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traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
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tailored to specific applications. This reprogrammability
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complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Slice Location Designations

The Xilinx development software designates the location of 
a slice according to its X and Y coordinates, starting in the 
bottom left corner, as shown in Figure 14. The letter ‘X’ 
followed by a number identifies columns of slices, 
incrementing from the left side of the die to the right. The 
letter ‘Y’ followed by a number identifies the position of each 
slice in a pair as well as indicating the CLB row, 
incrementing from the bottom of the die. Figure 16 shows 
the CLB located in the lower left-hand corner of the die. The 
SLICEM always has an even ‘X’ number, and the SLICEL 
always has an odd ‘X’ number.

Slice Overview

A slice includes two LUT function generators and two 
storage elements, along with additional logic, as shown in 
Figure 17.

Both SLICEM and SLICEL have the following elements in 
common to provide logic, arithmetic, and ROM functions:

• Two 4-input LUT function generators, F and G

• Two storage elements

• Two wide-function multiplexers, F5MUX and FiMUX

• Carry and arithmetic logic

X-Ref Target - Figure 16

Figure 16: Arrangement of Slices within the CLB
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Figure 17: Resources in a Slice
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Block RAM
For additional information, refer to the “Using Block RAM” 
chapter in UG331.

Spartan-3E devices incorporate 4 to 36 dedicated block 
RAMs, which are organized as dual-port configurable 
18 Kbit blocks. Functionally, the block RAM is identical to 
the Spartan-3 architecture block RAM. Block RAM 
synchronously stores large amounts of data while 
distributed RAM, previously described, is better suited for 
buffering small amounts of data anywhere along signal 
paths. This section describes basic block RAM functions.

Each block RAM is configurable by setting the content’s 
initial values, default signal value of the output registers, 
port aspect ratios, and write modes. Block RAM can be 
used in single-port or dual-port modes. 

Arrangement of RAM Blocks on Die 

The block RAMs are located together with the multipliers on 
the die in one or two columns depending on the size of the 
device. The XC3S100E has one column of block RAM. The 
Spartan-3E devices ranging from the XC3S250E to 
XC3S1600E have two columns of block RAM. Table 21 
shows the number of RAM blocks, the data storage 
capacity, and the number of columns for each device. 
Row(s) of CLBs are located above and below each block 
RAM column. 

Immediately adjacent to each block RAM is an embedded 
18x18 hardware multiplier. The upper 16 bits of the block 
RAM's Port A Data input bus are shared with the upper 16 
bits of the A multiplicand input bus of the multiplier. Similarly, 
the upper 16 bits of Port B's data input bus are shared with 
the B multiplicand input bus of the multiplier.

The Internal Structure of the Block RAM 

The block RAM has a dual port structure. The two identical 
data ports called A and B permit independent access to the 
common block RAM, which has a maximum capacity of 
18,432 bits, or 16,384 bits with no parity bits (see parity bits 
description in Table 22). Each port has its own dedicated 
set of data, control, and clock lines for synchronous read 

and write operations. There are four basic data paths, as 
shown in Figure 30: 

1. Write to and read from Port A

2. Write to and read from Port B

3. Data transfer from Port A to Port B

4. Data transfer from Port B to Port A

Number of Ports 

A choice among primitives determines whether the block 
RAM functions as dual- or single-port memory. A name of 
the form RAMB16_S[wA]_S[wB] calls out the dual-port 
primitive, where the integers wA and wB specify the total 
data path width at ports A and B, respectively. Thus, a 
RAMB16_S9_S18 is a dual-port RAM with a 9-bit Port A 
and an 18-bit Port B. A name of the form RAMB16_S[w] 
identifies the single-port primitive, where the integer w 
specifies the total data path width of the lone port A. A 
RAMB16_S18 is a single-port RAM with an 18-bit port.

Port Aspect Ratios 

Each port of the block RAM can be configured 
independently to select a number of different possible 
widths for the data input (DI) and data output (DO) signals 
as shown in Table 22. 

Table  21: Number of RAM Blocks by Device

Device
Total 

Number of 
RAM Blocks

Total 
Addressable 

Locations 
(bits)

Number of 
Columns

XC3S100E 4 73,728 1

XC3S250E 12 221,184 2

XC3S500E 20 368,640 2

XC3S1200E 28 516,096 2

XC3S1600E 36 663,552 2

X-Ref Target - Figure 30

Figure 30: Block RAM Data Paths
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X-Ref Target - Figure 31

Figure 31: Data Organization and Bus-matching Operation with Different Port Widths on Port A and Port B
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Block RAM Port Signal Definitions

Representations of the dual-port primitive 
RAMB16_S[wA]_S[wB] and the single-port primitive 
RAMB16_S[w] with their associated signals are shown in 
Figure 32a and Figure 32b, respectively. These signals are 
defined in Table 23. The control signals (WE, EN, CLK, and 
SSR) on the block RAM are active High. However, optional 
inverters on the control signals change the polarity of the 
active edge to active Low.

Design Note

Whenever a block RAM port is enabled (ENA or 
ENB = High), all address transitions must meet the data 
sheet setup and hold times with respect to the port clock 
(CLKA or CLKB), as shown in Table 103, page 138.This 
requirement must be met even if the RAM read output is of 
no interest.

X-Ref Target - Figure 32

Figure 32: Block RAM Primitives
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Notes: 
1. wA and wB are integers representing the total data path width (i.e., data bits plus parity bits) at Ports A and B, respectively. 
2. pA and pB are integers that indicate the number of data path lines serving as parity bits. 
3. rA and rB are integers representing the address bus width at ports A and B, respectively. 
4. The control signals CLK, WE, EN, and SSR on both ports have the option of inverted polarity. 
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DLL Clock Output and Feedback Connections 

As many as four of the nine DCM clock outputs can 
simultaneously drive four of the BUFGMUX buffers on the 
same die edge. All DCM clock outputs can simultaneously 
drive general routing resources, including interconnect 
leading to OBUF buffers. 

The feedback loop is essential for DLL operation. Either the 
CLK0 or CLK2X outputs feed back to the CLKFB input via a 
BUFGMUX global buffer to eliminate the clock distribution 
delay. The specific BUFGMUX buffer used to feed back the 
CLK0 or CLK2X signal is ideally one of the BUFGMUX 
buffers associated with a specific DCM, as shown in 
Table 30, Table 31, and Table 32.

