EXF

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	

Details	
Product Status	Obsolete
Number of LABs/CLBs	1164
Number of Logic Elements/Cells	10476
Total RAM Bits	368640
Number of I/O	158
Number of Gates	500000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s500e-4pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Spartan-3E FPGAs provide additional input flexibility by allowing I/O standards to be mixed in different banks. For a particular V_{CCO} voltage, Table 6 and Table 7 list all of the

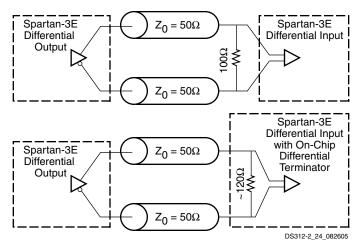

IOSTANDARDs that can be combined and if the IOSTANDARD is supported as an input only or can be used for both inputs and outputs.

Table 6: Single-Ended IOSTANDARD Bank Compatibility

	V _{CCO} Supply/Compatibility					Input Requirements	
Single-Ended	1.2V	1.5V	1.8V	2.5V	3.3V	V _{REF}	Board Termination Voltage (V _{TT})
LVTTL	-	-	-	-	Input/ Output	N/R ⁽¹⁾	N/R
LVCMOS33	-	-	-	-	Input/ Output	N/R	N/R
LVCMOS25	-	-	-	Input/ Output	Input	N/R	N/R
LVCMOS18	-	-	Input/ Output	Input	Input	N/R	N/R
LVCMOS15	-	Input/ Output	Input	Input	Input	N/R	N/R
LVCMOS12	Input/ Output	Input	Input	Input	Input	N/R	N/R
PCI33_3	-	-	-	-	Input/ Output	N/R	N/R
PCI66_3	-	-	-	-	Input/ Output	N/R	N/R
HSTL_I_18	-	-	Input/ Output	Input	Input	0.9	0.9
HSTL_III_18	-	-	Input/ Output	Input	Input	1.1	1.8
SSTL18_I	-	-	Input/ Output	Input	Input	0.9	0.9
SSTL2_I	-	-	-	Input/ Output	Input	1.25	1.25

Notes:

1. N/R - Not required for input operation.

Pull-Up and Pull-Down Resistors

Pull-up and pull-down resistors inside each IOB optionally force a floating I/O or Input-only pin to a determined state. Pull-up and pull-down resistors are commonly applied to unused I/Os, inputs, and three-state outputs, but can be used on any I/O or Input-only pin. The pull-up resistor connects an IOB to V_{CCO} through a resistor. The resistance value depends on the V_{CCO} voltage (see Module 3, DC and Switching Characteristics for the specifications). The pull-down resistor similarly connects an IOB to ground with a resistor. The PULLUP and PULLDOWN attributes and library primitives turn on these optional resistors.

By default, PULLDOWN resistors terminate all unused I/O and Input-only pins. Unused I/O and Input-only pins can alternatively be set to PULLUP or FLOAT. To change the unused I/O Pad setting, set the Bitstream Generator (BitGen) option *UnusedPin* to PULLUP, PULLDOWN, or FLOAT. The *UnusedPin* option is accessed through the Properties for Generate Programming File in ISE. See Bitstream Generator (BitGen) Options.

During configuration a Low logic level on the HSWAP pin activates pull-up resistors on all I/O and Input-only pins not actively used in the selected configuration mode.

Keeper Circuit

Each I/O has an optional keeper circuit (see Figure 12) that keeps bus lines from floating when not being actively driven. The KEEPER circuit retains the last logic level on a line after all drivers have been turned off. Apply the KEEPER attribute or use the KEEPER library primitive to use the KEEPER circuitry. Pull-up and pull-down resistors override the KEEPER settings.

