

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Detuns	
Product Status	Obsolete
Number of LABs/CLBs	612
Number of Logic Elements/Cells	5508
Total RAM Bits	221184
Number of I/O	158
Number of Gates	250000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s250e-4pqg208c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 10: Slice Inputs and Outputs (Cont'd)

Name	Location	Direction	Description
SHIFTOUT	SLICEM Bottom	Output	Shift data output from F-LUT RAM
CIN	SLICEL/M Bottom	Input	Carry chain input
COUT	SLICEL/M Top	Output	Carry chain output
х	SLICEL/M Bottom	Output	Combinatorial output
Y	SLICEL/M Top	Output	Combinatorial output
ХВ	SLICEL/M Bottom	Output	Combinatorial output from carry or F-LUT SRL16 (SLICEM)
YB	SLICEL/M Top	Output	Combinatorial output from carry or G-LUT SRL16 (SLICEM)
XQ	SLICEL/M Bottom	Output	FFX output
YQ	SLICEL/M Top	Output	FFY output

Main Logic Paths

Central to the operation of each slice are two nearly identical data paths at the top and bottom of the slice. The description that follows uses names associated with the bottom path. (The top path names appear in parentheses.) The basic path originates at an interconnect switch matrix outside the CLB. See Interconnect for more information on the switch matrix and the routing connections.

Four lines, F1 through F4 (or G1 through G4 on the upper path), enter the slice and connect directly to the LUT. Once inside the slice, the lower 4-bit path passes through a LUT 'F' (or 'G') that performs logic operations. The LUT Data output, 'D', offers five possible paths:

- 1. Exit the slice via line "X" (or "Y") and return to interconnect.
- Inside the slice, "X" (or "Y") serves as an input to the DXMUX (or DYMUX) which feeds the data input, "D", of the FFX (or FFY) storage element. The "Q" output of the storage element drives the line XQ (or YQ) which exits the slice.
- 3. Control the CYMUXF (or CYMUXG) multiplexer on the carry chain.
- 4. With the carry chain, serve as an input to the XORF (or XORG) exclusive-OR gate that performs arithmetic operations, producing a result on "X" (or "Y").
- 5. Drive the multiplexer F5MUX to implement logic functions wider than four bits. The "D" outputs of both the F-LUT and G-LUT serve as data inputs to this multiplexer.

In addition to the main logic paths described above, there are two bypass paths that enter the slice as BX and BY. Once inside the FPGA, BX in the bottom half of the slice (or BY in the top half) can take any of several possible branches:

1. Bypass both the LUT and the storage element, and then exit the slice as BXOUT (or BYOUT) and return to interconnect.

- Bypass the LUT, and then pass through a storage element via the D input before exiting as XQ (or YQ).
- 3. Control the wide function multiplexer F5MUX (or FiMUX).
- 4. Via multiplexers, serve as an input to the carry chain.
- 5. Drive the DI input of the LUT.
- 6. BY can control the REV inputs of both the FFY and FFX storage elements. See Storage Element Functions.
- 7. Finally, the DIG_MUX multiplexer can switch BY onto the DIG line, which exits the slice.

The control inputs CLK, CE, SR, BX and BY have programmable polarity. The LUT inputs do not need programmable polarity because their function can be inverted inside the LUT.

The sections that follow provide more detail on individual functions of the slice.

Look-Up Tables

The Look-Up Table or LUT is a RAM-based function generator and is the main resource for implementing logic functions. Furthermore, the LUTs in each SLICEM pair can be configured as Distributed RAM or a 16-bit shift register, as described later.

Each of the two LUTs (F and G) in a slice have four logic inputs (A1-A4) and a single output (D). Any four-variable Boolean logic operation can be implemented in one LUT. Functions with more inputs can be implemented by cascading LUTs or by using the wide function multiplexers that are described later.

The output of the LUT can connect to the wide multiplexer logic, the carry and arithmetic logic, or directly to a CLB output or to the CLB storage element. See Figure 18.

XILINX.

PRODUCT NOT RECOMMENDED FOR NEW DESIGNS

Figure 31: Data Organization and Bus-matching Operation with Different Port Widths on Port A and Port B

Block RAM Port Signal Definitions

Representations of the dual-port primitive RAMB16_S[w_A]_S[w_B] and the single-port primitive RAMB16_S[w] with their associated signals are shown in Figure 32a and Figure 32b, respectively. These signals are defined in Table 23. The control signals (WE, EN, CLK, and SSR) on the block RAM are active High. However, optional inverters on the control signals change the polarity of the active edge to active Low.

Design Note

Whenever a block RAM port is enabled (ENA or ENB = High), all address transitions must meet the data sheet setup and hold times with respect to the port clock (CLKA or CLKB), as shown in Table 103, page 138.This requirement must be met even if the RAM read output is of no interest.

Notes:

- 1. w_A and w_B are integers representing the total data path width (i.e., data bits plus parity bits) at Ports A and B, respectively.
- 2. p_A and p_B are integers that indicate the number of data path lines serving as parity bits.
- 3. r_A and r_B are integers representing the address bus width at ports A and B, respectively.
- 4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity.

Figure 32: Block RAM Primitives

cancel out the clock skew. When the DLL phase-aligns the CLK0 signal with the CLKIN signal, it asserts the LOCKED output, indicating a lock on to the CLKIN signal.

DLL Attributes and Related Functions

The DLL unit has a variety of associated attributes as described in Table 29. Each attribute is described in detail in the sections that follow.