The feedback path also phase-aligns the other seven DLL 
outputs: CLK0, CLK90, CLK180, CLK270, CLKDV, CLK2X, 
or CLK2X180. The CLK_FEEDBACK attribute value must 
agree with the physical feedback connection. Use “1X” for 
CLK0 feedback and “2X” for CLK2X feedback. If the DFS 
unit is used stand-alone, without the DLL, then no feedback 
is required and set the CLK_FEEDBACK attribute to 
“NONE”. 

Two basic cases determine how to connect the DLL clock 
outputs and feedback connections: on-chip synchronization 
and off-chip synchronization, which are illustrated in 
Figure 42a through Figure 42d. 

In the on-chip synchronization case in Figure 42a and 
Figure 42b, it is possible to connect any of the DLL’s seven 
output clock signals through general routing resources to 
the FPGA’s internal registers. Either a Global Clock Buffer 
(BUFG) or a BUFGMUX affords access to the global clock 
network. As shown in Figure 42a, the feedback loop is 
created by routing CLK0 (or CLK2X) in Figure 42b to a 
global clock net, which in turn drives the CLKFB input. 

In the off-chip synchronization case in Figure 42c and 
Figure 42d, CLK0 (or CLK2X) plus any of the DLL’s other 
output clock signals exit the FPGA using output buffers 
(OBUF) to drive an external clock network plus registers on 
the board. As shown in Figure 42c, the feedback loop is 
formed by feeding CLK0 (or CLK2X) in Figure 42d back into 
the FPGA, then to the DCM’s CLKFB input via a Global 
Buffer Input, specified in Table 30.

 
X-Ref Target - Figure 42

Figure 42: Input Clock, Output Clock, and Feedback Connections for the DLL
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Accommodating Input Frequencies Beyond Spec-
ified Maximums

If the CLKIN input frequency exceeds the maximum 
permitted, divide it down to an acceptable value using the 
CLKIN_DIVIDE_BY_2 attribute. When this attribute is set to 
“TRUE”, the CLKIN frequency is divided by a factor of two 
as it enters the DCM. In addition, the CLKIN_DIVIDE_BY_2 
option produces a 50% duty-cycle on the input clock, 
although at half the CLKIN frequency.

Quadrant and Half-Period Phase Shift Outputs

In addition to CLK0 for zero-phase alignment to the CLKIN 
signal, the DLL also provides the CLK90, CLK180, and 
CLK270 outputs for 90°, 180°, and 270° phase-shifted 
signals, respectively. These signals are described in 
Table 28, page 47 and their relative timing is shown in 
Figure 43. For control in finer increments than 90°, see 
Phase Shifter (PS). 

Basic Frequency Synthesis Outputs

The DLL component provides basic options for frequency 
multiplication and division in addition to the more flexible 
synthesis capability of the DFS component, described in a 
later section. These operations result in output clock signals 
with frequencies that are either a fraction (for division) or a 

multiple (for multiplication) of the incoming clock frequency. 
The CLK2X output produces an in-phase signal that is twice 
the frequency of CLKIN. The CLK2X180 output also 
doubles the frequency, but is 180° out-of-phase with respect 
to CLKIN. The CLKDIV output generates a clock frequency 
that is a predetermined fraction of the CLKIN frequency. 
The CLKDV_DIVIDE attribute determines the factor used to 
divide the CLKIN frequency. The attribute can be set to 
various values as described in Table 29. The basic 
frequency synthesis outputs are described in Table 28. 

Duty Cycle Correction of DLL Clock Outputs 

The DLL output signals exhibit a 50% duty cycle, even if the 
incoming CLKIN signal has a different duty cycle. 
Fifty-percent duty cycle means that the High and Low times 
of each clock cycle are equal.

DLL Performance Differences Between Steppings

As indicated in Digital Clock Manager (DCM) Timing 
(Module 3), the Stepping 1 revision silicon supports higher 
maximum input and output frequencies. Stepping 1 devices 
are backwards compatible with Stepping 0 devices.

Digital Frequency Synthesizer (DFS) 

The DFS unit generates clock signals where the output 
frequency is a product of the CLKIN input clock frequency 
and a ratio of two user-specified integers. The two 
dedicated outputs from the DFS unit, CLKFX and 
CLKFX180, are defined in Table 33. 

The signal at the CLKFX180 output is essentially an 
inversion of the CLKFX signal. These two outputs always 
exhibit a 50% duty cycle, even when the CLKIN signal does 
not. The DFS clock outputs are active coincident with the 
seven DLL outputs and their output phase is controlled by 
the Phase Shifter unit (PS).

The output frequency (fCLKFX) of the DFS is a function of the 
incoming clock frequency (fCLKIN) and two integer 
attributes, as follows.

Eq 1

The CLKFX_MULTIPLY attribute is an integer ranging from 
2 to 32, inclusive, and forms the numerator in Equation 1. 

X-Ref Target - Figure 43

Figure 43: Characteristics of the DLL Clock Outputs

Output Signal - Duty Cycle Corrected

Phase:

Input Signal (40%/60% Duty Cycle)

0o 90o 180o 270o 0o 90o 180o 270o 0o

DS099-2_10_101105

CLKIN

t

CLK2X

CLK2X180

CLKDV

CLK0

CLK90

CLK180

CLK270

Table  33: DFS Signals

Signal Direction Description

CLKFX Output Multiplies the CLKIN frequency by 
the attribute-value ratio 
(CLKFX_MULTIPLY/
CLKFX_DIVIDE) to generate a 
clock signal with a new target 
frequency.

CLKFX180 Output Generates a clock signal with the 
same frequency as CLKFX, but 
shifted 180° out-of-phase. 

fCLKFX fCLKIN
CLKFX_MULTIPLY

CLKFX_DIVIDE
---------------------------------------------------- 
 •=
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By contrast, the clock switch matrixes on the top and bottom 
edges receive signals from any of the five following sources: 
two GCLK pins, two DCM outputs, or one Double-Line 
interconnect.

Table 41 indicates permissible connections between clock 
inputs and BUFGMUX elements. The I0-input provides the 
best input path to a clock buffer. The I1-input provides the 
secondary input for the clock multiplexer function.

The four BUFGMUX elements on the top edge are paired 
together and share inputs from the eight global clock inputs 
along the top edge. Each BUFGMUX pair connects to four 
of the eight global clock inputs, as shown in Figure 45. This 
optionally allows differential inputs to the global clock inputs 
without wasting a BUFGMUX element.

