

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1164
Number of Logic Elements/Cells	10476
Total RAM Bits	368640
Number of I/O	190
Number of Gates	500000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s500e-4ftg256c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The SLICEM pair supports two additional functions:

- Two 16x1 distributed RAM blocks, RAM16
- Two 16-bit shift registers, SRL16

Each of these elements is described in more detail in the following sections.

Logic Cells

The combination of a LUT and a storage element is known as a "Logic Cell". The additional features in a slice, such as the wide multiplexers, carry logic, and arithmetic gates, add to the capacity of a slice, implementing logic that would otherwise require additional LUTs. Benchmarks have shown that the overall slice is equivalent to 2.25 simple logic cells. This calculation provides the equivalent logic cell count shown in Table 9.

Slice Details

Figure 15 is a detailed diagram of the SLICEM. It represents a superset of the elements and connections to be found in all slices. The dashed and gray lines (blue when viewed in color) indicate the resources found only in the SLICEM and not in the SLICEL.

Each slice has two halves, which are differentiated as top and bottom to keep them distinct from the upper and lower slices in a CLB. The control inputs for the clock (CLK), Clock Enable (CE), Slice Write Enable (SLICEWE1), and Reset/Set (RS) are shared in common between the two halves.

The LUTs located in the top and bottom portions of the slice are referred to as "G" and "F", respectively, or the "G-LUT" and the "F-LUT". The storage elements in the top and bottom portions of the slice are called FFY and FFX, respectively.

Each slice has two multiplexers with F5MUX in the bottom portion of the slice and FiMUX in the top portion. Depending on the slice, the FiMUX takes on the name F6MUX, F7MUX, or F8MUX, according to its position in the multiplexer chain. The lower SLICEL and SLICEM both have an F6MUX. The upper SLICEM has an F7MUX, and the upper SLICEL has an F8MUX.

The carry chain enters the bottom of the slice as CIN and exits at the top as COUT. Five multiplexers control the chain: CYINIT, CYOF, and CYMUXF in the bottom portion and CYOG and CYMUXG in the top portion. The dedicated arithmetic logic includes the exclusive-OR gates XORF and XORG (bottom and top portions of the slice, respectively) as well as the AND gates FAND and GAND (bottom and top portions, respectively).

See Table 10 for a description of all the slice input and output signals.

Name	Location	Direction	Description
F[4:1]	SLICEL/M Bottom	Input	F-LUT and FAND inputs
G[4:1]	SLICEL/M Top	Input	G-LUT and GAND inputs or Write Address (SLICEM)
BX	SLICEL/M Bottom	Input	Bypass to or output (SLICEM) or storage element, or control input to F5MUX, input to carry logic, or data input to RAM (SLICEM)
BY	SLICEL/M Top	Input	Bypass to or output (SLICEM) or storage element, or control input to FiMUX, input to carry logic, or data input to RAM (SLICEM)
BXOUT	SLICEM Bottom	Output	BX bypass output
BYOUT	SLICEM Top	Output	BY bypass output
ALTDIG	SLICEM Top	Input	Alternate data input to RAM
DIG	SLICEM Top	Output	ALTDIG or SHIFTIN bypass output
SLICEWE1	SLICEM Common	Input	RAM Write Enable
F5	SLICEL/M Bottom	Output	Output from F5MUX; direct feedback to FiMUX
FXINA	SLICEL/M Top	Input	Input to FiMUX; direct feedback from F5MUX or another FiMUX
FXINB	SLICEL/M Top	Input	Input to FiMUX; direct feedback from F5MUX or another FiMUX
Fi	SLICEL/M Top	Output	Output from FiMUX; direct feedback to another FiMUX
CE	SLICEL/M Common	Input	FFX/Y Clock Enable
SR	SLICEL/M Common	Input	FFX/Y Set or Reset or RAM Write Enable (SLICEM)
CLK	SLICEL/M Common	Input	FFX/Y Clock or RAM Clock (SLICEM)
SHIFTIN	SLICEM Top	Input	Data input to G-LUT RAM

Table 10: Slice Inputs and Outputs

Table 10: Slice Inputs and Outputs (Cont'd)

Name	Location	Direction	Description
SHIFTOUT	SLICEM Bottom	Output	Shift data output from F-LUT RAM
CIN	SLICEL/M Bottom	Input	Carry chain input
COUT	SLICEL/M Top	Output	Carry chain output
х	SLICEL/M Bottom	Output	Combinatorial output
Y	SLICEL/M Top	Output	Combinatorial output
ХВ	SLICEL/M Bottom	Output	Combinatorial output from carry or F-LUT SRL16 (SLICEM)
YB	SLICEL/M Top	Output	Combinatorial output from carry or G-LUT SRL16 (SLICEM)
XQ	SLICEL/M Bottom	Output	FFX output
YQ	SLICEL/M Top	Output	FFY output

Main Logic Paths

Central to the operation of each slice are two nearly identical data paths at the top and bottom of the slice. The description that follows uses names associated with the bottom path. (The top path names appear in parentheses.) The basic path originates at an interconnect switch matrix outside the CLB. See Interconnect for more information on the switch matrix and the routing connections.

Four lines, F1 through F4 (or G1 through G4 on the upper path), enter the slice and connect directly to the LUT. Once inside the slice, the lower 4-bit path passes through a LUT 'F' (or 'G') that performs logic operations. The LUT Data output, 'D', offers five possible paths:

- 1. Exit the slice via line "X" (or "Y") and return to interconnect.
- Inside the slice, "X" (or "Y") serves as an input to the DXMUX (or DYMUX) which feeds the data input, "D", of the FFX (or FFY) storage element. The "Q" output of the storage element drives the line XQ (or YQ) which exits the slice.
- 3. Control the CYMUXF (or CYMUXG) multiplexer on the carry chain.
- 4. With the carry chain, serve as an input to the XORF (or XORG) exclusive-OR gate that performs arithmetic operations, producing a result on "X" (or "Y").
- 5. Drive the multiplexer F5MUX to implement logic functions wider than four bits. The "D" outputs of both the F-LUT and G-LUT serve as data inputs to this multiplexer.

In addition to the main logic paths described above, there are two bypass paths that enter the slice as BX and BY. Once inside the FPGA, BX in the bottom half of the slice (or BY in the top half) can take any of several possible branches:

1. Bypass both the LUT and the storage element, and then exit the slice as BXOUT (or BYOUT) and return to interconnect.

- Bypass the LUT, and then pass through a storage element via the D input before exiting as XQ (or YQ).
- 3. Control the wide function multiplexer F5MUX (or FiMUX).
- 4. Via multiplexers, serve as an input to the carry chain.
- 5. Drive the DI input of the LUT.
- 6. BY can control the REV inputs of both the FFY and FFX storage elements. See Storage Element Functions.
- 7. Finally, the DIG_MUX multiplexer can switch BY onto the DIG line, which exits the slice.