Table 29: DLL Attributes

EXILINX

Attribute	Description	Values
CLK_FEEDBACK	Chooses either the CLK0 or CLK2X output to drive the CLKFB input	NONE, <u>1X</u> , 2X
CLKIN_DIVIDE_BY_2	Halves the frequency of the CLKIN signal just as it enters the DCM	FALSE, TRUE
CLKDV_DIVIDE	Selects the constant used to divide the CLKIN input frequency to generate the CLKDV output frequency	1.5, 2 , 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.0, 6.5, 7.0, 7.5, 8 , 9, 10, 11, 12, 13, 14, 15, and 16
CLKIN_PERIOD	Additional information that allows the DLL to operate with the most efficient lock time and the best jitter tolerance	Floating-point value representing the CLKIN period in nanoseconds

DLL Clock Input Connections

For best results, an external clock source enters the FPGA via a Global Clock Input (GCLK). Each specific DCM has four possible direct, optimal GCLK inputs that feed the DCM's CLKIN input, as shown in Table 30. Table 30 also provides the specific pin numbers by package for each GCLK input. The two additional DCM's on the XC3S1200E and XC3S1600E have similar optimal connections from the left-edge LHCLK and the right-edge RHCLK inputs, as described in Table 31 and Table 32.

 The DCM supports differential clock inputs (for example, LVDS, LVPECL_25) via a pair of GCLK inputs that feed an internal single-ended signal to the DCM's CLKIN input.

Design Note

Avoid using global clock input GCLK1 as it is always shared with the M2 mode select pin. Global clock inputs GCLK0, GCLK2, GCLK3, GCLK12, GCLK13, GCLK14, and GCLK15 have shared functionality in some configuration modes. The CLKFX_DIVIDE is an integer ranging from 1 to 32, inclusive and forms the denominator in Equation 1. For example, if CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, the frequency of the output clock signal is 5/3 that of the input clock signal. These attributes and their acceptable ranges are described in Table 34.

Table 34: DFS Attributes

🗶 XILINX.

Attribute	Description	Values
CLKFX_MULTIPLY	Frequency multiplier constant	Integer from 2 to 32, inclusive
CLKFX_DIVIDE	Frequency divisor constant	Integer from 1 to 32, inclusive

Any combination of integer values can be assigned to the CLKFX_MULTIPLY and CLKFX_DIVIDE attributes, provided that two conditions are met:

- 1. The two values fall within their corresponding ranges, as specified in Table 34.
- The f_{CLKFX} output frequency calculated in Equation 1 falls within the DCM's operating frequency specifications (see Table 107 in Module 3).

DFS With or Without the DLL

Although the CLKIN input is shared with both units, the DFS unit functions with or separately from the DLL unit. Separate from the DLL, the DFS generates an output frequency from the CLKIN frequency according to the respective CLKFX_MULTIPLY and CLKFX_DIVIDE values. Frequency synthesis does not require a feedback loop. Furthermore, without the DLL, the DFS unit supports a broader operating frequency range.

With the DLL, the DFS unit operates as described above, only with the additional benefit of eliminating the clock distribution delay. In this case, a feedback loop from the CLK0 or CLK2X output to the CLKFB input must be present.

When operating with the DLL unit, the DFS's CLKFX and CLKFX180 outputs are phase-aligned with the CLKIN input every CLKFX_DIVIDE cycles of CLKIN and every CLKFX_MULTIPLY cycles of CLKFX. For example, when CLKFX_MULTIPLY = 5 and CLKFX_DIVIDE = 3, the input and output clock edges coincide every three CLKIN input

periods, which is equivalent in time to five CLKFX output periods.

Smaller CLKFX_MULTIPLY and CLKFX_DIVIDE values result in faster lock times. Therefore, CLKFX_MULTIPLY and CLKFX_DIVIDE must be factored to reduce their values wherever possible. For example, given CLKFX_MULTIPLY = 9 and CLKFX_DIVIDE = 6, removing a factor of three yields CLKFX_MULTIPLY = 3 and CLKFX_DIVIDE = 2. While both value-pairs result in the multiplication of clock frequency by 3/2, the latter value-pair enables the DLL to lock more quickly.

Phase Shifter (PS)

The DCM provides two approaches to controlling the phase of a DCM clock output signal relative to the CLKIN signal: First, eight of the nine DCM clock outputs – CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, CLKFX, and CLKFX180 – provide either quadrant or half-period phase shifting of the input clock.

Second, the PS unit provides additional fine phase shift control of all nine DCM outputs. The PS unit accomplishes this by introducing a "fine phase shift" delay (T_{PS}) between the CLKFB and CLKIN signals inside the DLL unit. In FIXED phase shift mode, the fine phase shift is specified at design time with a resolution down to $1/_{256}$ th of a CLKIN cycle or one delay step (DCM_DELAY_STEP), whichever is greater. This fine phase shift value is relative to the coarser quadrant or half-period phase shift of the DCM clock output. When used, the PS unit shifts the phase of all nine DCM clock output signals.

Enabling Phase Shifting and Selecting an Operating Mode

The CLKOUT_PHASE_SHIFT attribute controls the PS unit for the specific DCM instantiation. As described in Table 35, this attribute has three possible values: NONE, FIXED, and VARIABLE. When CLKOUT_PHASE_SHIFT = NONE, the PS unit is disabled and the DCM output clocks are phase-aligned to the CLKIN input via the CLKFB feedback path. Figure 44a shows this case.

The PS unit is enabled when the CLKOUT_PHASE_SHIFT attribute is set to FIXED or VARIABLE modes. These two modes are described in the sections that follow.

Table 35: PS Attributes

Attribute	Description	Values
CLKOUT_PHASE_SHIFT	Disables the PS component or chooses between Fixed Phase and Variable Phase modes.	NONE, FIXED, VARIABLE
PHASE_SHIFT	Determines size and direction of initial fine phase shift.	Integers from -255 to +255

Configuration Bitstream Image Sizes

A specific Spartan-3E part type always requires a constant number of configuration bits, regardless of design complexity, as shown in Table 45. The configuration file size for a multiple-FPGA daisy-chain design roughly equals the sum of the individual file sizes.

Table 45: Number of Bits to Program a Spartan-3EFPGA (Uncompressed Bitstreams)

Spartan-3E FPGA	Number of Configuration Bits
XC3S100E	581,344
XC3S250E	1,353,728
XC3S500E	2,270,208
XC3S1200E	3,841,184
XC3S1600E	5,969,696

Pin Behavior During Configuration

For additional information, refer to the "Configuration Pins and Behavior during Configuration" chapter in <u>UG332</u>.

