm

User I/Os by Bank

 Table 138 and Table 139 indicate how the 108 available

user-I/O pins are distributed between the four I/O banks on

the TQ144 package.

Table 138: User I/Os Per Bank for the XC3S100E in the TQ144 Package

Package Edge I/O Bar	I/O Bank	Maximum I/O	All Possible I/O Pins by Type					
	I/O Dalik		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾	
Тор	0	26	9	6	1	2	8	
Right	1	28	0	5	21	2	0(2)	
Bottom	2	26	0	4	20	2	0 ⁽²⁾	
Left	3	28	13	4	0	3	8	
TOTAL		108	22	19	42	9	16	

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 139: User I/Os Per Bank for the XC3S250E in TQ144 Package

Package Edge	I/O Bank Max	Maximum I/O	All Possible I/O Pins by Type					
			I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾	
Тор	0	26	9	6	1	2	8	
Right	1	28	0	5	21	2	0(2)	
Bottom	2	26	0	4	20	2	0(2)	
Left	3	28	11	6	0	3	8	
TOTAL		108	20	21	42	9	16	

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Footprint Migration Differences

Table 140 summarizes any footprint and functionality differences between the XC3S100E and the XC3S250E FPGAs that may affect easy migration between devices. There are four such pins. All other pins not listed in Table 140 unconditionally migrate between Spartan-3E devices available in the TQ144 package.

The arrows indicate the direction for easy migration. For example, a left-facing arrow indicates that the pin on the XC3S250E unconditionally migrates to the pin on the XC3S100E. It may be possible to migrate the opposite direction depending on the I/O configuration. For example, an I/O pin (Type = I/O) can migrate to an input-only pin (Type = INPUT) if the I/O pin is configured as an input.

Tahle	140.	TO144	Footprint	Migration	Differences
Table	140.		1 OOtprint	wingration	Differences

TQ144 Pin	Bank	XC3S100E Type	Migration	XC3S250E Type
P10	3	I/O	÷	INPUT
P29	3	I/O	÷	INPUT
P31	3	VREF(INPUT)	\rightarrow	VREF(I/O)
P66	2	VREF(INPUT)	\rightarrow	VREF(I/O)
DIFFERE	NCES		4	

Legend:

This pin can unconditionally migrate from the device on the left to the device on the right. Migration in the other direction may be possible depending on how the pin is configured for the device on the right.

This pin can unconditionally migrate from the device on the right to the device on the left. Migration in the other direction may be possible depending on how the pin is configured for the device on the left.

PQ208 Footprint (Left)