The control inputs CLK, CE, SR, BX and BY have programmable polarity. The LUT inputs do not need programmable polarity because their function can be inverted inside the LUT.

The sections that follow provide more detail on individual functions of the slice.

Look-Up Tables

The Look-Up Table or LUT is a RAM-based function generator and is the main resource for implementing logic functions. Furthermore, the LUTs in each SLICEM pair can be configured as Distributed RAM or a 16-bit shift register, as described later.

Each of the two LUTs (F and G) in a slice have four logic inputs (A1-A4) and a single output (D). Any four-variable Boolean logic operation can be implemented in one LUT. Functions with more inputs can be implemented by cascading LUTs or by using the wide function multiplexers that are described later.

The output of the LUT can connect to the wide multiplexer logic, the carry and arithmetic logic, or directly to a CLB output or to the CLB storage element. See Figure 18.

Carry and Arithmetic Logic

For additional information, refer to the "Using Carry and Arithmetic Logic" chapter in UG331.

The carry chain, together with various dedicated arithmetic logic gates, support fast and efficient implementations of math operations. The carry logic is automatically used for most arithmetic functions in a design. The gates and multiplexers of the carry and arithmetic logic can also be used for general-purpose logic, including simple wide Boolean functions.

The carry chain enters the slice as CIN and exits as COUT, controlled by several multiplexers. The carry chain connects directly from one CLB to the CLB above. The carry chain can be initialized at any point from the BX (or BY) inputs.

The dedicated arithmetic logic includes the exclusive-OR gates XORF and XORG (upper and lower portions of the slice, respectively) as well as the AND gates GAND and FAND (upper and lower portions, respectively). These gates work in conjunction with the LUTs to implement efficient arithmetic functions, including counters and multipliers, typically at two bits per slice. See Figure 22 and Table 14.

Table 14: Carry Logic Functions

Function	Description
CYINIT	 Initializes carry chain for a slice. Fixed selection of: CIN carry input from the slice below BX input
CY0F	 Carry generation for bottom half of slice. Fixed selection of: F1 or F2 inputs to the LUT (both equal 1 when a carry is to be generated) FAND gate for multiplication BX input for carry initialization Fixed 1 or 0 input for use as a simple Boolean function

Table 14: Carry Logic Functions (Cont'd)

Function	Description
CY0G	 Carry generation for top half of slice. Fixed selection of: G1 or G2 inputs to the LUT (both equal 1 when a carry is to be generated) GAND gate for multiplication BY input for carry initialization Fixed 1 or 0 input for use as a simple Boolean function
CYMUXF	Carry generation or propagation mux for bottom half of slice. Dynamic selection via CYSELF of: · CYINIT carry propagation (CYSELF = 1) · CY0F carry generation (CYSELF = 0)
CYMUXG	 Carry generation or propagation mux for top half of slice. Dynamic selection via CYSELF of: CYMUXF carry propagation (CYSELG = 1) CY0G carry generation (CYSELG = 0)
CYSELF	 Carry generation or propagation select for bottom half of slice. Fixed selection of: F-LUT output (typically XOR result) Fixed 1 to always propagate
CYSELG	 Carry generation or propagation select for top half of slice. Fixed selection of: G-LUT output (typically XOR result) Fixed 1 to always propagate
XORF	 Sum generation for bottom half of slice. Inputs from: F-LUT CYINIT carry signal from previous stage Result is sent to either the combinatorial or registered output for the top of the slice.
XORG	 Sum generation for top half of slice. Inputs from: G-LUT CYMUXF carry signal from previous stage Result is sent to either the combinatorial or registered output for the top of the slice.
FAND	 Multiplier partial product for bottom half of slice. Inputs: F-LUT F1 input F-LUT F2 input Result is sent through CY0F to become the carry generate signal into CYMUXF
GAND	 Multiplier partial product for top half of slice. Inputs: G-LUT G1 input G-LUT G2 input Result is sent through CY0G to become the carry generate signal into CYMUXG

The basic usage of the carry logic is to generate a half-sum in the LUT via an XOR function, which generates or propagates a carry out COUT via the carry mux CYMUXF (or CYMUXG), and then complete the sum with the dedicated XORF (or XORG) gate and the carry input CIN. This structure allows two bits of an arithmetic function in each slice. The CYMUXF (or CYMUXG) can be instantiated using the MUXCY element, and the XORF (or XORG) can be instantiated using the XORCY element.

The FAND (or GAND) gate is used for partial product multiplication and can be instantiated using the MULT_AND component. Partial products are generated by two-input AND gates and then added. The carry logic is efficient for the adder, but one of the inputs must be outside the LUT as shown in Figure 23.

Figure 23: Using the MUXCY and XORCY in the Carry Logic

The FAND (or GAND) gate is used to duplicate one of the partial products, while the LUT generates both partial products and the XOR function, as shown in Figure 24.