Table  41: Connections from Clock Inputs to BUFGMUX Elements and Associated Quadrant Clock

Quadran
t Clock 

Line(1)

Left-Half BUFGMUX Top or Bottom BUFGMUX Right-Half BUFGMUX

Location(2) I0 Input I1 Input Location(2) I0 Input I1 Input Location(2) I0 Input I1 Input

H X0Y9 LHCLK7 LHCLK6 X1Y10 GCLK7 or 
GCLK11

GCLK6 or 
GCLK10 X3Y9 RHCLK3 RHCLK2

G X0Y8 LHCLK6 LHCLK7 X1Y11 GCLK6 or 
GCLK10

GCLK7 or 
GCLK11 X3Y8 RHCLK2 RHCLK3

F X0Y7 LHCLK5 LHCLK4 X2Y10 GCLK5 or 
GCLK9

GCLK4 or 
GCLK8 X3Y7 RHCLK1 RHCLK0

E X0Y6 LHCLK4 LHCLK5 X2Y11 GCLK4 or 
GCLK8

GCLK5 or 
GCLK9 X3Y6 RHCLK0 RHCLK1

D X0Y5 LHCLK3 LHCLK2 X1Y0 GCLK3 or 
GCLK15

GCLK2 or 
GCLK14 X3Y5 RHCLK7 RHCLK6

C X0Y4 LHCLK2 LHCLK3 X1Y1 GCLK2 or 
GCLK14

GCLK3 or 
GCLK15 X3Y4 RHCLK6 RHCLK7

B X0Y3 LHCLK1 LHCLK0 X2Y0 GCLK1 or 
GCLK13

GCLK0 or 
GCLK12 X3Y3 RHCLK5 RHCLK4

A X0Y2 LHCLK0 LHCLK1 X2Y1 GCLK0 or 
GCLK12

GCLK1 or 
GCLK13 X3Y2 RHCLK4 RHCLK5

Notes: 
1. See Quadrant Clock Routing for connectivity details for the eight quadrant clocks.
2. See Figure 45 for specific BUFGMUX locations, and Figure 47 for information on how BUFGMUX elements drive onto a specific clock line 

within a quadrant.
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The connections for the bottom-edge BUFGMUX elements 
are similar to the top-edge connections (see Figure 46).

On the left and right edges, only two clock inputs feed each 
pair of BUFGMUX elements.

Quadrant Clock Routing

The clock routing within the FPGA is quadrant-based, as 
shown in Figure 45. Each clock quadrant supports eight 
total clock signals, labeled ‘A’ through ‘H’ in Table 41 and 
Figure 47. The clock source for an individual clock line 
originates either from a global BUFGMUX element along 
the top and bottom edges or from a BUFGMUX element 
along the associated edge, as shown in Figure 47. The 
clock lines feed the synchronous resource elements (CLBs, 
IOBs, block RAM, multipliers, and DCMs) within the 
quadrant.

The four quadrants of the device are:

• Top Right (TR)

• Bottom Right (BR)

• Bottom Left (BL)

• Top Left (TL)

Note that the quadrant clock notation (TR, BR, BL, TL) is 
separate from that used for similar IOB placement 
constraints.

To estimate the quadrant location for a particular I/O, see 
the footprint diagrams in Module 4, Pinout Descriptions. For 
exact quadrant locations, use the floorplanning tool. In the 
QFP packages (VQ100, TQ144 and PQ208) the quadrant 
borders fall in the middle of each side of the package, at a 
GND pin. The clock inputs fall on the quadrant boundaries, 
as indicated in Table 42.

In a few cases, a dedicated input is physically in one 
quadrant of the device but connects to a different clock 
quadrant:

• FT256, H16 is in clock quadrant BR

• FG320, K2 is in clock quadrant BL

• FG400, L8 is in clock quadrant TL and the I/O at N11 is 
in clock quadrant BL

• FG484, M2 is in clock quadrant TL and L15 is in clock 
quadrant BR

X-Ref Target - Figure 46

Figure 46: Clock Switch Matrix to BUFGMUX Pair Connectivity
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Table  42: QFP Package Clock Quadrant Locations

Clock Pins Quadrant

GCLK[3:0] BR

GCLK[7:4] TR

GCLK[11:8] TL

GCLK[15:12] BL

RHCLK[3:0] BR

RHCLK[7:4] TR

LHCLK[3:0] TL

LHCLK[7:4] BL
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The outputs of the top or bottom BUFGMUX elements 
connect to two vertical spines, each comprising four vertical 
clock lines as shown in Figure 45. At the center of the die, 
these clock signals connect to the eight-line horizontal clock 
spine. 

Outputs of the left and right BUFGMUX elements are routed 
onto the left or right horizontal spines, each comprising 
eight horizontal clock lines. 

Each of the eight clock signals in a clock quadrant derives 
either from a global clock signal or a half clock signal. In 
other words, there are up to 24 total potential clock inputs to 
the FPGA, eight of which can connect to clocked elements 
in a single clock quadrant. Figure 47 shows how the clock 
lines in each quadrant are selected from associated 
BUFGMUX sources. For example, if quadrant clock ‘A’ in 
the bottom left (BL) quadrant originates from 
BUFGMUX_X2Y1, then the clock signal from 
BUFGMUX_X0Y2 is unavailable in the bottom left quadrant. 
However, the top left (TL) quadrant clock ‘A’ can still solely 
use the output from either BUFGMUX_X2Y1 or 
BUFGMUX_X0Y2 as the source.

To minimize the dynamic power dissipation of the clock 
network, the Xilinx development software automatically 
disables all clock segments not in use. 

X-Ref Target - Figure 47

Figure 47: Clock Sources for the Eight Clock Lines within a Clock Quadrant
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The HSWAP pin itself has a pull-up resistor enabled during 
configuration. However, the VCCO_0 supply voltage must 
be applied before the pull-up resistor becomes active. If the 
VCCO_0 supply ramps after the VCCO_2 power supply, do 
not let HSWAP float; tie HSWAP to the desired logic level 
externally.

Spartan-3E FPGAs have only six dedicated configuration 
pins, including the DONE and PROG_B pins, and the four 
JTAG boundary-scan pins: TDI, TDO, TMS, and TCK. All 
other configuration pins are dual-purpose I/O pins and are 
available to the FPGA application after the DONE pin goes 
High. See Start-Up for additional information.