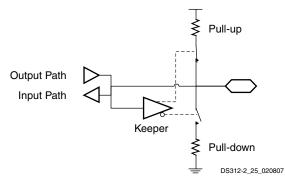


Figure 12: Keeper Circuit

Slew Rate Control and Drive Strength

Each IOB has a slew-rate control that sets the output switching edge-rate for LVCMOS and LVTTL outputs. The SLEW attribute controls the slew rate and can either be set to SLOW (default) or FAST.

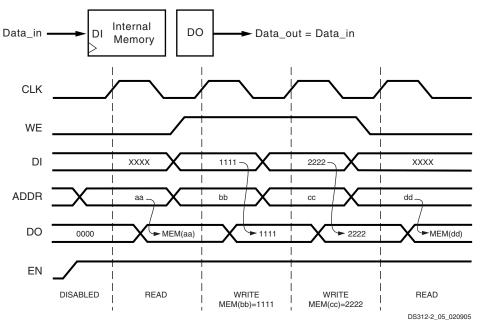
Each LVCMOS and LVTTL output additionally supports up to six different drive current strengths as shown in Table 8. To adjust the drive strength for each output, the DRIVE attribute is set to the desired drive strength: 2, 4, 6, 8, 12, and 16. Unless otherwise specified in the FPGA application, the software default IOSTANDARD is LVCMOS25, SLOW slew rate, and 12 mA output drive.

Table	8:	Programmable	Output	Drive	Current
-------	----	--------------	--------	-------	---------

IOSTANDARD	Output Drive Current (mA)					
IOSTANDAND	2	4	6	8	12	16
LVTTL	~	~	~	~	~	~
LVCMOS33	~	~	~	~	~	~
LVCMOS25	~	~	~	~	~	-
LVCMOS18	~	~	~	~	-	-
LVCMOS15	~	~	~	-	-	-
LVCMOS12	~	-	-	-	-	-

High output current drive strength and FAST output slew rates generally result in fastest I/O performance. However, these same settings generally also result in transmission line effects on the printed circuit board (PCB) for all but the shortest board traces. Each IOB has independent slew rate and drive strength controls. Use the slowest slew rate and lowest output drive current that meets the performance requirements for the end application.

Likewise, due to lead inductance, a given package supports a limited number of simultaneous switching outputs (SSOs) when using fast, high-drive outputs. Only use fast, high-drive outputs when required by the application. There are a number of different conditions under which data can be accessed at the DO outputs. Basic data access always occurs when the WE input is inactive. Under this condition, data stored in the memory location addressed by the ADDR lines passes through a output latch to the DO outputs. The timing for basic data access is shown in the


XILINX.

portions of Figure 33, Figure 34, and Figure 35 during which WE is Low.

Data also can be accessed on the DO outputs when asserting the WE input based on the value of the WRITE_MODE attribute as described in Table 26.

Table 26: WRITE_MODE Effect on Data Output Latches During Write Operations

Write Mode	Effect on Same Port	Effect on Opposite Port (dual-port only with same address)
WRITE_FIRST Read After Write	Data on DI and DIP inputs is written into specified RAM location and simultaneously appears on DO and DOP outputs.	Invalidates data on DO and DOP outputs.
READ_FIRST Read Before Write	Data from specified RAM location appears on DO and DOP outputs. Data on DI and DIP inputs is written into specified location.	Data from specified RAM location appears on DO and DOP outputs.
NO_CHANGE No Read on Write	Data on DO and DOP outputs remains unchanged. Data on DI and DIP inputs is written into specified location.	Invalidates data on DO and DOP outputs.

Setting the WRITE_MODE attribute to a value of WRITE_FIRST, data is written to the addressed memory location on an enabled active CLK edge and is also passed to the DO outputs. WRITE_FIRST timing is shown in the portion of Figure 33 during which WE is High.

Setting the WRITE_MODE attribute to a value of READ_FIRST, data already stored in the addressed location passes to the DO outputs before that location is overwritten with new data from the DI inputs on an enabled active CLK edge. READ_FIRST timing is shown in the portion of Figure 34 during which WE is High.

www.xilinx.com

Digital Clock Managers (DCMs)

For additional information, refer to the "Using Digital Clock Managers (DCMs)" chapter in $\underline{\text{UG331}}$.