Table 23: Block RAM Port Signals

Signal Description	Port A Signal Name	Port B Signal Name	Direction	Function	
Address Bus	ADDRA	ADDRB	Input	The Address Bus selects a memory location for read or write operations. The width (w) of the port's associated data path determines the number of available address lines (r), as per Table 22.	
				Whenever a port is enabled (ENA or ENB = High), address transitions must meet the data sheet setup and hold times with respect to the port clock (CLKA or CLKB), as shown in Table 103, page 138. This requirement must be met even if the RAM read output is of no interest.	
Data Input Bus	DIA	DIB	Input	Data at the DI input bus is written to the RAM location specified by the address input bus (ADDR) during the active edge of the CLK input, when the clock enable (EN) and write enable (WE) inputs are active.	
				It is possible to configure a port's DI input bus width (w-p) based on Table 22. This selection applies to both the DI and DO paths of a given port.	
Parity Data Input(s)	DIPA	DIPB	Input	Parity inputs represent additional bits included in the data input path. Although referred to herein as "parity" bits, the parity inputs and outputs have no special functionality for generating or checking parity and can be used as additional data bits. The number of parity bits 'p' included in the DI (same as for the DO bus) depends on a port's total data path width (w). See Table 22.	
Data Output Bus	DOA	DOB	Output	Data is written to the DO output bus from the RAM location specified by the address input bus, ADDR. See the DI signal description for DO port width configurations.	
				Basic data access occurs on the active edge of the CLK when WE is inactive and EN is active. The DO outputs mirror the data stored in the address ADDR memory location. Data access with WE active if the WRITE_MODE attribute is set to the value: WRITE_FIRST, which accesses data after the write takes place. READ_FIRST accesses data before the write occurs. A third attribute, NO_CHANGE, latches the DO outputs upon the assertion of WE. See Block RAM Data Operations for details on the WRITE_MODE attribute.	
Parity Data Output(s)	DOPA	DOPB	Output	Parity outputs represent additional bits included in the data input path. The number of parity bits 'p' included in the DI bus (same as for the DO bus) depends on a port's total data path width (w). See the DIP signal description for configuration details.	
Write Enable	WEA	WEB	Input	When asserted together with EN, this input enables the writing of data to the RAM. When WE is inactive with EN asserted, read operations are still possible. In this case, a latch passes data from the addressed memory location to the DO outputs.	
Clock Enable	ENA	ENB	Input	When asserted, this input enables the CLK signal to perform read and write operations to the block RAM. When inactive, the block RAM does not perform any read or write operations.	
Set/Reset	SSRA	SSRB	Input	When asserted, this pin forces the DO output latch to the value of the SRVAL attribute. It is synchronized to the CLK signal.	
Clock	CLKA	CLKB	Input	This input accepts the clock signal to which read and write operations are synchronized. All associated port inputs are required to meet setup times with respect to the clock signal's active edge. The data output bus responds after a clock-to-out delay referenced to the clock signal's active edge.	

Delay-Locked Loop (DLL)

The most basic function of the DLL component is to eliminate clock skew. The main signal path of the DLL consists of an input stage, followed by a series of discrete delay elements or *steps*, which in turn leads to an output stage. This path together with logic for phase detection and control forms a system complete with feedback as shown in Figure 41. In Spartan-3E FPGAs, the DLL is implemented using a counter-based delay line. The DLL component has two clock inputs, CLKIN and CLKFB, as well as seven clock outputs, CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as described in Table 28. The clock outputs drive simultaneously. Signals that initialize and report the state of the DLL are discussed in Status Logic.

Figure 41: Simplified Functional Diagram of DLL

Table 28: DLL Signals

Signal	Direction	Description
CLKIN	Input	Receives the incoming clock signal. See Table 30, Table 31, and Table 32 for optimal external inputs to a DCM.
CLKFB	Input	Accepts either CLK0 or CLK2X as the feedback signal. (Set the CLK_FEEDBACK attribute accordingly).
CLK0	Output	Generates a clock signal with the same frequency and phase as CLKIN.
CLK90	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 90°.
CLK180	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 180°.
CLK270	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 270°.
CLK2X	Output	Generates a clock signal with the same phase as CLKIN, and twice the frequency.
CLK2X180	Output	Generates a clock signal with twice the frequency of CLKIN, and phase-shifted 180° with respect to CLK2X.
CLKDV	Output	Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower frequency clock signal that is phase-aligned to CLKIN.

The clock signal supplied to the CLKIN input serves as a reference waveform. The DLL seeks to align the rising-edge of feedback signal at the CLKFB input with the rising-edge of CLKIN input. When eliminating clock skew, the common approach to using the DLL is as follows: The CLK0 signal is passed through the clock distribution network that feeds all the registers it synchronizes. These registers are either

internal or external to the FPGA. After passing through the clock distribution network, the clock signal returns to the DLL via a feedback line called CLKFB. The control block inside the DLL measures the phase error between CLKFB and CLKIN. This phase error is a measure of the clock skew that the clock distribution network introduces. The control block activates the appropriate number of delay steps to

BUFGMUX_X0Y6

D	iff.		Sin	gle-Ende	d Pin Nur									
Cle	ock	VQ100	CP132	TQ144	PQ208	FT256	FG320	FG400	FG484		LHCLK	DCM/BUFGMUX		
												BUFGMUX_X0Y5	→	D
												BUFGMUX_X0Y4	→	С
_	Ρ	P9	F3	P14	P22	H5	J5	K3	M5	→	LHCLK0			Se
Pai	Ν	P10	F2	P15	P23	H6	J4	K2	L5	→	LHCLK1			Line
_	Ρ	P11	F1	P16	P24	H3	J1	K7	L8	→	LHCLK2			sс
Pai	Ν	P12	G1	P17	P25	H4	J2	L7	M8	→	LHCLK3			ō
												BUFGMUX_X0Y3	→	В
												BUFGMUX_X0Y2	→	Α
													_	
												BUFGMUX_X0Y9	→	Н
												BUFGMUX_X0Y8	→	G
. _	Ρ	P15	G3	P20	P28	J2	K3	M1	M1	→	LHCLK4			se
Pai	Ν	P16	H1	P21	P29	J3	K4	L1	N1	→	LHCLK5			Line
<u>.</u>	Ρ	P17	H2	P22	P30	J5	K6	M3	M3	→	LHCLK6			бç
Pai	Ν	P18	H3	P23	P31	J4	K5	L3	M4	→	LHCLK7			Ö
						·	·			-		BUFGMUX_X0Y7	→	F

Table 31: Direct Clock Input and Optional External Feedback to Left-Edge DCMs (XC3S1200E and XC3S1600E)

Table 32: Direct Clock Input and Optional External Feedback to Right-Edge DCMs (XC3S1200E and XC3S1600E)

	Right Edge				Single-Ended Pin Number by Package Type								Diff.	
		DCM/BUFGMUX	RHCLK		VQ100	CP132	TQ144	PQ208	FT256	FG320	FG400	FG484	Clo	ock
D	←	BUFGMUX_X3Y5												
С	←	BUFGMUX_X3Y4												
Se	•		RHCLK7	←	P68	G13	P94	P135	H11	J14	J20	L19	Ν	L
Line		DCM V2V2	RHCLK6	←	P67	G14	P93	P134	H12	J15	K20	L18	Ρ	Pai
Ś			RHCLK5	←	P66	H12	P92	P133	H14	J16	K14	L21	Ν	<u>۔</u>
õ			RHCLK4	←	P65	H13	P91	P132	H15	J17	K13	L20	Ρ	Pai
В	←	BUFGMUX_X3Y3												
Α	←	BUFGMUX_X3Y2												
Н	←	BUFGMUX_X3Y9												
G	←	BUFGMUX_X3Y8												
SS			RHCLK3	←	P63	J14	P88	P129	J13	K14	L14	M16	Ν	<u>.</u>
Line			RHCLK2	←	P62	J13	P87	P128	J14	K15	L15	M15	Ρ	Pai
ock		DCWLX311	RHCLK1	←	P61	J12	P86	P127	J16	K12	L16	M22	Ν	L
ō			RHCLK0	←	P60	K14	P85	P126	K16	K13	M16	N22	Ρ	Pai
F	←	BUFGMUX_X3Y7				•	•	•	•	•	•	•	_	·
Е	←	BUFGMUX_X3Y6												

Every FPGA input provides a possible DCM clock input, but the path is not temperature and voltage compensated like the GCLKs. Alternatively, clock signals within the FPGA optionally provide a DCM clock input via a Global Clock Multiplexer Buffer (BUFGMUX). The global clock net

connects directly to the CLKIN input. The internal and external connections are shown in Figure 42a and Figure 42c, respectively.