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S500E Pin Name	XC3S1200E Pin Name	FT256 Ball	Туре
2	N.C. (♠)	IO_L14N_2/VREF_2	IO_L14N_2/VREF_2	R10	<i>250E:</i> N.C. <i>500E:</i> VREF
					1200E: VREF
2	N.C. (♠)	IO_L14P_2	IO_L14P_2	P10	250E: N.C. 500E: I/O 1200E: I/O
2	IO_L15N_2	IO_L15N_2	IO_L15N_2	M10	I/O
2	IO_L15P_2	IO_L15P_2	IO_L15P_2	N10	I/O
2	IO_L16N_2/A22	IO_L16N_2/A22	IO_L16N_2/A22	P11	DUAL
2	IO_L16P_2/A23	IO_L16P_2/A23	IO_L16P_2/A23	R11	DUAL
2	IO_L18N_2/A20	IO_L18N_2/A20	IO_L18N_2/A20	N12	DUAL
2	IO_L18P_2/A21	IO_L18P_2/A21	IO_L18P_2/A21	P12	DUAL
2	IO_L19N_2/VS1/A18	IO_L19N_2/VS1/A18	IO_L19N_2/VS1/A18	R13	DUAL
2	IO_L19P_2/VS2/A19	IO_L19P_2/VS2/A19	IO_L19P_2/VS2/A19	T13	DUAL
2	IO_L20N_2/CCLK	IO_L20N_2/CCLK	IO_L20N_2/CCLK	R14	DUAL
2	IO_L20P_2/VS0/A17	IO_L20P_2/VS0/A17	IO_L20P_2/VS0/A17	P14	DUAL
2	IP	IP	IP	T2	INPUT
2	IP	IP	IP	T14	INPUT
2	IP_L02N_2	IP_L02N_2	IP_L02N_2	R3	INPUT
2	IP_L02P_2	IP_L02P_2	IP_L02P_2	Т3	INPUT
2	IP_L08N_2/VREF_2	IP_L08N_2/VREF_2	IP_L08N_2/VREF_2	T7	VREF
2	IP_L08P_2	IP_L08P_2	IP_L08P_2	R7	INPUT
2	IP_L11N_2/M2/GCLK1	IP_L11N_2/M2/GCLK1	IP_L11N_2/M2/GCLK1	R9	DUAL/GCLK
2	IP_L11P_2/RDWR_B/ GCLK0	IP_L11P_2/RDWR_B/ GCLK0	IP_L11P_2/RDWR_B/ GCLK0	Т9	DUAL/GCLK
2	IP_L17N_2	IP_L17N_2	IP_L17N_2	M11	INPUT
2	IP_L17P_2	IP_L17P_2	IP_L17P_2	N11	INPUT
2	VCCO_2	VCCO_2	VCCO_2	L7	VCCO
2	VCCO_2	VCCO_2	VCCO_2	L10	VCCO
2	VCCO_2	VCCO_2	VCCO_2	R5	VCCO
2	VCCO_2	VCCO_2	VCCO_2	R12	VCCO
3	IO_L01N_3	IO_L01N_3	IO_L01N_3	B2	I/O
3	IO_L01P_3	IO_L01P_3	IO_L01P_3	B1	I/O
3	IO_L02N_3/VREF_3	IO_L02N_3/VREF_3	IO_L02N_3/VREF_3	C2	VREF
3	IO_L02P_3	IO_L02P_3	IO_L02P_3	C1	I/O
3	IO_L03N_3	IO_L03N_3	IO_L03N_3	E4	I/O
3	IO_L03P_3	IO_L03P_3	IO_L03P_3	E3	I/O
3	N.C. (♠)	IO_L04N_3/VREF_3	IO_L04N_3/VREF_3	F4	250E: N.C. 500E: VREF 1200E: VREF
3	N.C. (�)	IO_L04P_3	IO_L04P_3	F3	250E: N.C. 500E: I/O 1200E: I/O
3	IO_L05N_3	IO_L05N_3	IO_L05N_3	E1	I/O
3	IO_L05P_3	IO_L05P_3	IO_L05P_3	D1	I/O
3	IO_L06N_3	IO_L06N_3	IO_L06N_3	G4	I/O