Differences from the Spartan-3 Architecture

- Spartan-3E FPGAs have two, four, or eight DCMs, depending on device size.
- The variable phase shifting feature functions differently on Spartan-3E FPGAs than from Spartan-3 FPGAs.
- The Spartan-3E DLLs support lower input frequencies, down to 5 MHz. Spartan-3 DLLs support down to 18 MHz.

Overview

Spartan-3E FPGA Digital Clock Managers (DCMs) provide flexible, complete control over clock frequency, phase shift and skew. To accomplish this, the DCM employs a Delay-Locked Loop (DLL), a fully digital control system that uses feedback to maintain clock signal characteristics with a high degree of precision despite normal variations in operating temperature and voltage. This section provides a fundamental description of the DCM.

The XC3S100E FPGA has two DCMs, one at the top and one at the bottom of the device. The XC3S250E and XC3S500E FPGAs each include four DCMs, two at the top and two at the bottom. The XC3S1200E and XC3S1600E FPGAs contain eight DCMs with two on each edge (see also Figure 45). The DCM in Spartan-3E FPGAs is surrounded by CLBs within the logic array and is no longer located at the top and bottom of a column of block RAM as in the Spartan-3 architecture. The Digital Clock Manager is instantiated within a design using a "DCM" primitive.

The DCM supports three major functions:

- **Clock-skew Elimination:** Clock skew within a system occurs due to the different arrival times of a clock signal at different points on the die, typically caused by the clock signal distribution network. Clock skew increases setup and hold time requirements and increases clock-to-out times, all of which are undesirable in high frequency applications. The DCM eliminates clock skew by phase-aligning the output clock signal that it generates with the incoming clock signal. This mechanism effectively cancels out the clock distribution delays.
- **Frequency Synthesis:** The DCM can generate a wide range of different output clock frequencies derived from the incoming clock signal. This is accomplished by either multiplying and/or dividing the frequency of the input clock signal by any of several different factors.
- **Phase Shifting:** The DCM provides the ability to shift the phase of all its output clock signals with respect to the input clock signal.

Although a single design primitive, the DCM consists of four interrelated functional units: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), the Phase Shifter (PS), and the Status Logic. Each component has its associated signals, as shown in Figure 40.

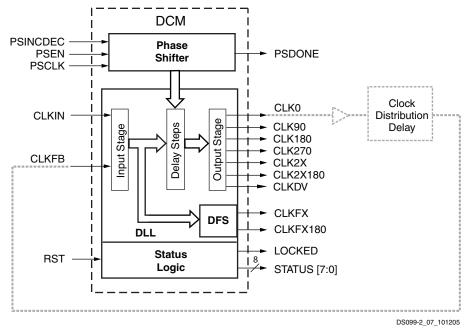


Figure 40: DCM Functional Blocks and Associated Signals

Delay-Locked Loop (DLL)

The most basic function of the DLL component is to eliminate clock skew. The main signal path of the DLL consists of an input stage, followed by a series of discrete delay elements or *steps*, which in turn leads to an output stage. This path together with logic for phase detection and control forms a system complete with feedback as shown in Figure 41. In Spartan-3E FPGAs, the DLL is implemented using a counter-based delay line. The DLL component has two clock inputs, CLKIN and CLKFB, as well as seven clock outputs, CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as described in Table 28. The clock outputs drive simultaneously. Signals that initialize and report the state of the DLL are discussed in Status Logic.