Table 47 shows the default I/O standard setting for the 
various configuration pins during the configuration process. 
The configuration interface is designed primarily for 2.5V 
operation when the VCCO_2 (and VCCO_1 in BPI mode) 
connects to 2.5V.

D0/DIN DIN DIN D0 D0 DIN 2

RDWR_B RDWR_B RDWR_B 2

A23 A23 2

A22 A22 2

A21 A21 2

A20 A20 2

A19/VS2 VS2 A19 2

A18/VS1 VS1 A18 2

A17/VS0 VS0 A17 2

A16 A16 1

A15 A15 1

A14 A14 1

A13 A13 1

A12 A12 1

A11 A11 1

A10 A10 1

A9 A9 1

A8 A8 1

A7 A7 1

A6 A6 1

A5 A5 1

A4 A4 1

A3 A3 1

A2 A2 1

A1 A1 1

A0 A0 1

LDC0 LDC0 1

LDC1 LDC1 1

LDC2 LDC2 1

HDC HDC 1

Notes: 
1. Gray shaded cells represent pins that are in a high-impedance state (Hi-Z, floating) during configuration. These pins have an optional 

internal pull-up resistor to their respective VCCO supply pin that is active throughout configuration if the HSWAP input is Low.
2. Yellow shaded cells represent pins with an internal pull-up resistor to its respective voltage supply rail that is active during 

configuration, regardless of the HSWAP pin.
3. Note that dual-purpose outputs are supplied by VCCO, and configuration inputs are supplied by VCCAUX.

Table  46: Pin Behavior during Configuration (Cont’d)

Pin Name Master Serial SPI (Serial 
Flash)

BPI (Parallel 
NOR Flash) JTAG Slave Parallel Slave Serial I/O Bank(3)

Table  47: Default I/O Standard Setting During Config- 
uration (VCCO_2 = 2.5V)

Pin(s) I/O Standard Output Drive Slew Rate

All, including CCLK LVCMOS25 8 mA Slow

http://www.xilinx.com
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 Similarly, the FPGA’s HSWAP pin must be Low to 
enable pull-up resistors on all user-I/O pins during 
configuration or High to disable the pull-up resistors. The 
HSWAP control must remain at a constant logic level 
throughout FPGA configuration. After configuration, when 
the FPGA’s DONE output goes High, the HSWAP pin is 

available as full-featured user-I/O pin and is powered by the 
VCCO_0 supply.

The FPGA's DOUT pin is used in daisy-chain applications, 
described later. In a single-FPGA application, the FPGA’s 
DOUT pin is not used but is actively driving during the 
configuration process.

P

Table  50: Serial Master Mode Connections

Pin Name FPGA 
Direction Description During Configuration After Configuration

HSWAP Input User I/O Pull-Up Control. When Low during 
configuration, enables pull-up resistors in all 
I/O pins to respective I/O bank VCCO input.
0: Pull-ups during configuration

1: No pull-ups

Drive at valid logic level 
throughout configuration.

User I/O

M[2:0] Input Mode Select. Selects the FPGA configuration 
mode. See Design Considerations for the 
HSWAP, M[2:0], and VS[2:0] Pins.

M2 = 0, M1 = 0, M0 = 0. Sampled 
when INIT_B goes High.

User I/O

DIN Input Serial Data Input. Receives serial data from PROM’s 
D0 output.

User I/O

CCLK Output Configuration Clock. Generated by FPGA 
internal oscillator. Frequency controlled by 
ConfigRate bitstream generator option. If 
CCLK PCB trace is long or has multiple 
connections, terminate this output to maintain 
signal integrity. See CCLK Design 
Considerations.

Drives PROM’s CLK clock input. User I/O

DOUT Output Serial Data Output. Actively drives. Not used in 
single-FPGA designs. In a 
daisy-chain configuration, this pin 
connects to DIN input of the next 
FPGA in the chain.

User I/O

INIT_B Open-drain 
bidirectional 

I/O

Initialization Indicator. Active Low. Goes 
Low at start of configuration during 
Initialization memory clearing process. 
Released at end of memory clearing, when 
mode select pins are sampled. Requires 
external 4.7 kΩ pull-up resistor to VCCO_2.

Connects to PROM’s OE/RESET 
input. FPGA clears PROM’s 
address counter at start of 
configuration, enables outputs 
during configuration. PROM also 
holds FPGA in Initialization state 
until PROM reaches Power-On 
Reset (POR) state. If CRC error 
detected during configuration, 
FPGA drives INIT_B Low.

User I/O. If unused in 
the application, drive 
INIT_B High.

DONE Open-drain 
bidirectional 

I/O

FPGA Configuration Done. Low during 
configuration. Goes High when FPGA 
successfully completes configuration. 
Requires external 330 Ω pull-up resistor to 
2.5V. 

Connects to PROM’s chip-enable 
(CE) input. Enables PROM during 
configuration. Disables PROM 
after configuration.

Pulled High via external 
pull-up.   When High, 
indicates that the FPGA 
successfully 
configured.

PROG_B Input Program FPGA. Active Low. When asserted 
Low for 500 ns or longer, forces the FPGA to 
restart its configuration process by clearing 
configuration memory and resetting the 
DONE and INIT_B pins once PROG_B 
returns High. Recommend external 4.7 kΩ 
pull-up resistor to 2.5V. Internal pull-up value 
may be weaker (see Table 78). If driving 
externally with a 3.3V output, use an 
open-drain or open-collector driver or use a 
current limiting series resistor.

Must be High during configuration 
to allow configuration to start. 
Connects to PROM’s CF pin, 
allowing JTAG PROM 
programming algorithm to 
reprogram the FPGA.

Drive PROG_B Low 
and release to 
reprogram FPGA.

P
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WRITER NOTE: Many of the URLs in this table are obsolete or 
otherwise broken. 