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S500E Pin Name	XC3S1200E Pin Name	FT256 Ball	Туре
3	IP	IP	IP	N3	INPUT
3	IP/VREF_3	IP/VREF_3	IP/VREF_3	G1	VREF
3	IO/VREF_3	IO/VREF_3	IP/VREF_3	N2	250E: VREF(I/O)
					500E: VREF(I/O)
					1200E: VREF(INPUT)
3	VCCO_3	VCCO_3	VCCO_3	E2	VCCO
3	VCCO_3	VCCO_3	VCCO_3	G6	VCCO
3	VCCO_3	VCCO_3	VCCO_3	K6	VCCO
3	VCCO_3	VCCO_3	VCCO_3	M2	VCCO
GND	GND	GND	GND	A1	GND
GND	GND	GND	GND	A16	GND
GND	GND	GND	GND	B9	GND
GND	GND	GND	GND	F6	GND
GND	GND	GND	GND	F11	GND
GND	GND	GND	GND	G7	GND
GND	GND	GND	GND	G8	GND
GND	GND	GND	GND	G9	GND
GND	GND	GND	GND	G10	GND
GND	GND	GND	GND	H2	GND
GND	GND	GND	GND	H7	GND
GND	GND	GND	GND	H8	GND
GND	GND	GND	GND	H9	GND
GND	GND	GND	GND	H10	GND
GND	GND	GND	GND	J7	GND
GND	GND	GND	GND	J8	GND
GND	GND	GND	GND	J9	GND
GND	GND	GND	GND	J10	GND
GND	GND	GND	GND	J15	GND
GND	GND	GND	GND	K7	GND
GND	GND	GND	GND	K8	GND
GND	GND	GND	GND	K9	GND
GND	GND	GND	GND	K10	GND
GND	GND	GND	GND	L6	GND
GND	GND	GND	GND	L11	GND
GND	GND	GND	GND	R8	GND
GND	GND	GND	GND	T1	GND
GND	GND	GND	GND	T16	GND
VCCAUX	DONE	DONE	DONE	T15	CONFIG
VCCAUX	PROG_B	PROG_B	PROG_B	D3	CONFIG
VCCAUX	ТСК	ТСК	ТСК	A15	JTAG
VCCAUX	TDI	TDI	TDI	A2	JTAG
VCCAUX	TDO	TDO	TDO	C14	JTAG
VCCAUX	TMS	TMS	TMS	B15	JTAG
VCCAUX	VCCAUX	VCCAUX	VCCAUX	A6	VCCAUX

User I/Os by Bank

Table 149 and Table 150 indicate how the available user-I/O pins are distributed between the four I/O banks on the FG320 package.

Table 149: User I/Os Per Bank for XC3S500E in the FG320 Package

Package Edge	I/O Bank Maximum I/O		All Possible I/O Pins by Type				
	I/O Balik		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾
Тор	0	58	29	14	1	6	8
Right	1	58	22	10	21	5	0 ⁽²⁾
Bottom	2	58	17	13	24	4	0 ⁽²⁾
Left	3	58	34	11	0	5	8
TOTAL		232	102	48	46	20	16

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 150: User I/Os Per Bank for XC3S1200E and XC3S1600E in the FG320 Package

Package Edge	I/O Bank Maximu	Maximum I/O	All Possible I/O Pins by Type				
	1/O Ballk		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾
Тор	0	61	34	12	1	6	8
Right	1	63	25	12	21	5	0 ⁽²⁾
Bottom	2	63	23	11	24	5	0(2)
Left	3	63	38	12	0	5	8
TOTAL		250	120	47	46	21	16

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 152: FG400 Package Pinout (Cont'd)

Bank	XC3S1200E FG400 XC3S1600E Ball Pin Name Ball			
1	IP	L18	INPUT	
1	IP	M20	INPUT	
1	IP	N14	INPUT	
1	IP	N20	INPUT	
1	IP	P15	INPUT	
1	IP	R16	INPUT	
1	IP	R19	INPUT	
1	IP/VREF_1	E19	VREF	
1	IP/VREF_1	K18	VREF	
1	VCCO_1	D19	VCCO	
1	VCCO_1	G17	VCCO	
1	VCCO_1	K15	VCCO	
1	VCCO_1	K19	VCCO	
1	VCCO_1	N17	VCCO	
1	VCCO_1	T19	VCCO	
2	10	P8	I/O	
2	10	P13	I/O	
2	10	R9	I/O	
2	10	R13	I/O	
2	10	W15	I/O	
2	10	Y5	I/O	
2	10	Y7	I/O	
2	10	Y13	I/O	
2	IO/D5	N11	DUAL	
2	IO/M1	T11	DUAL	
2	IO/VREF_2	Y3	VREF	
2	IO/VREF_2	Y17	VREF	
2	IO_L01N_2/INIT_B	V4	DUAL	
2	IO_L01P_2/CSO_B	U4	DUAL	
2	IO_L03N_2/MOSI/CSI_B	V5	DUAL	
2	IO_L03P_2/DOUT/BUSY	/DOUT/BUSY U5 DL		
2	IO_L04N_2	Y4	I/O	
2	IO_L04P_2	W4	I/O	
2	IO_L06N_2	T6	I/O	
2	IO_L06P_2	T5	I/O	
2	IO_L07N_2	U7	I/O	
2	IO_L07P_2	V7	I/O	
2	IO_L09N_2/VREF_2	R7	VREF	
2	IO_L09P_2	T7	I/O	
2	IO_L10N_2	V8	I/O	
2	IO_L10P_2	W8	I/O	
2	IO_L12N_2	U9	I/O	
2	IO_L12P_2	V9	I/O	