Table 46 shows how various pins behave during the FPGAconfiguration process. The actual behavior depends on the

Table 46: Pin Behavior during Configuration

values applied to the M2, M1, and M0 mode select pins and the HSWAP pin. The mode select pins determine which of the I/O pins are borrowed during configuration and how they function. In JTAG configuration mode, no user-I/O pins are borrowed for configuration.

All user-I/O pins, input-only pins, and dual-purpose pins that are not actively involved in the currently-select configuration mode are high impedance (floating, three-stated, Hi-Z) during the configuration process. These pins are indicated in Table 46 as gray shaded table entries or cells.

The HSWAP input controls whether all user-I/O pins, input-only pins, and dual-purpose pins have a pull-up resistor to the supply rail or not. When HSWAP is Low, each pin has an internal pull-up resistor that is active throughout configuration. After configuration, pull-up and pull-down resistors are available in the FPGA application as described in Pull-Up and Pull-Down Resistors.

The yellow-shaded table entries or cells represent pins where the pull-up resistor is always enabled during configuration, regardless of the HSWAP input. The post-configuration behavior of these pins is defined by Bitstream Generator options as defined in Table 69.

Pin Name	Master Serial	SPI (Serial Flash)	BPI (Parallel NOR Flash)	JTAG	Slave Parallel	Slave Serial	I/O Bank ⁽³⁾
IO* (user-I/O) IP* (input-only)							-
TDI	TDI	TDI	TDI	TDI	TDI	TDI	V _{CCAUX}
TMS	TMS	TMS	TMS	TMS	TMS	TMS	V _{CCAUX}
ТСК	TCK	ТСК	TCK	TCK	ТСК	ТСК	V _{CCAUX}
TDO	TDO	TDO	TDO	TDO	TDO	TDO	V _{CCAUX}
PROG_B	PROG_B	PROG_B	PROG_B	PROG_B	PROG_B	PROG_B	V _{CCAUX}
DONE	DONE	DONE	DONE	DONE	DONE	DONE	V _{CCAUX}
HSWAP	HSWAP	HSWAP	HSWAP	HSWAP	HSWAP	HSWAP	0
M2	0	0	0	1	1	1	2
M1	0	0	1	0	1	1	2
МО	0	1	0 = Up 1 = Down	1	0	1	2
CCLK	CCLK (I/O)	CCLK (I/O)	CCLK (I/O)		CCLK (I)	CCLK (I)	2
INIT_B	INIT_B	INIT_B	INIT_B		INIT_B	INIT_B	2
CSO_B		CSO_B	CSO_B		CSO_B		2
DOUT/BUSY	DOUT	DOUT	BUSY		BUSY	DOUT	2
MOSI/CSI_B		MOSI	CSI_B		CSI_B		2
D7			D7		D7		2
D6			D6		D6		2
D5			D5		D5		2
D4			D4		D4		2
D3			D3		D3		2
D2			D2		D2		2
D1			D1		D1		2

Pin Name	FPGA Direction	Description	During Configuration	After Configuration	
VS[2:0]	Input	Variant Select. Instructs the FPGA how to communicate with the attached SPI Flash PROM. See Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins.	Must be at the logic levels shown in Table 53. Sampled when INIT_B goes High.	User I/O	
MOSI	Output	Serial Data Output.	FPGA sends SPI Flash memory read commands and starting address to the PROM's serial data input.	User I/O	
DIN	Input	Serial Data Input.	FPGA receives serial data from PROM's serial data output.	User I/O	
CSO_B	Output	Chip Select Output. Active Low.	Connects to the SPI Flash PROM's chip-select input. If HSWAP = 1, connect this signal to a 4.7 k Ω pull-up resistor to 3.3V.	Drive CSO_B High after configuration to disable the SPI Flash and reclaim the MOSI, DIN, and CCLK pins. Optionally, re-use this pin and MOSI, DIN, and CCLK to continue communicating with SPI Flash.	
CCLK	Output	Configuration Clock . Generated by FPGA internal oscillator. Frequency controlled by ConfigRate bitstream generator option. If CCLK PCB trace is long or has multiple connections, terminate this output to maintain signal integrity. See CCLK Design Considerations.	Drives PROM's clock input.	User I/O	
DOUT	Output	Serial Data Output.	Actively drives. Not used in single-FPGA designs. In a daisy-chain configuration, this pin connects to DIN input of the next FPGA in the chain.	User I/O	
INIT_B	Open-drain bidirectional I/O	Initialization Indicator. Active Low. Goes Low at start of configuration during Initialization memory clearing process. Released at end of memory clearing, when mode select pins are sampled. In daisy-chain applications, this signal requires an external 4.7 k Ω pull-up resistor to VCCO_2.	Active during configuration. If SPI Flash PROM requires > 2 ms to awake after powering on, hold INIT_B Low until PROM is ready. If CRC error detected during configuration, FPGA drives INIT_B Low.	User I/O. If unused in the application, drive INIT_B High.	
DONE	Open-drain bidirectional I/O	FPGA Configuration Done . Low during configuration. Goes High when FPGA successfully completes configuration. Requires external 330 Ω pull-up resistor to 2.5V.	Low indicates that the FPGA is not yet configured.	Pulled High via external pull-up. When High, indicates that the FPGA successfully configured.	
PROG_B	Input	Program FPGA . Active Low. When asserted Low for 500 ns or longer, forces the FPGA to restart its configuration process by clearing configuration memory and resetting the DONE and INIT_B pins once PROG_B returns High. Recommend external 4.7 k Ω pull-up resistor to 2.5V. Internal pull-up value may be weaker (see Table 78). If driving externally with a 3.3V output, use an open-drain or open-collector driver or use a current limiting series resistor.	Must be High to allow configuration to start.	Drive PROG_B Low and release to reprogram FPGA. Hold PROG_B to force FPGA I/O pins into Hi-Z, allowing direct programming access to SPI Flash PROM pins.	