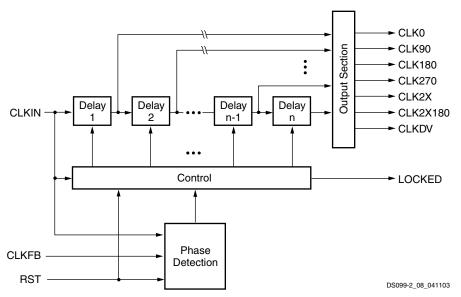


Figure 41: Simplified Functional Diagram of DLL

Table 28: DLL Signals

Signal	Direction	Description
CLKIN	Input	Receives the incoming clock signal. See Table 30, Table 31, and Table 32 for optimal external inputs to a DCM.
CLKFB	Input	Accepts either CLK0 or CLK2X as the feedback signal. (Set the CLK_FEEDBACK attribute accordingly).
CLK0	Output	Generates a clock signal with the same frequency and phase as CLKIN.
CLK90	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 90°.
CLK180	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 180°.
CLK270	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 270°.
CLK2X	Output	Generates a clock signal with the same phase as CLKIN, and twice the frequency.
CLK2X180	Output	Generates a clock signal with twice the frequency of CLKIN, and phase-shifted 180° with respect to CLK2X.
CLKDV	Output	Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower frequency clock signal that is phase-aligned to CLKIN.

The clock signal supplied to the CLKIN input serves as a reference waveform. The DLL seeks to align the rising-edge of feedback signal at the CLKFB input with the rising-edge of CLKIN input. When eliminating clock skew, the common approach to using the DLL is as follows: The CLK0 signal is passed through the clock distribution network that feeds all the registers it synchronizes. These registers are either

internal or external to the FPGA. After passing through the clock distribution network, the clock signal returns to the DLL via a feedback line called CLKFB. The control block inside the DLL measures the phase error between CLKFB and CLKIN. This phase error is a measure of the clock skew that the clock distribution network introduces. The control block activates the appropriate number of delay steps to

cancel out the clock skew. When the DLL phase-aligns the CLK0 signal with the CLKIN signal, it asserts the LOCKED output, indicating a lock on to the CLKIN signal.

DLL Attributes and Related Functions

The DLL unit has a variety of associated attributes as described in Table 29. Each attribute is described in detail in the sections that follow.

Table 29: DLL Attributes

EXILINX

Attribute	Description	Values
CLK_FEEDBACK	Chooses either the CLK0 or CLK2X output to drive the CLKFB input	NONE, <u>1X</u> , 2X
CLKIN_DIVIDE_BY_2	Halves the frequency of the CLKIN signal just as it enters the DCM	<i>FALSE</i> , TRUE
CLKDV_DIVIDE	Selects the constant used to divide the CLKIN input frequency to generate the CLKDV output frequency	1.5, <u>2</u> , 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.0, 6.5, 7.0, 7.5, 8, 9, 10, 11, 12, 13, 14, 15, and 16
CLKIN_PERIOD	Additional information that allows the DLL to operate with the most efficient lock time and the best jitter tolerance	Floating-point value representing the CLKIN period in nanoseconds

DLL Clock Input Connections

For best results, an external clock source enters the FPGA via a Global Clock Input (GCLK). Each specific DCM has four possible direct, optimal GCLK inputs that feed the DCM's CLKIN input, as shown in Table 30. Table 30 also provides the specific pin numbers by package for each GCLK input. The two additional DCM's on the XC3S1200E and XC3S1600E have similar optimal connections from the left-edge LHCLK and the right-edge RHCLK inputs, as described in Table 31 and Table 32.

 The DCM supports differential clock inputs (for example, LVDS, LVPECL_25) via a pair of GCLK inputs that feed an internal single-ended signal to the DCM's CLKIN input.

Design Note

Avoid using global clock input GCLK1 as it is always shared with the M2 mode select pin. Global clock inputs GCLK0, GCLK2, GCLK3, GCLK12, GCLK13, GCLK14, and GCLK15 have shared functionality in some configuration modes.

VARIABLE Phase Shift Mode

In VARIABLE phase shift mode, the FPGA application dynamically adjusts the fine phase shift value using three

Table 36: Signals for Variable Phase Mode

inputs to the PS unit (PSEN, PSCLK, and PSINCDEC), as defined in Table 36 and shown in Figure 40.