Table 152: FG400 Package Pinout (Cont'd)

Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре	
2	IO_L13N_2	Y8	I/O	
2	IO_L13P_2	Y9	I/O	
2	IO_L15N_2/D6/GCLK13 W10		DUAL/ GCLK	
2	IO_L15P_2/D7/GCLK12	W9	DUAL/ GCLK	
2	IO_L16N_2/D3/GCLK15	P10	DUAL/ GCLK	
2	IO_L16P_2/D4/GCLK14	R10	DUAL/ GCLK	
2	IO_L18N_2/D1/GCLK3	V11	DUAL/ GCLK	
2	IO_L18P_2/D2/GCLK2	V10	DUAL/ GCLK	
2	IO_L19N_2/DIN/D0	Y12	DUAL	
2	IO_L19P_2/M0	Y11	DUAL	
2	IO_L21N_2	U12	I/O	
2	IO_L21P_2	V12	I/O	
2	IO_L22N_2/VREF_2	W12	VREF	
2	IO_L22P_2	W13	I/O	
2	IO_L24N_2	U13	I/O	
2	IO_L24P_2	V13	I/O	
2	IO_L25N_2	P14	I/O	
2	IO_L25P_2	R14	I/O	
2	IO_L27N_2/A22	Y14	DUAL	
2	IO_L27P_2/A23	Y15	DUAL	
2	IO_L28N_2	T15	I/O	
2	IO_L28P_2	U15	I/O	
2	IO_L30N_2/A20	V16	DUAL	
2	IO_L30P_2/A21	U16	DUAL	
2	IO_L31N_2/VS1/A18	Y18	DUAL	
2	IO_L31P_2/VS2/A19	W18	DUAL	
2	IO_L32N_2/CCLK	W19	DUAL	
2	IO_L32P_2/VS0/A17	Y19	DUAL	
2	IP	T16	INPUT	
2	IP	W3	INPUT	
2	IP_L02N_2	Y2	INPUT	
2	IP_L02P_2	W2	INPUT	
2	IP_L05N_2	V6	INPUT	
2	IP_L05P_2	U6	INPUT	
2	IP_L08N_2	Y6	INPUT	
2	IP_L08P_2	W6	INPUT	
2	IP_L11N_2	R8	INPUT	
2	IP_L11P_2	Т8	INPUT	
2	IP_L14N_2/VREF_2	T10	VREF	

FG484: 484-ball Fine-pitch Ball Grid Array

The 484-ball fine-pitch ball grid array, FG484, supports the XC3S1600E FPGA.