By contrast, the clock switch matrixes on the top and bottom edges receive signals from any of the five following sources: two GCLK pins, two DCM outputs, or one Double-Line interconnect.

Table 41 indicates permissible connections between clock inputs and BUFGMUX elements. The I0-input provides the best input path to a clock buffer. The I1-input provides the secondary input for the clock multiplexer function.

The four BUFGMUX elements on the top edge are paired together and share inputs from the eight global clock inputs along the top edge. Each BUFGMUX pair connects to four of the eight global clock inputs, as shown in Figure 45. This optionally allows differential inputs to the global clock inputs without wasting a BUFGMUX element.

Table 41	Connections from	Clock Inputs to BUFGMUX	Elements and Associated	Quadrant Clock
----------	------------------	--------------------------------	--------------------------------	----------------

Quadran	Left-Half BUFGMUX			Top or E	Bottom BUFG	GMUX	Right-Half BUFGMUX			
Line ⁽¹⁾	Location ⁽²⁾	10 Input	I1 Input	Location ⁽²⁾	10 Input	I1 Input	Location ⁽²⁾	10 Input	I1 Input	
н	X0Y9	LHCLK7	LHCLK6	X1Y10	GCLK7 or GCLK11	GCLK6 or GCLK10	X3Y9	RHCLK3	RHCLK2	
G	X0Y8	LHCLK6	LHCLK7	X1Y11	GCLK6 or GCLK10	GCLK7 or GCLK11	X3Y8	RHCLK2	RHCLK3	
F	X0Y7	LHCLK5	LHCLK4	X2Y10	GCLK5 or GCLK9	GCLK4 or GCLK8	X3Y7	RHCLK1	RHCLK0	
Е	X0Y6	LHCLK4	LHCLK5	X2Y11	GCLK4 or GCLK8	GCLK5 or GCLK9	X3Y6	RHCLK0	RHCLK1	
D	X0Y5	LHCLK3	LHCLK2	X1Y0	GCLK3 or GCLK15	GCLK2 or GCLK14	X3Y5	RHCLK7	RHCLK6	
с	X0Y4	LHCLK2	LHCLK3	X1Y1	GCLK2 or GCLK14	GCLK3 or GCLK15	X3Y4	RHCLK6	RHCLK7	
В	ХОҮЗ	LHCLK1	LHCLK0	X2Y0	GCLK1 or GCLK13	GCLK0 or GCLK12	X3Y3	RHCLK5	RHCLK4	
А	X0Y2	LHCLK0	LHCLK1	X2Y1	GCLK0 or GCLK12	GCLK1 or GCLK13	X3Y2	RHCLK4	RHCLK5	

Notes:

1. See Quadrant Clock Routing for connectivity details for the eight quadrant clocks.

2. See Figure 45 for specific BUFGMUX locations, and Figure 47 for information on how BUFGMUX elements drive onto a specific clock line within a quadrant.

Voltage Compatibility

The PROM's V_{CCINT} supply must be either 3.3V for the serial XCFxxS Platform Flash PROMs or 1.8V for the serial/parallel XCFxxP PROMs.

V The FPGA's VCCO_2 supply input and the Platform Flash PROM's V_{CCO} supply input must be the same voltage, ideally +2.5V. Both devices also support 1.8V and 3.3V interfaces but the FPGA's PROG_B and DONE pins require special attention as they are powered by the FPGA's V_{CCAUX} supply, nominally 2.5V. See application note XAPP453: The 3.3V Configuration of Spartan-3 FPGAs for additional information.

Supported Platform Flash PROMs

Table 51 shows the smallest available Platform Flash PROM to program one Spartan-3E FPGA. A multiple-FPGA daisy-chain application requires a <u>Platform Flash PROM</u> large enough to contain the sum of the various FPGA file sizes.

Table 51: Number of Bits to Program a Spartan-3EFPGA and Smallest Platform Flash PROM

Spartan-3E FPGA	Number of Configuration Bits	Smallest Available Platform Flash
XC3S100E	581,344	XCF01S
XC3S250E	1,353,728	XCF02S
XC3S500E	2,270,208	XCF04S
XC3S1200E	3,841,184	XCF04S
XC3S1600E	5,969,696	XCF08P or 2 x XCF04S

The XC3S1600E requires an 8 Mbit PROM. Two solutions are possible: either a single 8 Mbit XCF08P parallel/serial PROM or two 4 Mbit XCF04S serial PROMs cascaded. The two XCF04S PROMs use a 3.3V V_{CCINT} supply while the XCF08P requires a 1.8V V_{CCINT} supply. If the board does not already have a 1.8V supply available, the two cascaded XCF04S PROM solution is recommended.

CCLK Frequency

In Master Serial mode, the FPGA's internal oscillator generates the configuration clock frequency. The FPGA provides this clock on its CCLK output pin, driving the PROM's CLK input pin. The FPGA starts configuration at its lowest frequency and increases its frequency for the remainder of the configuration process if so specified in the configuration bitstream. The maximum frequency is specified using the *ConfigRate* bitstream generator option. Table 52 shows the maximum *ConfigRate* settings, approximately equal to MHz, for various Platform Flash devices and I/O voltages. For the serial XCFxxS PROMs, the maximum frequency also depends on the interface voltage.