•		
Signal	Direction	Description
PSEN ⁽¹⁾	Input	Enables the Phase Shift unit for variable phase adjustment.
PSCLK ⁽¹⁾	Input	Clock to synchronize phase shift adjustment.
PSINCDEC ⁽¹⁾	Input	When High, increments the current phase shift value. When Low, decrements the current phase shift value. This signal is synchronized to the PSCLK signal.
PSDONE	Output	Goes High to indicate that the present phase adjustment is complete and PS unit is ready for next phase adjustment request. This signal is synchronized to the PSCLK signal.

Notes:

1. This input supports either a true or inverted polarity.

The FPGA application uses the three PS inputs on the Phase Shift unit to dynamically and incrementally increase or decrease the phase shift amount on all nine DCM clock outputs.

To adjust the current phase shift value, the PSEN enable signal must be High to enable the PS unit. Coincidently, PSINCDEC must be High to increment the current phase shift amount or Low to decrement the current amount. All VARIABLE phase shift operations are controlled by the PSCLK input, which can be the CLKIN signal or any other clock signal.

Design Note

The VARIABLE phase shift feature operates differently from the Spartan-3 DCM; use the DCM_SP primitive, not the DCM primitive.

DCM_DELAY_STEP

DCM_DELAY_STEP is the finest delay resolution available in the PS unit. Its value is provided at the bottom of Table 105 in Module 3. For each enabled PSCLK cycle that PSINCDEC is High, the PS unit adds one DCM_ DELAY_STEP of phase shift to all nine DCM outputs. Similarly, for each enabled PSCLK cycle that PSINCDEC is Low, the PS unit subtracts one DCM_ DELAY_STEP of phase shift from all nine DCM outputs.

Because each DCM_DELAY_STEP has a minimum and maximum value, the actual phase shift delay for the present phase increment/decrement value (VALUE) falls within the minimum and maximum values according to Equation 4 and Equation 5.

 $T_{PS}(Max) = VALUE \bullet DCM_DELAY_STEP_MAX Eq 4$

 $T_{PS}(Min) = VALUE \bullet DCM_DELAY_STEP_MIN Eq 5$

The maximum variable phase shift steps, MAX_STEPS, is described in Equation 6 or Equation 7, for a given CLKIN input period, T_{CLKIN} , in nanoseconds. To convert this to a

phase shift range measured in time and not steps, use MAX_STEPS derived in Equation 6 and Equation 7 for VALUE in Equation 4 and Equation 5.

If CLKIN < 60 MHz:

 $MAX_STEPS = \pm[INTEGER(10 \bullet (T_{CLKIN}-3))] Eq 6$

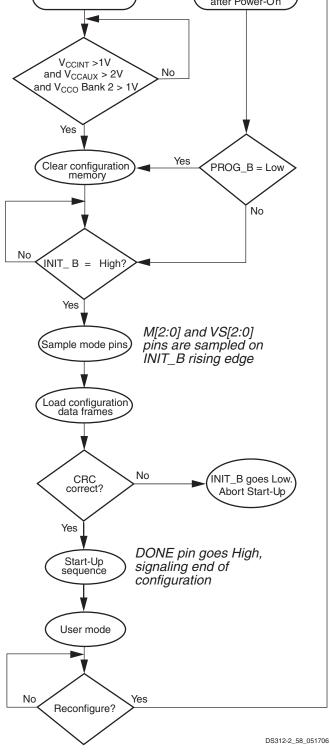
If CLKIN \geq 60 MHz:

MAX_STEPS = $\pm [INTEGER(15 \bullet (T_{CLKIN} - 3))]$ Eq.7

The phase adjustment might require as many as 100 CLKIN cycles plus 3 PSCLK cycles to take effect, at which point the DCM's PSDONE output goes High for one PSCLK cycle. This pulse indicates that the PS unit completed the previous adjustment and is now ready for the next request.