Table 55: Serial Peripheral Interface (SPI) Connections (Cont'd)

During the configuration process, CCLK is controlled by the FPGA and limited to the frequencies generated by the FPGA. After configuration, the FPGA application can use

EXILINX.

other clock signals to drive the CCLK pin and can further optimize SPI-based communication.

Refer to the individual SPI peripheral data sheet for specific interface and communication protocol requirements.

Figure 56: Using the SPI Flash Interface After Configuration

FPGA passes configuration data via its DOUT output pin to the next FPGA on the falling CCLK edge.

Table 66: Slave Serial Mode Connections

Pin Name	FPGA Direction	Description	During Configuration	After Configuration
HSWAP	Input	User I/O Pull-Up Control. When Low during configuration, enables pull-up resistors in all I/O pins to respective I/O bank V_{CCO} input.	Drive at valid logic level throughout configuration.	User I/O
		0: Pull-up during configuration		
M[2:0]	Input	Mode Select. Selects the FPGA configuration mode. See Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins.	M2 = 1, M1 = 1, M0 = 1 Sampled when INIT_B goes High.	User I/O
DIN	Input	Data Input.	Serial data provided by host. FPGA captures data on rising CCLK edge.	User I/O
CCLK	Input	Configuration Clock . If CCLK PCB trace is long or has multiple connections, terminate this output to maintain signal integrity. See CCLK Design Considerations.	External clock.	User I/O
INIT_B	Open-drain bidirectional I/O	Initialization Indicator . Active Low. Goes Low at start of configuration during Initialization memory clearing process. Released at end of memory clearing, when mode select pins are sampled. In daisy-chain applications, this signal requires an external 4.7 kΩ pull-up resistor to VCCO_2.	Active during configuration. If CRC error detected during configuration, FPGA drives INIT_B Low.	User I/O. If unused in the application, drive INIT_B High.
DONE	Open-drain bidirectional I/O	FPGA Configuration Done . Low during configuration. Goes High when FPGA successfully completes configuration. Requires external 330Ω pull-up resistor to 2.5V.	Low indicates that the FPGA is not yet configured.	Pulled High via external pull-up. When High, indicates that the FPGA successfully configured.
PROG_B	Input	Program FPGA. Active Low. When asserted Low for 500 ns or longer, forces the FPGA to restart its configuration process by clearing configuration memory and resetting the DONE and INIT_B pins once PROG_B returns High. Recommend external 4.7 kΩ pull-up resistor to 2.5V. Internal pull-up value may be weaker (see Table 78). If driving externally with a 3.3V output, use an open-drain or open-collector driver or use a current limiting series resistor.	Must be High to allow configuration to start.	Drive PROG_B Low and release to reprogram FPGA.

EXILINX.

Bitstream Generator (BitGen) Options

For additional information, refer to the "Configuration Bitstream Generator (BitGen) Settings" chapter in UG332.

Various Spartan-3E FPGA functions are controlled by specific bits in the configuration bitstream image. These

values are specified when creating the bitstream image with the Bitstream Generator (BitGen) software.

Table 69 provides a list of all BitGen options for Spartan-3EFPGAs.

Table 69: Spartan-3E FPGA Bitstream Generator (BitGen) Options

Option Name	Pins/Function Affected	Values (<i>default</i>)	Description
ConfigRate	CCLK, Configuration	<u>1</u> , 3, 6, 12, 25, 50	Sets the approximate frequency, in MHz, of the internal oscillator using for Master Serial, SPI, and BPI configuration modes. The internal oscillator powers up at its lowest frequency, and the new setting is loaded as part of the configuration bitstream. The software default value is 1 (~1.5 MHz) starting with ISE 8.1, Service Pack 1.
StartupClk	Configuration, Startup	<u>Cclk</u>	Default. The CCLK signal (internally or externally generated) controls the startup sequence when the FPGA transitions from configuration mode to the user mode. See Start-Up.
		UserClk	A clock signal from within the FPGA application controls the startup sequence when the FPGA transitions from configuration mode to the user mode. See Start-Up. The FPGA application supplies the user clock on the CLK pin on the STARTUP_SPARTAN3E primitive.
		Jtag	The JTAG TCK input controls the startup sequence when the FPGA transitions from the configuration mode to the user mode. See Start-Up.
UnusedPin	Unused I/O	Pulldown	Default. All unused I/O pins and input-only pins have a pull-down resistor to GND.
	Pins	Pullup	All unused I/O pins and input-only pins have a pull-up resistor to the VCCO_# supply for its associated I/O bank.
		Pullnone	All unused I/O pins and input-only pins are left floating (Hi-Z, high-impedance, three-state). Use external pull-up or pull-down resistors or logic to apply a valid signal level.
DONE_cycle	DONE pin, Configuration Startup	1, 2, 3, <u>4</u> , 5, 6	Selects the Configuration Startup phase that activates the FPGA's DONE pin. See Start-Up.
GWE_cycle	All flip-flops, LUT RAMs, and SRL16 shift registers, Block RAM, Configuration Startup	1, 2, 3, 4, 5, <u>6</u>	Selects the Configuration Startup phase that asserts the internal write-enable signal to all flip-flops, LUT RAMs and shift registers (SRL16). It also enables block RAM read and write operations. See Start-Up.
		Done	Waits for the DONE pin input to go High before asserting the internal write-enable signal to all flip-flops, LUT RAMs and shift registers (SRL16). Block RAM read and write operations are enabled at this time.
		Keep	Retains the current GWE_cycle setting for partial reconfiguration applications.
GTS_cycle	All I/O pins, Configuration	1, 2, 3, 4, <u>5</u> , 6	Selects the Configuration Startup phase that releases the internal three-state control, holding all I/O buffers in high-impedance (Hi-Z). Output buffers actively drive, if so configured, after this point. See Start-Up.
		Done	Waits for the DONE pin input to go High before releasing the internal three-state control, holding all I/O buffers in high-impedance (Hi-Z). Output buffers actively drive, if so configured, after this point.
		Keep	Retains the current GTS_cycle setting for partial reconfiguration applications.
LCK_cycle	DCMs,	<u>NoWait</u>	The FPGA does not wait for selected DCMs to lock before completing configuration.
	Startup	0, 1, 2, 3, 4, 5, 6	If one or more DCMs in the design have the STARTUP_WAIT attribute set to TRUE, the FPGA waits for such DCMs to acquire their respective input clock and assert their LOCKED output. This setting selects the Configuration Startup phase where the FPGA waits for the DCMs to lock.
DonePin	DONE pin	<u>Pullup</u>	Internally connects a pull-up resistor between DONE pin and V _{CCAUX} . An external 330 Ω pull-up resistor to V _{CCAUX} is still recommended.
		Pullnone	No internal pull-up resistor on DONE pin. An external 330 Ω pull-up resistor to V_{CCAUX} is required.