Table 52: Maximum ConfigRate Settings for Platform Flash

Platform Flash Part Number	I/O Voltage (VCCO_2, V _{CCO})	Maximum <i>ConfigRate</i> Setting
XCF01S XCE02S	3.3V or 2.5V	25
XCF04S	1.8V	12
XCF08P XCF16P XCF32P	3.3V, 2.5V, or 1.8V	25

iMPACT Dummy VS2 **SPI Read Command** VS1 VS0 **SPI Serial Flash Vendor SPI Flash Family** Programming Bytes Support M25Pxx Yes STMicroelectronics (ST) M25PExx/M45PExx AT45DB 'D'-Series Data Yes Flash Atmel AT26 / AT25(1) Intel **S**33 Spansion (AMD, Fujitsu) S25FLxxxA FAST READ (0x0B) Winbond (NexFlash) NX25 / W25 1 1 1 1 (see Figure 53) Macronix MX25Lxxxx SST25LFxxxA Silicon Storage Technology (SST) SST25VFxxxA Programmable Microelectronics Corp. Pm25LVxxx (PMC) AMIC Technology A25L Eon Silicon Solution, Inc. **EN25** M25Pxx STMicroelectronics (ST) Yes M25PExx/M45PExx Spansion (AMD, Fujitsu) S25FLxxxA Winbond (NexFlash) NX25 / W25 Macronix MX25Lxxxx READ (0x03) 1 0 1 0 (see Figure 53) SST25LFxxxA Silicon Storage Technology SST25VFxxxA (SST) SST25VFxxx Programmable Microelectronics Corp. Pm25LVxxx (PMC) AT45DB DataFlash READ ARRAY (0xE8) (use only 'C' or 'D' 1 1 0 4 **Atmel Corporation** Yes (see Figure 54) Series for Industrial temperature range) Others Reserved

Table 53: Variant Select Codes for Various SPI Serial Flash PROMs

Notes:

1. See iMPACT documentation for specific device support.

WRITER NOTE: Many of the URLs in this table are obsolete or otherwise broken.

Pin Name	FPGA Direction	Description	During Configuration	After Configuration
VS[2:0]	Input	Variant Select. Instructs the FPGA how to communicate with the attached SPI Flash PROM. See Design Considerations for the HSWAP, M[2:0], and VS[2:0] Pins.	Must be at the logic levels shown in Table 53. Sampled when INIT_B goes High.	User I/O
MOSI	Output	Serial Data Output.	FPGA sends SPI Flash memory read commands and starting address to the PROM's serial data input.	User I/O
DIN	Input	Serial Data Input.	FPGA receives serial data from PROM's serial data output.	User I/O
CSO_B	Output	Chip Select Output. Active Low.	Connects to the SPI Flash PROM's chip-select input. If HSWAP = 1, connect this signal to a 4.7 k Ω pull-up resistor to 3.3V.	Drive CSO_B High after configuration to disable the SPI Flash and reclaim the MOSI, DIN, and CCLK pins. Optionally, re-use this pin and MOSI, DIN, and CCLK to continue communicating with SPI Flash.
CCLK	Output	Configuration Clock . Generated by FPGA internal oscillator. Frequency controlled by ConfigRate bitstream generator option. If CCLK PCB trace is long or has multiple connections, terminate this output to maintain signal integrity. See CCLK Design Considerations.	Drives PROM's clock input.	User I/O
DOUT	Output	Serial Data Output.	Actively drives. Not used in single-FPGA designs. In a daisy-chain configuration, this pin connects to DIN input of the next FPGA in the chain.	User I/O
INIT_B	Open-drain bidirectional I/O	Initialization Indicator. Active Low. Goes Low at start of configuration during Initialization memory clearing process. Released at end of memory clearing, when mode select pins are sampled. In daisy-chain applications, this signal requires an external 4.7 k Ω pull-up resistor to VCCO_2.	Active during configuration. If SPI Flash PROM requires > 2 ms to awake after powering on, hold INIT_B Low until PROM is ready. If CRC error detected during configuration, FPGA drives INIT_B Low.	User I/O. If unused in the application, drive INIT_B High.
DONE	Open-drain bidirectional I/O	FPGA Configuration Done . Low during configuration. Goes High when FPGA successfully completes configuration. Requires external 330 Ω pull-up resistor to 2.5V.	Low indicates that the FPGA is not yet configured.	Pulled High via external pull-up. When High, indicates that the FPGA successfully configured.
PROG_B	Input	Program FPGA . Active Low. When asserted Low for 500 ns or longer, forces the FPGA to restart its configuration process by clearing configuration memory and resetting the DONE and INIT_B pins once PROG_B returns High. Recommend external 4.7 k Ω pull-up resistor to 2.5V. Internal pull-up value may be weaker (see Table 78). If driving externally with a 3.3V output, use an open-drain or open-collector driver or use a current limiting series resistor.	Must be High to allow configuration to start.	Drive PROG_B Low and release to reprogram FPGA. Hold PROG_B to force FPGA I/O pins into Hi-Z, allowing direct programming access to SPI Flash PROM pins.

Table 55: Serial Peripheral Interface (SPI) Connections (Cont'd)

Voltage Regulators

Various power supply manufacturers offer complete power solutions for Xilinx FPGAs including some with integrated three-rail regulators specifically designed for Spartan-3 and Spartan-3E FPGAs. The Xilinx Power Corner website provides links to vendor solution guides and Xilinx power estimation and analysis tools.

Power Distribution System (PDS) Design and Decoupling/Bypass Capacitors

Good power distribution system (PDS) design is important for all FPGA designs, but especially so for high performance applications, greater than 100 MHz. Proper design results in better overall performance, lower clock and DCM jitter, and a generally more robust system. Before designing the printed circuit board (PCB) for the FPGA design, please review <u>XAPP623</u>: Power Distribution System (PDS) Design: Using Bypass/Decoupling Capacitors.

Power-On Behavior

For additional power-on behavior information, including I/O behavior before and during configuration, refer to the "Sequence of Events" chapter in UG332.

Spartan-3E FPGAs have a built-in Power-On Reset (POR) circuit that monitors the three power rails required to successfully configure the FPGA. At power-up, the POR circuit holds the FPGA in a reset state until the V_{CCINT} , V_{CCAUX} , and V_{CCO} Bank 2 supplies reach their respective input threshold levels (see Table 74 in Module 3). After all three supplies reach their respective thresholds, the POR reset is released and the FPGA begins its configuration process.

Supply Sequencing

Because the three FPGA supply inputs must be valid to release the POR reset and can be supplied in any order, there are no FPGA-specific voltage sequencing requirements. Applying the FPGA's V_{CCAUX} supply before the V_{CCINT} supply uses the least I_{CCINT} current.