Asserting the Reset (RST) input returns the phase shift to zero.

Also, in a multi-FPGA daisy-chain configuration of more than two devices, all intermediate FPGAs between the first and last devices must be Spartan-3E or Virtex-5 FPGAs. The last FPGA in the chain can be from any Xilinx FPGA family.


BPI Mode Interaction with Right and Bottom Edge Global Clock Inputs

Some of the BPI mode configuration pins are shared with global clock inputs along the right and bottom edges of the device (Bank 1 and Bank 2, respectively). These pins are not easily reclaimable for clock inputs after configuration, especially if the FPGA application access the parallel NOR Flash after configuration. Table 64 summarizes the shared pins.

Table 64: Shared BPI Configuration Mode and GlobalBuffer Input Pins

Device Edge	Global Buffer Input Pin	BPI Mode Configuration Pin
	GCLK0	RDWR_B
	GCLK2	D2
	GCLK3	D1
Bottom	GCLK12	D7
	GCLK13	D6
	GCLK14	D4
	GCLK15	D3
	RHCLK0	A10
	RHCLK1	A9
	RHCLK2	A8
Diabt	RHCLK3	A7
Right	RHCLK4	A6
	RHCLK5	A5
	RHCLK6	A4
	RHCLK7	A3

EXILINX.

Date	Version	Revision
03/16/07	3.5	Added information about new Spartan-3 Generation user guides (Design Documentation Available). Added cross-references to <u>UG331</u> : Spartan-3 Generation FPGA User Guide and to <u>UG332</u> : Spartan-3 Generation Configuration User Guide. Added note about possible JTAG configuration issues when the FPGA mode pins are set for Master mode and using software prior to ISE 9.1.01i (JTAG Mode). Removed a few lingering references to "weak" pull-up resistors, including in Figure 12. Removed vestigial references regarding the LDC[2:0] and HDC pins during Slave Parallel Mode configuration. These pins are not used in this configuration mode.
05/29/07	3.6	Added information about HSWAP and PCI differences between steppings to Table 71. Removed "Performance Differences between Global Buffers" to match improved specs in Module 3. Updated PROG_B pulse width descriptions to match specification in Module 3.
04/18/08	3.7	Corrected Figure 6 to show six taps and updated associated text. Added note for recommended pull-up on DONE in Table 55 and elsewhere. Added a caution regarding Persist of pins A20-A23. Updated Stepping description in Table 71 to note that only Stepping 1 is in production today. Updated links.
08/26/09	3.8	Added a frequency limitation to Equation 6. Added a new Equation 7 with a frequency limitation. Added a Spread Spectrum, page 56 paragraph. Added Table 42, page 60. Updated a Flash vendor name in Table 61, page 88. Removed the < symbol from the flash read access times in Table 62, page 88. Revised the first paragraph in Configuration Sequence, page 101. Revised the first paragraph in Power-On Behavior, page 110. Revised the second paragraph in Production Stepping, page 111. Revised the first paragraph in Ordering a Later Stepping, page 111.
10/29/12	4.0	Added Notice of Disclaimer. This product is not recommended for new designs. Updated the design note section in VARIABLE Phase Shift Mode. Added the VQ100 to the Quadrant Clock Routing section.

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.