Table 92: Timing for the IOB Output Path

				Speed Grade		
Symbol	Description	Conditions	Device	-5	-4	Units
				Min	Min	
Clock-to-Output	Times					
T _{IOCKP}	When reading from the Output Flip-Flop (OFF), the time from the active transition at the OCLK input to data appearing at the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive, Fast slew rate	All	2.18	2.50	ns
Propagation Tim	es		-			
T _{IOOP}	The time it takes for data to travel from the IOB's O input to the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive,	All	2.24	2.58	ns
T _{IOOLP}	The time it takes for data to travel from the O input through the OFF latch to the Output pin	Fast siew rate		2.32	2.67	ns
Set/Reset Times		•	-			
T _{IOSRP}	Time from asserting the OFF's SR input to setting/resetting data at the Output pin	LVCMOS25 ⁽²⁾ , 12 mA output drive,	All	3.27	3.76	ns
T _{IOGSRQ}	Time from asserting the Global Set Reset (GSR) input on the STARTUP_SPARTAN3E primitive to setting/resetting data at the Output pin	Fast siew rate		8.40	9.65	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in Table 77 and Table 80.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 94.

3. For minimum delays use the values reported by the Timing Analyzer.

Table 93: Timing for the IOB Three-State Path

				Speed Grade		
Symbol	Description	Conditions	Device	-5	-4	Units
				Max	Max	
Synchronous Ou	utput Enable/Disable Times					
Т _{ЮСКНZ}	Time from the active transition at the OTCLK input of the Three-state Flip-Flop (TFF) to when the Output pin enters the high-impedance state	LVCMOS25, 12 mA output drive, Fast slew rate	All	1.49	1.71	ns
T _{IOCKON} ⁽²⁾	Time from the active transition at TFF's OTCLK input to when the Output pin drives valid data	All	2.70	3.10	ns	
Asynchronous C	Output Enable/Disable Times					
T _{GTS}	Time from asserting the Global Three State (GTS) input on the STARTUP_SPARTAN3E primitive to when the Output pin enters the high-impedance state	LVCMOS25, 12 mA output drive, Fast slew rate	All	8.52	9.79	ns
Set/Reset Times						
T _{IOSRHZ}	Time from asserting TFF's SR input to when the Output pin enters a high-impedance state	LVCMOS25, 12 mA output drive, Fast	All	2.11	2.43	ns
T _{IOSRON} ⁽²⁾	Time from asserting TFF's SR input at TFF to when the Output pin drives valid data	siew rate	All	3.32	3.82	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in Table 77 and Table 80.

2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. When this is true, *add* the appropriate Output adjustment from Table 94.

3. For minimum delays use the values reported by the Timing Analyzer.

Table 11	9: Configuration	Timing Requirements f	or Attached SPI Serial Flash
----------	------------------	------------------------------	------------------------------

Symbol	Description	Requirement	Units
T _{CCS}	SPI serial Flash PROM chip-select time	$T_{CCS} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DSU}	SPI serial Flash PROM data input setup time	$T_{DSU} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DH}	SPI serial Flash PROM data input hold time	$T_{DH} \leq T_{MCCH1}$	ns
Τ _V	SPI serial Flash PROM data clock-to-output time	$T_V \leq T_{MCCLn} - T_{DCC}$	ns
f _C or f _R	Maximum SPI serial Flash PROM clock frequency (also depends on specific read command used)	$f_C \geq \frac{1}{T_{CCLKn(min)}}$	MHz

Notes:

These requirements are for successful FPGA configuration in SPI mode, where the FPGA provides the CCLK frequency. The post configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source. 1.

Subtract additional printed circuit board routing delay as required by the application. 2.

IEEE 1149.1/1532 JTAG Test Access Port Timing

Figure 78: JTAG Waveforms

Table	123:	Timing	for	the	JTAG	Test	Access	Port
-------	------	--------	-----	-----	------	------	--------	------

Symbol	Description	All Spee	Unito	
Symbol	Description	Min	Max	Onits
Clock-to-Output T	imes			
T _{TCKTDO}	The time from the falling transition on the TCK pin to data appearing at the TDO pin	1.0	11.0	ns
Setup Times				
T _{TDITCK}	The time from the setup of data at the TDI pin to the rising transition at the TCK pin	7.0	-	ns
T _{TMSTCK}	The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin	7.0	-	ns
Hold Times				
T _{TCKTDI}	The time from the rising transition at the TCK pin to the point when data is last held at the TDI pin	0	-	ns
T _{TCKTMS}	The time from the rising transition at the TCK pin to the point when a logic level is last held at the TMS pin	0	-	ns
Clock Timing				
T _{CCH}	The High pulse width at the TCK pin	5	-	ns
T _{CCL}	The Low pulse width at the TCK pin	5	-	ns
F _{TCK}	Frequency of the TCK signal	-	30	MHz

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 77.