Although the FPGA has no specific voltage sequence requirements, be sure to consider any potential sequencing requirement of the configuration device attached to the FPGA, such as an SPI serial Flash PROM, a parallel NOR Flash PROM, or a microcontroller. For example, Flash PROMs have a minimum time requirement before the PROM can be selected and this must be considered if the 3.3V supply is the last in the sequence. See Power-On Precautions if 3.3V Supply is Last in Sequence for more details.

When all three supplies are valid, the minimum current required to power-on the FPGA equals the worst-case quiescent current, specified in Table 79. Spartan-3E FPGAs

do not require Power-On Surge (POS) current to successfully configure.

Surplus I_{CCINT} if V_{CCINT} Applied before V_{CCAUX}

If the V_{CCINT} supply is applied before the V_{CCAUX} supply, the FPGA might draw a surplus I_{CCINT} current in addition to the I_{CCINT} quiescent current levels specified in Table 79, page 118. The momentary additional I_{CCINT} surplus current might be a few hundred milliamperes under nominal conditions, significantly less than the instantaneous current consumed by the bypass capacitors at power-on. However, the surplus current immediately disappears when the V_{CCAUX} supply is applied, and, in response, the FPGA's I_{CCINT} quiescent current demand drops to the levels specified in Table 79. The FPGA does not use or require the surplus current to successfully power-on and configure. If applying V_{CCINT} before V_{CCAUX}, ensure that the regulator does not have a foldback feature that could inadvertently shut down in the presence of the surplus current.

Configuration Data Retention, Brown-Out

The FPGA's configuration data is stored in robust CMOS configuration latches. The data in these latches is retained even when the voltages drop to the minimum levels necessary to preserve RAM contents, as specified in Table 76.

If, after configuration, the V_{CCAUX} or V_{CCINT} supply drops below its data retention voltage, the current device configuration must be cleared using one of the following methods:

- Force the V_{CCAUX} or V_{CCINT} supply voltage below the minimum Power On Reset (POR) voltage threshold (Table 74).
- Assert PROG_B Low.

The POR circuit does not monitor the VCCO_2 supply after configuration. Consequently, dropping the VCCO_2 voltage does not reset the device by triggering a Power-On Reset (POR) event.

No Internal Charge Pumps or Free-Running Oscillators

Some system applications are sensitive to sources of analog noise. Spartan-3E FPGA circuitry is fully static and does not employ internal charge pumps.

The CCLK configuration clock is active during the FPGA configuration process. After configuration completes, the CCLK oscillator is automatically disabled unless the Bitstream Generator (BitGen) option *Persist=Yes*.

General Recommended Operating Conditions

Table 77: General Recommended Operating Conditions

Symbol	Description			Min	Nominal	Max	Units
TJ	Junction temperature	Commercial		0	-	85	°C
		Industrial		-40	-	100	°C
V _{CCINT}	Internal supply voltage			1.140	1.200	1.260	V
V _{CCO} ⁽¹⁾	Output driver supply voltage			1.100	-	3.465	V
V _{CCAUX}	Auxiliary supply voltage			2.375	2.500	2.625	V
V _{IN} ^(2,3)	Input voltage extremes to avoid	I/O, Input-only, and	IP or IO_#	-0.5	-	V _{CCO} + 0.5	V
	turning on I/O protection diodes	Dual-Purpose pins (4)	IO_Lxxy_# ⁽⁵⁾	-0.5	-	V _{CCO} + 0.5	V
		Dedicated pins ⁽⁶⁾		-0.5	-	$V_{CCAUX} + 0.5$	V
T _{IN}	Input signal transition time ⁽⁷⁾			-	-	500	ns

Notes:

- 1. This V_{CCO} range spans the lowest and highest operating voltages for all supported I/O standards. Table 80 lists the recommended V_{CCO} range specific to each of the single-ended I/O standards, and Table 82 lists that specific to the differential standards.
- Input voltages outside the recommended range require the I_{IK} input clamp diode rating is met and no more than 100 pins exceed the range simultaneously. Refer to Table 73.
- 3. See XAPP459: Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3 Families.
- Each of the User I/O and Dual-Purpose pins is associated with one of the four banks' V_{CCO} rails. Meeting the V_{IN} limit ensures that the internal diode junctions that exist between these pins and their associated V_{CCO} and GND rails do not turn on. The absolute maximum rating is provided in Table 73.
- For single-ended signals that are placed on a differential-capable I/O, V_{IN} of –0.2V to –0.5V is supported but can cause increased leakage between the two pins. See *Parasitic Leakage* in <u>UG331</u>, *Spartan-3 Generation FPGA User Guide*.
- 6. All Dedicated pins (PROG_B, DONE, TCK, TDI, TDO, and TMS) draw power from the V_{CCAUX} rail (2.5V). Meeting the V_{IN} max limit ensures that the internal diode junctions that exist between each of these pins and the V_{CCAUX} and GND rails do not turn on.
- 7. Measured between 10% and 90% $V_{CCO}.$ Follow $\underline{Signal\ Integrity}$ recommendations.

Digital Clock Manager (DCM) Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 104 and Table 105) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 106 through Table 109) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 104 and Table 105.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value. Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See <u>XAPP469</u>, *Spread-Spectrum Clocking Reception for Displays* for details.

Delay-Locked Loop (DLL)

Table 104: Recommended Operating Conditions for the DLL

				Speed Grade				Units	
Symbol		De	Description		-5		-4		
					Min	Max	Min	Max	
Input F	requency Ranges								
F _{CLKIN}	CLKIN_FREQ_DLL	Frequency of the CLKIN clock input	Stepping 0	XC3S100E XC3S250E XC3S500E XC3S1600E	N/A	N/A	5(2)	90 ⁽³⁾	MHz
				XC3S1200E ⁽³⁾				200 <mark>(3)</mark>	MHz
			Stepping 1	All	5 ⁽²⁾	275 <mark>(3)</mark>		240 ⁽³⁾	MHz
Input P	ulse Requirements								
CLKIN_	PULSE	CLKIN pulse width as a percentage of the CLKIN period	F _{CLKIN} ≤	150 MHz	40%	60%	40%	60%	-
			F _{CLKIN} > 150 MHz		45%	55%	45%	55%	-
Input C	lock Jitter Tolerance	and Delay Path Variation	(4)						
CLKIN_	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the	F _{CLKIN} ≤	150 MHz	-	±300	-	±300	ps
CLKIN_	CYC_JITT_DLL_HF	CLKIN input	F _{CLKIN} >	150 MHz	-	±150	-	±150	ps
CLKIN_	PER_JITT_DLL	Period jitter at the CLKIN i	CLKIN input		-	±1	-	±1	ns
CLKFB_	_DELAY_VAR_EXT	Allowable variation of off-c output to the CLKFB input	hip feedback dela	y from the DCM	-	±1	-	±1	ns

Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 106.