Table 154 lists all the FG484 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at:

http://www.xilinx.com/support/documentation/data_sheets /s3e_pin.zip

Pinout Table

Table 154	: FG484 Package Pinout				
Bank	XC3S1600E Pin Name	FG484 Ball	Туре		
0	Ю	B6	I/O		
0	Ю	B13	I/O		
0	Ю	C5	I/O		
0	Ю	C14	I/O		
0	Ю	E16	I/O		
0	Ю	F9	I/O		
0	Ю	F16	I/O		
0	Ю	G8	I/O		
0	Ю	H10	I/O		
0	Ю	H15	I/O		
0	Ю	J11	I/O		
0	IO/VREF_0	G12	VREF		
0	IO_L01N_0	C18	I/O		
0	IO_L01P_0	C19	I/O		
0	IO_L03N_0/VREF_0	A20	VREF		
0	IO_L03P_0	A21	I/O		
0	IO_L04N_0	A19	I/O		
0	IO_L04P_0	A18	I/O		
0	IO_L06N_0	C16	I/O		
0	IO_L06P_0 D16		I/O		
0	IO_L07N_0 A16		I/O		
0	IO_L07P_0	A17	I/O		
0	IO_L09N_0/VREF_0	B15	VREF		
0	IO_L09P_0	C15	I/O		
0	IO_L10N_0 G15		I/O		
0	IO_L10P_0 F1		I/O		
0	IO_L11N_0	D14	I/O		
0	IO_L11P_0	E14	I/O		
0	IO_L12N_0/VREF_0	A14	VREF		

Table 154	: FG484 Package Pinout (C	Cont'd)			
Bank	XC3S1600E Pin Name	FG484 Ball	Туре		
0	IO_L12P_0	A15	I/O		
0	IO_L13N_0	H14	I/O		
0	IO_L13P_0	G14	I/O		
0	IO_L15N_0	G13	I/O		
0	IO_L15P_0	F13	I/O		
0	IO_L16N_0	J13	I/O		
0	IO_L16P_0	H13	I/O		
0	IO_L18N_0/GCLK5	E12	GCLK		
0	IO_L18P_0/GCLK4	F12	GCLK		
0	IO_L19N_0/GCLK7	C12	GCLK		
0	IO_L19P_0/GCLK6	B12	GCLK		
0	IO_L21N_0/GCLK11	B11	GCLK		
0	IO_L21P_0/GCLK10	C11	GCLK		
0	IO_L22N_0	D11	I/O		
0	IO_L22P_0	E11	I/O		
0	IO_L24N_0	A9	I/O		
0	IO_L24P_0 A10		I/O		
0	IO_L25N_0/VREF_0 D10		VREF		
0	IO_L25P_0	C10	I/O		
0	IO_L27N_0	H8	I/O		
0	IO_L27P_0	H9	I/O		
0	IO_L28N_0	C9	I/O		
0	IO_L28P_0	B9	I/O		
0	IO_L29N_0	E9	I/O		
0	IO_L29P_0	D9	I/O		
0	IO_L30N_0	B8	I/O		
0	IO_L30P_0	A8	I/O		
0	IO_L32N_0/VREF_0	F7	VREF		
0	IO_L32P_0	F8	I/O		
0	IO_L33N_0	A6	I/O		
0	IO_L33P_0 A7		I/O		
0	IO_L35N_0	A4	I/O		
0	IO_L35P_0 A5		I/O		
0	IO_L36N_0 E7		I/O		
0	IO_L36P_0 D7		I/O		
0	IO_L38N_0/VREF_0 D6		VREF		
0	IO_L38P_0 D5		I/O		
0	IO_L39N_0 B4		I/O		
0	IO_L39P_0	B3	I/O		
0	IO_L40N_0/HSWAP	D4	DUAL		
0	IO_L40P_0	C4	I/O		
0	IP B19				

Table 155: User I/Os Per Bank for the XC3S1600E in the FG484 Package

Package Edge	I/O Bank	Maximum I/O	All Possible I/O Pins by Type				
			I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾
Тор	0	94	56	22	1	7	8
Right	1	94	50	16	21	7	0(2)
Bottom	2	94	45	18	24	7	0(2)
Left	3	94	63	16	0	7	8
TOTAL		376	214	72	46	28	16

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Footprint Migration Differences

The XC3S1600E FPGA is the only Spartan-3E device offered in the FG484 package.