Table 137: TQ144 Package Pinout (Cont'd)

Bank	XC3S100E Pin Name	XC3S250E Pin Name	TQ144 Pin	Туре
1	IO_L02P_1/A14	IO_L02P_1/A14	P76	DUAL
1	IO_L03N_1/A11	IO_L03N_1/A11	P82	DUAL
1	IO_L03P_1/A12	IO_L03P_1/A12	P81	DUAL
1	IO_L04N_1/A9/RHCLK1	IO_L04N_1/A9/RHCLK1	P86	RHCLK/DUAL
1	IO_L04P_1/A10/RHCLK0	IO_L04P_1/A10/RHCLK0	P85	RHCLK/DUAL
1	IO_L05N_1/A7/RHCLK3/TRDY1	IO_L05N_1/A7/RHCLK3	P88	RHCLK/DUAL
1	IO_L05P_1/A8/RHCLK2	IO_L05P_1/A8/RHCLK2	P87	RHCLK/DUAL
1	IO_L06N_1/A5/RHCLK5	IO_L06N_1/A5/RHCLK5	P92	RHCLK/DUAL
1	IO_L06P_1/A6/RHCLK4/IRDY1	IO_L06P_1/A6/RHCLK4	P91	RHCLK/DUAL
1	IO_L07N_1/A3/RHCLK7	IO_L07N_1/A3/RHCLK7	P94	RHCLK/DUAL
1	IO_L07P_1/A4/RHCLK6	IO_L07P_1/A4/RHCLK6	P93	RHCLK/DUAL
1	IO_L08N_1/A1	IO_L08N_1/A1	P97	DUAL
1	IO_L08P_1/A2	IO_L08P_1/A2	P96	DUAL
1	IO_L09N_1/LDC0	IO_L09N_1/LDC0	P104	DUAL
1	IO_L09P_1/HDC	IO_L09P_1/HDC	P103	DUAL
1	IO_L10N_1/LDC2	IO_L10N_1/LDC2	P106	DUAL
1	IO_L10P_1/LDC1	IO_L10P_1/LDC1	P105	DUAL
1	IP	IP	P78	INPUT
1	IP	IP	P84	INPUT
1	IP	IP	P89	INPUT
1	IP	IP	P101	INPUT
1	IP	IP	P107	INPUT
1	IP/VREF_1	IP/VREF_1	P95	VREF
1	VCCO_1	VCCO_1	P79	VCCO
1	VCCO_1	VCCO_1	P100	VCCO
2	IO/D5	IO/D5	P52	DUAL
2	IO/M1	IO/M1	P60	DUAL
2	IP/VREF_2	IO/VREF_2	P66	100E: VREF(INPUT) 250E: VREF(I/O)
2	IO_L01N_2/INIT_B	IO_L01N_2/INIT_B	P40	DUAL
2	IO_L01P_2/CSO_B	IO_L01P_2/CSO_B	P39	DUAL
2	IO_L02N_2/MOSI/CSI_B	IO_L02N_2/MOSI/CSI_B	P44	DUAL
2	IO_L02P_2/DOUT/BUSY	IO_L02P_2/DOUT/BUSY	P43	DUAL
2	IO_L04N_2/D6/GCLK13	IO_L04N_2/D6/GCLK13	P51	DUAL/GCLK
2	IO_L04P_2/D7/GCLK12	IO_L04P_2/D7/GCLK12	P50	DUAL/GCLK
2	IO_L05N_2/D3/GCLK15	IO_L05N_2/D3/GCLK15	P54	DUAL/GCLK
2	IO_L05P_2/D4/GCLK14	IO_L05P_2/D4/GCLK14	P53	DUAL/GCLK
2	IO_L07N_2/D1/GCLK3	IO_L07N_2/D1/GCLK3	P59	DUAL/GCLK
2	IO_L07P_2/D2/GCLK2	IO_L07P_2/D2/GCLK2	P58	DUAL/GCLK
2	IO_L08N_2/DIN/D0	IO_L08N_2/DIN/D0	P63	DUAL
2	IO_L08P_2/M0	IO_L08P_2/M0	P62	DUAL
2	IO_L09N_2/VS1/A18	IO_L09N_2/VS1/A18	P68	DUAL
2	IO_L09P_2/VS2/A19	IO_L09P_2/VS2/A19	P67	DUAL
2	IO_L10N_2/CCLK	IO_L10N_2/CCLK	P71	DUAL
2	IO_L10P_2/VS0/A17	IO_L10P_2/VS0/A17	P70	DUAL

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S500E Pin Name	XC3S1200E Pin Name	FT256 Ball	Туре
3	IP	IP	IP	N3	INPUT
3	IP/VREF_3	IP/VREF_3	IP/VREF_3	G1	VREF
3	IO/VREF_3	IO/VREF_3	IP/VREF_3	N2	250E: VREF(I/O)
					500E: VREF(I/O)
					1200E: VREF(INPUT)
3	VCCO_3	VCCO_3	VCCO_3	E2	VCCO
3	VCCO_3	VCCO_3	VCCO_3	G6	VCCO
3	VCCO_3	VCCO_3	VCCO_3	K6	VCCO
3	VCCO_3	VCCO_3	VCCO_3	M2	VCCO
GND	GND	GND	GND	A1	GND
GND	GND	GND	GND	A16	GND
GND	GND	GND	GND	B9	GND
GND	GND	GND	GND	F6	GND
GND	GND	GND	GND	F11	GND
GND	GND	GND	GND	G7	GND
GND	GND	GND	GND	G8	GND
GND	GND	GND	GND	G9	GND
GND	GND	GND	GND	G10	GND
GND	GND	GND	GND	H2	GND
GND	GND	GND	GND	H7	GND
GND	GND	GND	GND	H8	GND
GND	GND	GND	GND	H9	GND
GND	GND	GND	GND	H10	GND
GND	GND	GND	GND	J7	GND
GND	GND	GND	GND	J8	GND
GND	GND	GND	GND	J9	GND
GND	GND	GND	GND	J10	GND
GND	GND	GND	GND	J15	GND
GND	GND	GND	GND	K7	GND
GND	GND	GND	GND	K8	GND
GND	GND	GND	GND	K9	GND
GND	GND	GND	GND	K10	GND
GND	GND	GND	GND	L6	GND
GND	GND	GND	GND	L11	GND
GND	GND	GND	GND	R8	GND
GND	GND	GND	GND	T1	GND
GND	GND	GND	GND	T16	GND
VCCAUX	DONE	DONE	DONE	T15	CONFIG
VCCAUX	PROG_B	PROG_B	PROG_B	D3	CONFIG
VCCAUX	ТСК	ТСК	ТСК	A15	JTAG
VCCAUX	TDI	TDI	TDI	A2	JTAG
VCCAUX	TDO	TDO	TDO	C14	JTAG
VCCAUX	TMS	TMS	TMS	B15	JTAG
VCCAUX	VCCAUX	VCCAUX	VCCAUX	A6	VCCAUX