3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.

4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

Table 11	9: Configuration	Timing Requirements f	or Attached SPI Serial Flash
----------	------------------	------------------------------	------------------------------

Symbol	Description	Requirement	Units
T _{CCS}	SPI serial Flash PROM chip-select time	$T_{CCS} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DSU}	SPI serial Flash PROM data input setup time	$T_{DSU} \leq T_{MCCL1} - T_{CCO}$	ns
T _{DH}	SPI serial Flash PROM data input hold time	$T_{DH} \leq T_{MCCH1}$	ns
Τ _V	SPI serial Flash PROM data clock-to-output time	$T_V \leq T_{MCCLn} - T_{DCC}$	ns
f _C or f _R	Maximum SPI serial Flash PROM clock frequency (also depends on specific read command used)	$f_C \geq \frac{1}{T_{CCLKn(min)}}$	MHz

Notes:

These requirements are for successful FPGA configuration in SPI mode, where the FPGA provides the CCLK frequency. The post configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source. 1.

Subtract additional printed circuit board routing delay as required by the application. 2.

Table 121: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol	Description	Requirement	Units
T _{CE} (t _{ELQV})	Parallel NOR Flash PROM chip-select time	T _{CE} ≤ T _{INITADDR}	ns
T _{OE} (t _{GLQV})	Parallel NOR Flash PROM output-enable time	$T_{OE} \leq T_{INITADDR}$	ns
T _{ACC} (t _{AVQV})	Parallel NOR Flash PROM read access time	$T_{ACC} \le 0.5 T_{CCLKn(min)} - T_{CCO} - T_{DCC} - PCB$	ns
T _{BYTE} (t _{FLQV} , t _{FHQV})	For x8/x16 PROMs only: BYTE# to output valid time ⁽³⁾	$T_{BYTE} \leq T_{INITADDR}$	ns

Notes:

1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA provides the CCLK frequency. The post

- configuration timing can be different to support the specific needs of the application loaded int o the FPGA and the resulting clock source.Subtract additional printed circuit board routing delay as required by the application.
- 3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA's LDC2 pin. The resistor value also depends on whether the FPGA's HSWAP pin is High or Low.

Table 122: MultiBoot Trigger (MBT) Timing

Symbol	Description	Minimum	Maximum	Units
T _{MBT}	MultiBoot Trigger (MBT) Low pulse width required to initiate MultiBoot reconfiguration	300	∞	ns

Notes:

1. MultiBoot re-configuration starts on the rising edge after MBT is Low for at least the prescribed minimum period.

PQ208 Footprint (Right)

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S500E Pin Name	XC3S1200E Pin Name	FT256 Ball	Туре
1	N.C. (�)	IO_L05P_1	IO_L05P_1	L12	250E: N.C. 500E: I/O 1200E: I/O
1	IO_L06N_1	IO_L06N_1	IO_L06N_1	L15	I/O
1	IO_L06P_1	IO_L06P_1	IO_L06P_1	L14	I/O
1	IO_L07N_1/A11	IO_L07N_1/A11	IO_L07N_1/A11	K12	DUAL
1	IO_L07P_1/A12	IO_L07P_1/A12	IO_L07P_1/A12	K13	DUAL
1	IO_L08N_1/VREF_1	IO_L08N_1/VREF_1	IO_L08N_1/VREF_1	K14	VREF
1	IO_L08P_1	IO_L08P_1	IO_L08P_1	K15	I/O
1	IO_L09N_1/A9/RHCLK1	IO_L09N_1/A9/RHCLK1	IO_L09N_1/A9/RHCLK1	J16	RHCLK/DUAL
1	IO_L09P_1/A10/RHCLK0	IO_L09P_1/A10/RHCLK0	IO_L09P_1/A10/RHCLK0	K16	RHCLK/DUAL
1	IO_L10N_1/A7/RHCLK3/ TRDY1	IO_L10N_1/A7/RHCLK3/ TRDY1	IO_L10N_1/A7/RHCLK3/ TRDY1	J13	RHCLK/DUAL
1	IO_L10P_1/A8/RHCLK2	IO_L10P_1/A8/RHCLK2	IO_L10P_1/A8/RHCLK2	J14	RHCLK/DUAL
1	IO_L11N_1/A5/RHCLK5	IO_L11N_1/A5/RHCLK5	IO_L11N_1/A5/RHCLK5	H14	RHCLK/DUAL
1	IO_L11P_1/A6/RHCLK4/ IRDY1	IO_L11P_1/A6/RHCLK4/ IRDY1	IO_L11P_1/A6/RHCLK4/ IRDY1	H15	RHCLK/DUAL
1	IO_L12N_1/A3/RHCLK7	IO_L12N_1/A3/RHCLK7	IO_L12N_1/A3/RHCLK7	H11	RHCLK/DUAL
1	IO_L12P_1/A4/RHCLK6	IO_L12P_1/A4/RHCLK6	IO_L12P_1/A4/RHCLK6	H12	RHCLK/DUAL
1	IO_L13N_1/A1	IO_L13N_1/A1	IO_L13N_1/A1	G16	DUAL
1	IO_L13P_1/A2	IO_L13P_1/A2	IO_L13P_1/A2	G15	DUAL
1	IO_L14N_1/A0	IO_L14N_1/A0	IO_L14N_1/A0	G14	DUAL
1	IO_L14P_1	IO_L14P_1	IO_L14P_1	G13	I/O
1	IO_L15N_1	IO_L15N_1	IO_L15N_1	F15	I/O
1	IO_L15P_1	IO_L15P_1	IO_L15P_1	F14	I/O
1	IO_L16N_1	IO_L16N_1	IO_L16N_1	F12	I/O
1	IO_L16P_1	IO_L16P_1	IO_L16P_1	F13	I/O
1	N.C. (�)	IO_L17N_1	IO_L17N_1	E16	250E: N.C. 500E: I/O 1200E: I/O
1	N.C. (♦).	IO_L17P_1	IO_L17P_1	E13	250E: N.C. 500E: I/O 1200E: I/O
1	IO_L18N_1/LDC0	IO_L18N_1/LDC0	IO_L18N_1/LDC0	D14	DUAL
1	IO_L18P_1/HDC	IO_L18P_1/HDC	IO_L18P_1/HDC	D15	DUAL
1	IO_L19N_1/LDC2	IO_L19N_1/LDC2	IO_L19N_1/LDC2	C15	DUAL
1	IO_L19P_1/LDC1	IO_L19P_1/LDC1	IO_L19P_1/LDC1	C16	DUAL
1	IP	IP	IP	B16	INPUT
1	IP	IP	IP	E14	INPUT
1	IP	IP	IP	G12	INPUT
1	IP	IP	IP	H16	INPUT
1	IP	IP	IP	J11	INPUT
1	IP	IP	IP	J12	INPUT
1	IP	IP	IP	M13	INPUT