Table  53: Variant Select Codes for Various SPI Serial Flash PROMs

VS2 VS1 VS0 SPI Read Command Dummy 
Bytes SPI Serial Flash Vendor SPI Flash Family

iMPACT 
Programming 

Support

1 1 1
FAST READ (0x0B)
(see Figure 53)

1

STMicroelectronics (ST)
M25Pxx
M25PExx/M45PExx

Yes

Atmel

AT45DB ‘D’-Series Data 
Flash Yes

AT26 / AT25(1)

Intel S33

Spansion (AMD, Fujitsu) S25FLxxxA

Winbond (NexFlash) NX25 / W25

Macronix MX25Lxxxx

Silicon Storage Technology 
(SST)

SST25LFxxxA
SST25VFxxxA

Programmable 
Microelectronics Corp. 
(PMC)

Pm25LVxxx

AMIC Technology A25L

Eon Silicon Solution, Inc. EN25

1 0 1
READ (0x03)
(see Figure 53)

0

STMicroelectronics (ST)
M25Pxx
M25PExx/M45PExx

Yes

Spansion (AMD, Fujitsu) S25FLxxxA

Winbond (NexFlash) NX25 / W25

Macronix MX25Lxxxx

Silicon Storage Technology 
(SST)

SST25LFxxxA
SST25VFxxxA
SST25VFxxx

Programmable 
Microelectronics Corp. 
(PMC)

Pm25LVxxx

1 1 0 READ ARRAY (0xE8)
(see Figure 54) 4 Atmel Corporation

AT45DB DataFlash
(use only ‘C’ or ‘D’ 
Series for Industrial 
temperature range)

Yes

Others Reserved

Notes: 
1. See iMPACT documentation for specific device support.

http://www.xilinx.com
http://www.st.com/stonline/products/families/memories/fl_ser/sf_code.htm
http://www.st.com/stonline/products/families/memories/fl_ser/sf_data.htm
http://www.atmel.com/products/DataFlash/overview.asp
http://www.intel.com/design/flcomp/products/s33/techdocs.htm
http://www.spansion.com/flash_memory_products/serial_interface.html
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.winbond-usa.com/mambo/content/view/295/553/
http://www.macronix.com/QuickPlace/hq/PageLibrary48256F55002C90A5.nsf/h_Toc/B9F4CC53671F91C148256F55004206F9/?OpenDocument
http://www.sst.com/products.xhtml/serial_flash/25/
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http://www.sst.com/products.xhtml/serial_flash/25/
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During the configuration process, CCLK is controlled by the 
FPGA and limited to the frequencies generated by the 
FPGA. After configuration, the FPGA application can use 

other clock signals to drive the CCLK pin and can further 
optimize SPI-based communication.

Refer to the individual SPI peripheral data sheet for specific 
interface and communication protocol requirements.

X-Ref Target - Figure 56

Figure 56: Using the SPI Flash Interface After Configuration
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Powering Spartan-3E FPGAs
For additional information, refer to the “Powering Spartan-3 
Generation FPGAs” chapter in UG331.

Voltage Supplies

Like Spartan-3 FPGAs, Spartan-3E FPGAs have multiple 
voltage supply inputs, as shown in Table 70. There are two 

supply inputs for internal logic functions, VCCINT and 
VCCAUX. Each of the four I/O banks has a separate VCCO 
supply input that powers the output buffers within the 
associated I/O bank. All of the VCCO connections to a 
specific I/O bank must be connected and must connect to 
the same voltage.

In a 3.3V-only application, all four VCCO supplies connect to 
3.3V. However, Spartan-3E FPGAs provide the ability to 
bridge between different I/O voltages and standards by 
applying different voltages to the VCCO inputs of different 
banks. Refer to I/O Banking Rules for which I/O standards 
can be intermixed within a single I/O bank.

Each I/O bank also has an separate, optional input voltage 
reference supply, called VREF. If the I/O bank includes an I/O 
standard that requires a voltage reference such as HSTL or 
SSTL, then all VREF pins within the I/O bank must be 
connected to the same voltage.

Table  70: Spartan-3E Voltage Supplies

Supply Input Description Nominal Supply Voltage

VCCINT Internal core supply voltage. Supplies all internal logic functions, such as CLBs, block 
RAM, and multipliers. Input to Power-On Reset (POR) circuit.

1.2V

VCCAUX Auxiliary supply voltage. Supplies Digital Clock Managers (DCMs), differential drivers, 
dedicated configuration pins, JTAG interface. Input to Power-On Reset (POR) circuit.

2.5V

VCCO_0 Supplies the output buffers in I/O Bank 0, the bank along the top edge of the FPGA. Selectable, 3.3V, 2.5V, 1.8, 
1.5V, or 1.2V

VCCO_1 Supplies the output buffers in I/O Bank 1, the bank along the right edge of the FPGA. In 
Byte-Wide Peripheral Interface (BPI) Parallel Flash Mode, connects to the same voltage 
as the Flash PROM.

Selectable, 3.3V, 2.5V, 1.8, 
1.5V, or 1.2V

VCCO_2 Supplies the output buffers in I/O Bank 2, the bank along the bottom edge of the FPGA. 
Connects to the same voltage as the FPGA configuration source. Input to Power-On 
Reset (POR) circuit.

Selectable, 3.3V, 2.5V, 1.8, 
1.5V, or 1.2V

VCCO_3 Supplies the output buffers in I/O Bank 3, the bank along the left edge of the FPGA. Selectable, 3.3V, 2.5V, 1.8, 
1.5V, or 1.2V

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
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X-Ref Target - Figure 70

Figure 70: Differential Output Voltages

Table  83: DC Characteristics of User I/Os Using Differential Signal Standards

IOSTANDARD 
Attribute

VOD ΔVOD VOCM ΔVOCM VOH VOL

Min 
(mV)

Typ 
(mV)

Max 
(mV)

Min 
(mV)

Max 
(mV)

Min
(V)

Typ 
(V)

Max 
(V)

Min 
(mV)

Max 
(mV)

Min
(V)

Max 
(V)

LVDS_25 250 350 450 – – 1.125 – 1.375 – – – –

BLVDS_25 250 350 450 – – – 1.20 – – – – –

MINI_LVDS_25 300 – 600 – 50 1.0 – 1.4 – 50 – –

RSDS_25 100 – 400 – – 1.1 – 1.4 – – – –

DIFF_HSTL_I_18 – – – – – – – – – – VCCO – 0.4 0.4

DIFF_HSTL_III_18 – – – – – – – – – – VCCO – 0.4 0.4

DIFF_SSTL18_I – – – – – – – – – – VTT + 0.475 VTT – 0.475

DIFF_SSTL2_I – – – – – – – – – – VTT + 0.61 VTT – 0.61

Notes: 
1. The numbers in this table are based on the conditions set forth in Table 77 and Table 82.
2. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ω across the N and P pins of the 

differential signal pair. The exception is for BLVDS, shown in Figure 71.
3. At any given time, no more than two of the following differential output standards may be assigned to an I/O bank: LVDS_25, RSDS_25, 

MINI_LVDS_25

X-Ref Target - Figure 71

Figure 71: External Termination Resistors for BLVDS Transmitter and BLVDS Receiver
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Switching Characteristics
All Spartan-3E FPGAs ship in two speed grades: -4 and the 
higher performance -5. Switching characteristics in this 
document may be designated as Advance, Preliminary, or 
Production, as shown in Table 84. Each category is defined 
as follows:

Advance: These specifications are based on simulations 
only and are typically available soon after establishing 
FPGA specifications. Although speed grades with this 
designation are considered relatively stable and 
conservative, some under-reporting might still occur.