FT256 Footprint

			•			_		_	Bar	nk O	40		40	40			40	
	A	GND	2 TDI	INPUT	4 1/0 L17N_0 VREF_0	5 I/O L17P_0	VCCAUX	/ I/O	8 INPUT L10P_0	9 1/O L09N_0 GCL K7	I/O L09P_0	VCCAUX	12	I/O L03N_0 VREE 0	14 1/0 L01N_0	тск	GND	
	B	I/O L01P_3	I/O L01N_3	I/O L19N_0 HSWAP	I/O	VCCO_0	INPUT ←→	I/O L13P_0 ♦	INPUT L10N_0 GCLK9	GND	INPUT ←→	I/O L05N_0 VREF_0	VCCO_0	I/O L03P_0	I/O L01P_0	TMS	INPUT	-
	с	I/O L02P_3	I/O L02N_3 VREF_3	I/O L19P_0	I/O L18N_0	I/O L18P_0	I/O L15P_0	I/O L13N_0 ♦	I/O L11P_0 GCLK10	INPUT L07N_0	INPUT L07P_0	I/O L05P_0	INPUT L02N_0	INPUT	TDO	I/O L19N_1 LDC2	I/O L19P_1 LDC1	
	D	I/O L05P_3	INPUT	PROG_B	VCCINT	INPUT L16P_0	I/O L15N_0	I/O L14N_0 VREF_0	I/O L11N_0 GCLK11	I/O VREF_0	I/O L06P_0	I/O L04P_0	INPUT L02P_0	VCCINT	I/O L18N_1 LDC0	I/O L18P_1 HDC	INPUT VREF_1 ←→	
	Е	I/O L05N_3	VCCO_3	I/O L03P_3	I/O L03N_3	VCCINT	INPUT L16N_0	I/O L14P_0	I/O L12P_0	I/O L08P_0 GCLK4	I/O L06N_0	I/O L04N_0	VCCINT	I/O L17P_1 ♦	INPUT	VCCO_1	I/O L17N_1 ♦	
	F	VCCAUX	INPUT	I/O L04P_3 ♦	I/O L04N_3 VREF_3 ◆	INPUT ←→	GND	VCCO_0	I/O L12N_0	I/O L08N_0 GCLK5	VCCO_0	GND	I/O L16N_1	I/O L16P_1	I/O L15P_1	I/O L15N_1	VCCAUX	
	G	INPUT VREF_3	I/O L07N_3	I/O L07P_3	I/O L06N_3	I/O L06P_3	VCCO_3	GND	GND	GND	GND	VCCO_1	INPUT	I/O L14P_1	I/O L14N_1 A0	I/O L13P_1 A2	I/O L13N_1 A1	
k 3	н	INPUT	GND	I/O L09P_3 LHCLK2	I/O L09N_3 LHCLK3 IRDY2	I/O L08P_3 LHCLK0	I/O L08N_3 LHCLK1	GND	GND	GND	GND	I/O L12N_1 A3 RHCLK7	I/O L12P_1 A4 RHCLK6	INPUT VREF_1	I/O L11N_1 A5 RHCLK5	L11P_1 A6 RHCLK4 IRDY1	INPUT	1 X
Bar	J	I/O L12P_3	I/O L10P_3 LHCLK4 TRDY2	I/O L10N_3 LHCLK5	I/O L11N_3 LHCLK7	I/O L11P_3 LHCLK6	INPUT	GND	GND	GND	GND	INPUT	INPUT	I/O L10N_1 A7 RHCLK3 TRDY1	I/O L10P_1 A8 RHCLK2	GND	I/O L09N_1 A9 RHCLK1	Bar
	κ	I/O L12N_3	I/O L13P_3	I/O L13N_3	INPUT	I/O L15P_3	VCCO_3	GND	GND	GND	GND	VCCO_1	I/O L07N_1 A11	I/O L07P_1 A12	I/O L08N_1 VREF_1	I/O L08P_1	1/0 L09P_1 A10 RHCLK0	
	L	VCCAUX	I/O L14N_3 VREF_3 ◆	I/O L14P_3 ♦	I/O L17N_3 ♦	I/O L15N_3	GND	VCCO_2	I/O L09N_2 D6 GCLK13	I/O L13P_2 M0	VCCO_2	GND	I/O L05P_1 ♦	I/O L05N_1 ♦	I/O L06P_1	I/O L06N_1	VCCAUX	
	м	I/O L16P_3	VCCO_3	INPUT	I/O L17P_3 ◆	VCCINT	I/O L05P_2	INPUT ←→	I/O L09P_2 D7 GCLK12	I/O L13N_2 DIN D0	I/O L15N_2	INPUT L17N_2	VCCINT	INPUT	INPUT ←→	VCCO_1	I/O L04N_1 VREF_1	
	N	I/O L16N_3	INPUT VREF_3 ←→	INPUT	VCCINT	I/O L03N_2 MOSI CSI_B	I/O L05N_2	I/O L07P_2 ♦	I/O L10P_2 D4 GCLK14	I/O L12N_2 D1 GCLK3	I/O L15P_2	INPUT L17P_2	I/O L18N_2 A20	VCCINT	I/O L03P_1 ♦	I/O L03N_1 VREF_1 ♦	I/O L04P_1	
	Ρ	I/O L18N_3	I/O L18P_3	I/O L01P_2 CSO_B	I/O L01N_2 INIT_B	I/O L03P_2 DOUT BUSY	I/O L06N_2	I/O L07N_2 ♦	I/O L10N_2 D3 GCLK15	I/O L12P_2 D2 GCLK2	I/O L14P_2 ♦	I/O L16N_2 A22	I/O L18P_2 A21	I/O VREF_2	I/O L20P_2 VS0 A17	I/O L02N_1 A13	I/O L02P_1 A14	
	R	I/O L19N_3	I/O L19P_3	INPUT L02N_2	I/O VREF_2	VCCO_2	I/O L06P_2	INPUT L08P_2	GND	INPUT L11N_2 M2 GCLK1	I/O L14N_2 VREF_2 ♠	I/O L16P_2 A23	VCCO_2	I/O L19N_2 VS1 A18	I/O L20N_2 CCLK	I/O L01N_1 A15	I/O L01P_1 A16	
	т	GND	INPUT	INPUT L02P_2	I/O L04P_2	I/O L04N_2	VCCAUX	INPUT L08N_2 VREF_2	I/O D5	INPUT L11P_2 RDWR_B GCLK0	I/O M1	VCCAUX	INPUT ←→	I/O L19P_2 VS2 A19	INPUT	DONE	GND	
	Bank 2																	
	Figure 85: FT256 Package Footprint (top view)																	
2	2 CONFIG: Dedicated configuration 4 JTAG: Dedicated JTAG port pins 8 VCCINT: Internal core supply voltage (+1.2V)																	
28	GI	ND: Gro	ound				16	VCCO bank	: Outpi	ut volta	ge supp	oly for	8	VC (+2	CAUX: 2.5V)	Auxilia	ry supp	ly voltage
6 ←→	6 Migration Difference: For flexible package migration, use these pins → as inputs. (♦)																	