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S500E Pin Name	XC3S1200E Pin Name	FT256 Ball	Туре
3	IP	IP	IP	N3	INPUT
3	IP/VREF_3	IP/VREF_3	IP/VREF_3	G1	VREF
3	IO/VREF_3	IO/VREF_3	IP/VREF_3	N2	250E: VREF(I/O)
					500E: VREF(I/O)
					1200E: VREF(INPUT)
3	VCCO_3	VCCO_3	VCCO_3	E2	VCCO
3	VCCO_3	VCCO_3	VCCO_3	G6	VCCO
3	VCCO_3	VCCO_3	VCCO_3	K6	VCCO
3	VCCO_3	VCCO_3	VCCO_3	M2	VCCO
GND	GND	GND	GND	A1	GND
GND	GND	GND	GND	A16	GND
GND	GND	GND	GND	B9	GND
GND	GND	GND	GND	F6	GND
GND	GND	GND	GND	F11	GND
GND	GND	GND	GND	G7	GND
GND	GND	GND	GND	G8	GND
GND	GND	GND	GND	G9	GND
GND	GND	GND	GND	G10	GND
GND	GND	GND	GND	H2	GND
GND	GND	GND	GND	H7	GND
GND	GND	GND	GND	H8	GND
GND	GND	GND	GND	H9	GND
GND	GND	GND	GND	H10	GND
GND	GND	GND	GND	J7	GND
GND	GND	GND	GND	J8	GND
GND	GND	GND	GND	J9	GND
GND	GND	GND	GND	J10	GND
GND	GND	GND	GND	J15	GND
GND	GND	GND	GND	K7	GND
GND	GND	GND	GND	K8	GND
GND	GND	GND	GND	K9	GND
GND	GND	GND	GND	K10	GND
GND	GND	GND	GND	L6	GND
GND	GND	GND	GND	L11	GND
GND	GND	GND	GND	R8	GND
GND	GND	GND	GND	T1	GND
GND	GND	GND	GND	T16	GND
VCCAUX	DONE	DONE	DONE	T15	CONFIG
VCCAUX	PROG_B	PROG_B	PROG_B	D3	CONFIG
VCCAUX	ТСК	ТСК	ТСК	A15	JTAG
VCCAUX	TDI	TDI	TDI	A2	JTAG
VCCAUX	TDO	TDO	TDO	C14	JTAG
VCCAUX	TMS	TMS	TMS	B15	JTAG
VCCAUX	VCCAUX	VCCAUX	VCCAUX	A6	VCCAUX

Table 154: FG484 Package Pinout (Cont'd)

Bank	XC3S1600E Pin Name	FG484 Ball	Туре
GND	GND	E10	GND
GND	GND	E13	GND
GND	GND	F6	GND
GND	GND	F17	GND
GND	GND	G2	GND
GND	GND	G21	GND
GND	GND	J4	GND
GND	GND	J9	GND
GND	GND	J12	GND
GND	GND	J14	GND
GND	GND	J19	GND
GND	GND	K10	GND
GND	GND	K12	GND
GND	GND	L2	GND
GND	GND	L6	GND
GND	GND	L9	GND
GND	GND	L13	GND
GND	GND	M10	GND
GND	GND	M14	GND
GND	GND	M17	GND
GND	GND	M21	GND
GND	GND	N11	GND
GND	GND	N13	GND
GND	GND	P4	GND
GND	GND	P9	GND
GND	GND	P11	GND
GND	GND	P14	GND
GND	GND	P19	GND
GND	GND	T2	GND
GND	GND	T21	GND
GND	GND	U6	GND
GND	GND	U17	GND
GND	GND	V10	GND
GND	GND	V13	GND
GND	GND	Y3	GND
GND	GND	Y20	GND
GND	GND	AA7	GND
GND	GND	AA16	GND

Table 154: FG484 Package Pinout (Cont'd)

Bank	XC3S1600E Pin Name	FG484 Ball	Туре
GND	GND	AB1	GND
GND	GND	AB12	GND
GND	GND	AB22	GND
VCCAUX	DONE	AA21	CONFIG
VCCAUX	PROG_B	B1	CONFIG
VCCAUX	TCK	E17	JTAG
VCCAUX	TDI	B2	JTAG
VCCAUX	TDO	B20	JTAG
VCCAUX	TMS	D19	JTAG
VCCAUX	VCCAUX	D12	VCCAUX
VCCAUX	VCCAUX	E5	VCCAUX
VCCAUX	VCCAUX	E18	VCCAUX
VCCAUX	VCCAUX	K14	VCCAUX
VCCAUX	VCCAUX	L4	VCCAUX
VCCAUX	VCCAUX	M19	VCCAUX
VCCAUX	VCCAUX	N9	VCCAUX
VCCAUX	VCCAUX	V5	VCCAUX
VCCAUX	VCCAUX	V18	VCCAUX
VCCAUX	VCCAUX	W11	VCCAUX
VCCINT	VCCINT	J10	VCCINT
VCCINT	VCCINT	K9	VCCINT
VCCINT	VCCINT	K11	VCCINT
VCCINT	VCCINT	K13	VCCINT
VCCINT	VCCINT	L10	VCCINT
VCCINT	VCCINT	L11	VCCINT
VCCINT	VCCINT	L12	VCCINT
VCCINT	VCCINT	L14	VCCINT
VCCINT	VCCINT	M9	VCCINT
VCCINT	VCCINT	M11	VCCINT
VCCINT	VCCINT	M12	VCCINT
VCCINT	VCCINT	M13	VCCINT
VCCINT	VCCINT	N10	VCCINT
VCCINT	VCCINT	N12	VCCINT
VCCINT	VCCINT	N14	VCCINT
VCCINT	VCCINT	P13	VCCINT

User I/Os by Bank

Table 155 indicates how the 304 available user-I/O pins are distributed between the four I/O banks on the FG484 package.