Preliminary: These specifications are based on complete 
early silicon characterization. Devices and speed grades 
with this designation are intended to give a better indication 
of the expected performance of production silicon. The 
probability of under-reporting preliminary delays is greatly 
reduced compared to Advance data.

Production: These specifications are approved once 
enough production silicon of a particular device family 
member has been characterized to provide full correlation 
between speed files and devices over numerous production 
lots. There is no under-reporting of delays, and customers 
receive formal notification of any subsequent changes. 
Typically, the slowest speed grades transition to Production 
before faster speed grades.

Software Version Requirements

Production-quality systems must use FPGA designs 
compiled using a speed file designated as PRODUCTION 
status. FPGAs designs using a less mature speed file 
designation should only be used during system prototyping 
or pre-production qualification. FPGA designs with speed 
files designated as Advance or Preliminary should not be 
used in a production-quality system.

Whenever a speed file designation changes, as a device 
matures toward Production status, rerun the latest Xilinx 
ISE software on the FPGA design to ensure that the FPGA 
design incorporates the latest timing information and 
software updates.

All parameter limits are representative of worst-case supply 
voltage and junction temperature conditions. Unless 
otherwise noted, the published parameter values apply 
to all Spartan-3E devices. AC and DC characteristics 
are specified using the same numbers for both 
commercial and industrial grades. 

Create a Xilinx user account and sign up to receive 
automatic e-mail notification whenever this data sheet or 
the associated user guides are updated.

Sign Up for Alerts on Xilinx.com
https://secure.xilinx.com/webreg/register.do
?group=myprofile&languageID=1

Timing parameters and their representative values are 
selected for inclusion below either because they are 
important as general design requirements or they indicate 
fundamental device performance characteristics. The 
Spartan-3E speed files (v1.27), part of the Xilinx 
Development Software, are the original source for many but 
not all of the values. The speed grade designations for 
these files are shown in Table 84. For more complete, more 
precise, and worst-case data, use the values reported by 
the Xilinx static timing analyzer (TRACE in the Xilinx 
development software) and back-annotated to the 
simulation netlist.

Table 85 provides the history of the Spartan-3E speed files 
since all devices reached Production status.

Table  84: Spartan-3E v1.27 Speed Grade Designations

Device Advance Preliminary Production

XC3S100E -MIN, -4, -5

XC3S250E -MIN, -4, -5

XC3S500E -MIN, -4, -5

XC3S1200E -MIN, -4, -5

XC3S1600E -MIN, -4, -5

Table  85: Spartan-3E Speed File Version History

Version ISE 
Release Description

1.27 9.2.03i Added XA Automotive.

1.26 8.2.02i Added -0/-MIN speed grade, which 
includes minimum values.

1.25 8.2.01i Added XA Automotive devices to speed 
file. Improved model for left and right 
DCMs.

1.23 8.2i Updated input setup/hold values based 
on default IFD_DELAY_VALUE 
settings.

1.21 8.1.03i All Spartan-3E FPGAs and all speed 
grades elevated to Production status.

http://www.xilinx.com
https://secure.xilinx.com/webreg/register.do?group=myprofile&languageID=1
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Table  88: Setup and Hold Times for the IOB Input Path

Symbol Description Conditions
IFD_

DELAY_
VALUE=

Device

Speed Grade

Units-5 -4

Min Min

Setup Times

TIOPICK Time from the setup of data at 
the Input pin to the active 
transition at the ICLK input of the 
Input Flip-Flop (IFF). No Input 
Delay is programmed.

LVCMOS25(2),
IFD_DELAY_VALUE = 0

0 All 1.84 2.12 ns

TIOPICKD Time from the setup of data at 
the Input pin to the active 
transition at the IFF’s ICLK input. 
The Input Delay is programmed.

LVCMOS25(2),
IFD_DELAY_VALUE = 
default software setting

2 XC3S100E 6.12 7.01 ns

3 All Others 6.76 7.72

Hold Times

TIOICKP Time from the active transition at 
the IFF’s ICLK input to the point 
where data must be held at the 
Input pin. No Input Delay is 
programmed.

LVCMOS25(3),
IFD_DELAY_VALUE = 0

0 All –0.76 –0.76 ns

TIOICKPD Time from the active transition at 
the IFF’s ICLK input to the point 
where data must be held at the 
Input pin. The Input Delay is 
programmed.

LVCMOS25(3),
IFD_DELAY_VALUE = 
default software setting

2 XC3S100E –3.93 –3.93 ns

3 All Others –3.50 –3.50

Set/Reset Pulse Width

TRPW_IOB Minimum pulse width to SR 
control input on IOB

All 1.57 1.80 ns

Notes: 
1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in 

Table 77 and Table 80.
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the 

appropriate Input adjustment from Table 91. 
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract 

the appropriate Input adjustment from Table 91. When the hold time is negative, it is possible to change the data before the clock’s active 
edge.