www.xilinx.com

FG484: 484-ball Fine-pitch Ball Grid Array

The 484-ball fine-pitch ball grid array, FG484, supports the XC3S1600E FPGA.

Table 154 lists all the FG484 package pins. They are sorted by bank number and then by pin name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at:

http://www.xilinx.com/support/documentation/data_sheets /s3e_pin.zip

Pinout Table

Table 154	: FG484 Package Pinout		
Bank	XC3S1600E Pin Name	FG484 Ball	Туре
0	Ю	B6	I/O
0	Ю	B13	I/O
0	Ю	C5	I/O
0	Ю	C14	I/O
0	Ю	E16	I/O
0	Ю	F9	I/O
0	Ю	F16	I/O
0	Ю	G8	I/O
0	Ю	H10	I/O
0	Ю	H15	I/O
0	Ю	J11	I/O
0	IO/VREF_0	G12	VREF
0	IO_L01N_0	C18	I/O
0	IO_L01P_0	C19	I/O
0	IO_L03N_0/VREF_0	A20	VREF
0	IO_L03P_0	A21	I/O
0	IO_L04N_0	A19	I/O
0	IO_L04P_0	A18	I/O
0	IO_L06N_0	C16	I/O
0	IO_L06P_0	D16	I/O
0	IO_L07N_0	A16	I/O
0	IO_L07P_0	A17	I/O
0	IO_L09N_0/VREF_0	B15	VREF
0	IO_L09P_0	C15	I/O
0	IO_L10N_0	G15	I/O
0	IO_L10P_0	F15	I/O
0	IO_L11N_0	D14	I/O
0	IO_L11P_0	E14	I/O
0	IO_L12N_0/VREF_0	A14	VREF

Table 154	able 154: FG484 Package Pinout (Cont'd)					
Bank	XC3S1600E Pin Name	FG484 Ball	Туре			
0	IO_L12P_0	A15	I/O			
0	IO_L13N_0	H14	I/O			
0	IO_L13P_0	G14	I/O			
0	IO_L15N_0	G13	I/O			
0	IO_L15P_0	F13	I/O			
0	IO_L16N_0	J13	I/O			
0	IO_L16P_0	H13	I/O			
0	IO_L18N_0/GCLK5	E12	GCLK			
0	IO_L18P_0/GCLK4	F12	GCLK			
0	IO_L19N_0/GCLK7	C12	GCLK			
0	IO_L19P_0/GCLK6	B12	GCLK			
0	IO_L21N_0/GCLK11	B11	GCLK			
0	IO_L21P_0/GCLK10	C11	GCLK			
0	IO_L22N_0	D11	I/O			
0	IO_L22P_0	E11	I/O			
0	IO_L24N_0	A9	I/O			
0	IO_L24P_0	A10	I/O			
0	IO_L25N_0/VREF_0	D10	VREF			
0	IO_L25P_0	C10	I/O			
0	IO_L27N_0	H8	I/O			
0	IO_L27P_0	H9	I/O			
0	IO_L28N_0	C9	I/O			
0	IO_L28P_0	B9	I/O			
0	IO_L29N_0	E9	I/O			
0	IO_L29P_0	D9	I/O			
0	IO_L30N_0	B8	I/O			
0	IO_L30P_0	A8	I/O			
0	IO_L32N_0/VREF_0	F7	VREF			
0	IO_L32P_0	F8	I/O			
0	IO_L33N_0	A6	I/O			
0	IO_L33P_0	A7	I/O			
0	IO_L35N_0	A4	I/O			
0	IO_L35P_0	A5	I/O			
0	IO_L36N_0	E7	I/O			
0	IO_L36P_0	D7	I/O			
0	IO_L38N_0/VREF_0	D6	VREF			
0	IO_L38P_0	D5	I/O			
0	IO_L39N_0	B4	I/O			
0	IO_L39P_0	B3	I/O			
0	IO_L40N_0/HSWAP	D4	DUAL			
0	IO_L40P_0	C4	I/O			
0	IP	B19	INPUT			

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.