Table  89: Sample Window (Source Synchronous)

Symbol Description Max Units

TSAMP Setup and hold capture window of an 
IOB input flip-flop

The input capture sample window value is highly specific to a particular 
application, device, package, I/O standard, I/O placement, DCM usage, 
and clock buffer. Please consult the appropriate Xilinx application note 
for application-specific values.
• XAPP485: 1:7 Deserialization in Spartan-3E FPGAs at Speeds Up to 

666 Mbps

ps

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp485.pdf
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1 IO_L02P_1/A14 IO_L02P_1/A14 P76 DUAL

1 IO_L03N_1/A11 IO_L03N_1/A11 P82 DUAL

1 IO_L03P_1/A12 IO_L03P_1/A12 P81 DUAL

1 IO_L04N_1/A9/RHCLK1 IO_L04N_1/A9/RHCLK1 P86 RHCLK/DUAL

1 IO_L04P_1/A10/RHCLK0 IO_L04P_1/A10/RHCLK0 P85 RHCLK/DUAL

1 IO_L05N_1/A7/RHCLK3/TRDY1 IO_L05N_1/A7/RHCLK3 P88 RHCLK/DUAL

1 IO_L05P_1/A8/RHCLK2 IO_L05P_1/A8/RHCLK2 P87 RHCLK/DUAL

1 IO_L06N_1/A5/RHCLK5 IO_L06N_1/A5/RHCLK5 P92 RHCLK/DUAL

1 IO_L06P_1/A6/RHCLK4/IRDY1 IO_L06P_1/A6/RHCLK4 P91 RHCLK/DUAL

1 IO_L07N_1/A3/RHCLK7 IO_L07N_1/A3/RHCLK7 P94 RHCLK/DUAL

1 IO_L07P_1/A4/RHCLK6 IO_L07P_1/A4/RHCLK6 P93 RHCLK/DUAL

1 IO_L08N_1/A1 IO_L08N_1/A1 P97 DUAL

1 IO_L08P_1/A2 IO_L08P_1/A2 P96 DUAL

1 IO_L09N_1/LDC0 IO_L09N_1/LDC0 P104 DUAL

1 IO_L09P_1/HDC IO_L09P_1/HDC P103 DUAL

1 IO_L10N_1/LDC2 IO_L10N_1/LDC2 P106 DUAL

1 IO_L10P_1/LDC1 IO_L10P_1/LDC1 P105 DUAL

1 IP IP P78 INPUT

1 IP IP P84 INPUT

1 IP IP P89 INPUT

1 IP IP P101 INPUT

1 IP IP P107 INPUT

1 IP/VREF_1 IP/VREF_1 P95 VREF

1 VCCO_1 VCCO_1 P79 VCCO

1 VCCO_1 VCCO_1 P100 VCCO

2 IO/D5 IO/D5 P52 DUAL

2 IO/M1 IO/M1 P60 DUAL

2 IP/VREF_2 IO/VREF_2 P66 100E: VREF(INPUT)

250E: VREF(I/O)

2 IO_L01N_2/INIT_B IO_L01N_2/INIT_B P40 DUAL

2 IO_L01P_2/CSO_B IO_L01P_2/CSO_B P39 DUAL

2 IO_L02N_2/MOSI/CSI_B IO_L02N_2/MOSI/CSI_B P44 DUAL

2 IO_L02P_2/DOUT/BUSY IO_L02P_2/DOUT/BUSY P43 DUAL

2 IO_L04N_2/D6/GCLK13 IO_L04N_2/D6/GCLK13 P51 DUAL/GCLK

2 IO_L04P_2/D7/GCLK12 IO_L04P_2/D7/GCLK12 P50 DUAL/GCLK

2 IO_L05N_2/D3/GCLK15 IO_L05N_2/D3/GCLK15 P54 DUAL/GCLK

2 IO_L05P_2/D4/GCLK14 IO_L05P_2/D4/GCLK14 P53 DUAL/GCLK

2 IO_L07N_2/D1/GCLK3 IO_L07N_2/D1/GCLK3 P59 DUAL/GCLK

2 IO_L07P_2/D2/GCLK2 IO_L07P_2/D2/GCLK2 P58 DUAL/GCLK

2 IO_L08N_2/DIN/D0 IO_L08N_2/DIN/D0 P63 DUAL

2 IO_L08P_2/M0 IO_L08P_2/M0 P62 DUAL

2 IO_L09N_2/VS1/A18 IO_L09N_2/VS1/A18 P68 DUAL

2 IO_L09P_2/VS2/A19 IO_L09P_2/VS2/A19 P67 DUAL

2 IO_L10N_2/CCLK IO_L10N_2/CCLK P71 DUAL

2 IO_L10P_2/VS0/A17 IO_L10P_2/VS0/A17 P70 DUAL

Table  137: TQ144 Package Pinout (Cont’d)

Bank XC3S100E Pin Name XC3S250E Pin Name TQ144 Pin Type
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FG400: 400-ball Fine-pitch Ball Grid Array
The 400-ball fine-pitch ball grid array, FG400, supports two 
different Spartan-3E FPGAs, including the XC3S1200E and 
the XC3S1600E. Both devices share a common footprint for 
this package as shown in Table 152 and Figure 87.

Table 152 lists all the FG400 package pins. They are sorted 
by bank number and then by pin name. Pairs of pins that 
form a differential I/O pair appear together in the table. The 
table also shows the pin number for each pin and the pin 
type, as defined earlier.

An electronic version of this package pinout table and 
footprint diagram is available for download from the Xilinx 
website at:

http://www.xilinx.com/support/documentation/data_sheets
/s3e_pin.zip

Pinout Table

Table  152: FG400 Package Pinout

Bank
XC3S1200E
XC3S1600E
Pin Name

FG400 
Ball Type

0 IO A3 I/O

0 IO A8 I/O

0 IO A12 I/O

0 IO C7 I/O

0 IO C10 I/O

0 IO E8 I/O

0 IO E13 I/O

0 IO E16 I/O

0 IO F13 I/O

0 IO F14 I/O

0 IO G7 I/O

0 IO/VREF_0 C11 VREF

0 IO_L01N_0 B17 I/O

0 IO_L01P_0 C17 I/O

0 IO_L03N_0/VREF_0 A18 VREF

0 IO_L03P_0 A19 I/O

0 IO_L04N_0 A17 I/O

0 IO_L04P_0 A16 I/O

0 IO_L06N_0 A15 I/O

0 IO_L06P_0 B15 I/O

0 IO_L07N_0 C14 I/O

0 IO_L07P_0 D14 I/O

0 IO_L09N_0/VREF_0 A13 VREF

0 IO_L09P_0 A14 I/O

0 IO_L10N_0 B13 I/O

0 IO_L10P_0 C13 I/O

0 IO_L12N_0 C12 I/O

0 IO_L12P_0 D12 I/O

0 IO_L13N_0 E12 I/O

0 IO_L13P_0 F12 I/O

0 IO_L15N_0/GCLK5 G11 GCLK

0 IO_L15P_0/GCLK4 F11 GCLK

0 IO_L16N_0/GCLK7 E10 GCLK

0 IO_L16P_0/GCLK6 E11 GCLK

0 IO_L18N_0/GCLK11 A9 GCLK

0 IO_L18P_0/GCLK10 A10 GCLK

0 IO_L19N_0 F9 I/O

0 IO_L19P_0 E9 I/O

0 IO_L21N_0 C9 I/O

0 IO_L21P_0 D9 I/O

0 IO_L22N_0/VREF_0 B8 VREF

0 IO_L22P_0 B9 I/O

0 IO_L24N_0/VREF_0 F7 VREF

0 IO_L24P_0 F8 I/O

0 IO_L25N_0 A6 I/O

0 IO_L25P_0 A7 I/O

0 IO_L27N_0 B5 I/O

0 IO_L27P_0 B6 I/O

0 IO_L28N_0 D6 I/O

0 IO_L28P_0 C6 I/O

0 IO_L30N_0/VREF_0 C5 VREF

0 IO_L30P_0 D5 I/O

0 IO_L31N_0 A2 I/O

0 IO_L31P_0 B2 I/O

0 IO_L32N_0/HSWAP D4 DUAL

0 IO_L32P_0 C4 I/O

0 IP B18 INPUT

0 IP E5 INPUT

0 IP_L02N_0 C16 INPUT

0 IP_L02P_0 D16 INPUT

0 IP_L05N_0 D15 INPUT

0 IP_L05P_0 C15 INPUT

0 IP_L08N_0 E14 INPUT

0 IP_L08P_0 E15 INPUT

0 IP_L11N_0 G14 INPUT

0 IP_L11P_0 G13 INPUT

0 IP_L14N_0 B11 INPUT

0 IP_L14P_0 B12 INPUT

0 IP_L17N_0/GCLK9 G10 GCLK

Table  152: FG400 Package Pinout (Cont’d)

Bank
XC3S1200E
XC3S1600E
Pin Name

FG400 
Ball Type

http://www.xilinx.com/support/documentation/data_sheets/s3e_pin.zip
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0 IP E6 INPUT

0 IP_L02N_0 D17 INPUT

0 IP_L02P_0 D18 INPUT

0 IP_L05N_0 C17 INPUT

0 IP_L05P_0 B17 INPUT

0 IP_L08N_0 E15 INPUT

0 IP_L08P_0 D15 INPUT

0 IP_L14N_0 D13 INPUT

0 IP_L14P_0 C13 INPUT

0 IP_L17N_0 A12 INPUT

0 IP_L17P_0 A13 INPUT

0 IP_L20N_0/GCLK9 H11 GCLK

0 IP_L20P_0/GCLK8 H12 GCLK

0 IP_L23N_0 F10 INPUT

0 IP_L23P_0 F11 INPUT

0 IP_L26N_0 G9 INPUT

0 IP_L26P_0 G10 INPUT

0 IP_L31N_0 C8 INPUT

0 IP_L31P_0 D8 INPUT

0 IP_L34N_0 C7 INPUT

0 IP_L34P_0 C6 INPUT

0 IP_L37N_0 A3 INPUT

0 IP_L37P_0 A2 INPUT

0 VCCO_0 B5 VCCO

0 VCCO_0 B10 VCCO

0 VCCO_0 B14 VCCO

0 VCCO_0 B18 VCCO

0 VCCO_0 E8 VCCO

0 VCCO_0 F14 VCCO

0 VCCO_0 G11 VCCO

1 IO_L01N_1/A15 Y22 DUAL

1 IO_L01P_1/A16 AA22 DUAL

1 IO_L02N_1/A13 W21 DUAL

1 IO_L02P_1/A14 Y21 DUAL

1 IO_L03N_1/VREF_1 W20 VREF

1 IO_L03P_1 V20 I/O

1 IO_L04N_1 U19 I/O

1 IO_L04P_1 V19 I/O

1 IO_L05N_1 V22 I/O

1 IO_L05P_1 W22 I/O

1 IO_L06N_1 T19 I/O

1 IO_L06P_1 T18 I/O

1 IO_L07N_1/VREF_1 U20 VREF

1 IO_L07P_1 U21 I/O

Table  154: FG484 Package Pinout (Cont’d)

Bank XC3S1600E
Pin Name

FG484 
Ball Type

1 IO_L08N_1 T22 I/O

1 IO_L08P_1 U22 I/O

1 IO_L09N_1 R19 I/O

1 IO_L09P_1 R18 I/O

1 IO_L10N_1 R16 I/O

1 IO_L10P_1 T16 I/O

1 IO_L11N_1 R21 I/O

1 IO_L11P_1 R20 I/O

1 IO_L12N_1/VREF_1 P18 VREF

1 IO_L12P_1 P17 I/O

1 IO_L13N_1 P22 I/O

1 IO_L13P_1 R22 I/O

1 IO_L14N_1 P15 I/O

1 IO_L14P_1 P16 I/O

1 IO_L15N_1 N18 I/O

1 IO_L15P_1 N19 I/O

1 IO_L16N_1/A11 N16 DUAL

1 IO_L16P_1/A12 N17 DUAL

1 IO_L17N_1/VREF_1 M20 VREF

1 IO_L17P_1 N20 I/O

1 IO_L18N_1/A9/RHCLK1 M22 RHCLK/
DUAL

1 IO_L18P_1/A10/RHCLK0 N22 RHCLK/
DUAL

1 IO_L19N_1/A7/RHCLK3/
TRDY1

M16 RHCLK/
DUAL

1 IO_L19P_1/A8/RHCLK2 M15 RHCLK/
DUAL

1 IO_L20N_1/A5/RHCLK5 L21 RHCLK/
DUAL

1 IO_L20P_1/A6/RHCLK4/
IRDY1

L20 RHCLK/
DUAL

1 IO_L21N_1/A3/RHCLK7 L19 RHCLK/
DUAL

1 IO_L21P_1/A4/RHCLK6 L18 RHCLK/
DUAL

1 IO_L22N_1/A1 K22 DUAL

1 IO_L22P_1/A2 L22 DUAL

1 IO_L23N_1/A0 K17 DUAL

1 IO_L23P_1 K16 I/O

1 IO_L24N_1 K19 I/O

1 IO_L24P_1 K18 I/O

1 IO_L25N_1 K15 I/O

1 IO_L25P_1 J15 I/O

1 IO_L26N_1 J20 I/O

1 IO_L26P_1 J21 I/O

Table  154: FG484 Package Pinout (Cont’d)

Bank XC3S1600E
Pin Name

FG484 
Ball Type
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