AUTOMOTIVE APPLICATIONS DISCLAIMER

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

Differential I/O Standards

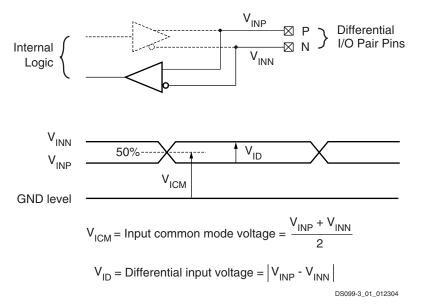


Figure 69: Differential Input Voltages

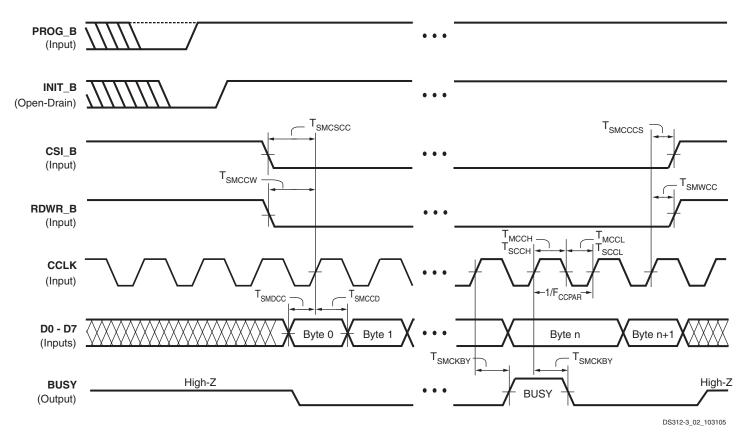
Table 82: Recommended C	Derating Conditions for	r User I/Os Usina Di	ifferential Signal Standards
	peruting contaitions for		incremation orginal otamaarao

IOSTANDARD	V _{CCO} for Drivers ⁽¹⁾			V _{ID}			V _{ICM}		
Attribute	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)
LVDS_25	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20
BLVDS_25	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20
MINI_LVDS_25	2.375	2.50	2.625	200	-	600	0.30	-	2.2
LVPECL_25 ⁽²⁾		Inputs Only		100	800	1000	0.5	1.2	2.0
RSDS_25	2.375	2.50	2.625	100	200	-	0.3	1.20	1.4
DIFF_HSTL_I_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_HSTL_III_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1
DIFF_SSTL18_I	1.7	1.8	1.9	100	-	-	0.7	-	1.1
DIFF_SSTL2_I	2.3	2.5	2.7	100	-	-	1.0	-	1.5

Notes:

1. The V_{CCO} rails supply only differential output drivers, not input circuits.

2. V_{REF} inputs are not used for any of the differential I/O standards.


Table 107: Switching Characteristics for the DFS

				Speed Grade				
Symbol	Description	I	Device	-5		-4		Units
				Min	Max	Min	Max	
Output Frequency Range	S							<u></u>
CLKOUT_FREQ_FX_LF	Frequency for the CLKFX and CLKFX180 outputs, low frequencies	Stepping 0	XC3S100E XC3S250E XC3S500E	N/A	N/A	5	90	MHz
CLKOUT_FREQ_FX_HF	Frequency for the CLKFX and CLKFX180 outputs, high frequencies	-	XC3S1600E			220	307	MHz
CLKOUT_FREQ_FX	Frequency for the CLKFX and	Stepping 0	XC3S1200E			5	307	MHz
	CLKFX180 outputs	Stepping 1	All	5	333		311	MHz
Output Clock Jitter ^(2,3)				r				
CLKOUT_PER_JITT_FX	Period jitter at the CLKFX and		All	Тур	Max	Тур	Max	
	CLKFX180 outputs.	CLKIN ≤ 20 MHz	-		Note 6			ps
		CLKIN > 20 MHz	-	±[1% of CLKFX period	CLKFX period	±[1% of CLKFX period	CLKFX period	ps
				+ 100]	+ 200]	+ 100]	+ 200]	
Duty Cycle ^(4,5)			i		±[1% of			
CLKOUT_DUTY_CYCLE_FX		Duty cycle precision for the CLKFX and CLKFX180 outputs, including the BUFGMUX and clock tree duty-cycle distortion				-	±[1% of CLKFX period + 400]	ps
Phase Alignment ⁽⁵⁾					I			
CLKOUT_PHASE_FX	Phase offset between the DFS CL DLL CLK0 output when both the used		All	-	±200	-	±200	ps
CLKOUT_PHASE_FX180		Phase offset between the DFS CLKFX180 output and the DLL CLK0 output when both the DFS and DLL are			±[1% of CLKFX period + 300]	-	±[1% of CLKFX period + 300]	ps
Lock Time				1	1			
LOCK_FX ⁽²⁾	The time from deassertion at the DCM's Reset input to the rising transition at its LOCKED output.	$5 \text{ MHz} \leq \text{F}_{\text{CLKIN}} \\ \leq 15 \text{ MHz}$	All	-	5	-	5	ms
	The DFS asserts LOCKED butput. The DFS asserts LOCKED when the CLKFX and CLKFX180 signals are valid. If using both the DLL and the DFS, use the longer locking time.	F _{CLKIN} > 15 MHz		-	450	-	450	μs

Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 77 and Table 106.
- 2. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
- Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching). Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization, CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system application.
- 4. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
- Some duty-cycle and alignment specifications include 1% of the CLKFX output period or 0.01 UI.
 Example: The data sheet specifies a maximum jitter of ±[1% of CLKFX period + 300]. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 300 ps] = ±400 ps.
- 6. Use the Spartan-3A Jitter Calculator (www.xilinx.com/support/documentation/data_sheets/s3a_jitter_calc.zip) to estimate DFS output jitter. Use the Clocking Wizard to determine jitter for a specific design.

Slave Parallel Mode Timing

Notes:

1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0 - D7 bus. When RDWR_B switches High, be careful to avoid contention on the D0 - D7 bus.

Figure 75: Waveforms for Slave Parallel Configuration

Table 117: Timing for the Slave Parallel Configuration Mode	Table	117:	Timing for the	e Slave	Parallel	Configuration	n Mode
---	-------	------	----------------	---------	----------	---------------	--------

Description	All Spee	Unite	
Description	Min	Max	Units
put Times			
The time from the rising transition on the CCLK pin to a signal transition at the BUSY pin	-	12.0	ns
The time from the setup of data at the D0-D7 pins to the active edge the CCLK pin	11.0	-	ns
Setup time on the CSI_B pin before the active edge of the CCLK pin	10.0	-	ns
Setup time on the RDWR_B pin before active edge of the CCLK pin	23.0	-	ns
The time from the active edge of the CCLK pin to the point when data is last held at the D0-D7 pins	1.0	-	ns
The time from the active edge of the CCLK pin to the point when a logic level is last held at the CSO_B pin	0	-	ns
The time from the active edge of the CCLK pin to the point when a logic level is last held at the RDWR_B pin	0	-	ns
	The time from the rising transition on the CCLK pin to a signal transition at the BUSY pin The time from the setup of data at the D0-D7 pins to the active edge the CCLK pin Setup time on the CSI_B pin before the active edge of the CCLK pin Setup time on the RDWR_B pin before active edge of the CCLK pin The time from the active edge of the CCLK pin The time from the active edge of the CCLK pin to the point when data is last held at the D0-D7 pins The time from the active edge of the CCLK pin to the point when a logic level is last held at the CSO_B pin The time from the active edge of the CCLK pin to the point when a logic level is last held	Description Min Min Min Dut Times The time from the rising transition on the CCLK pin to a signal transition at the BUSY pin - The time from the setup of data at the D0-D7 pins to the active edge the CCLK pin 11.0 Setup time on the CSI_B pin before the active edge of the CCLK pin 10.0 Setup time on the RDWR_B pin before active edge of the CCLK pin 23.0 The time from the active edge of the CCLK pin to the point when data is last held at the D0-D7 pins 1.0 The time from the active edge of the CCLK pin to the point when a logic level is last held 0 The time from the active edge of the CCLK pin to the point when a logic level is last held 0 The time from the active edge of the CCLK pin to the point when a logic level is last held 0	Min Max Dut Times The time from the rising transition on the CCLK pin to a signal transition at the BUSY pin 12.0 The time from the setup of data at the D0-D7 pins to the active edge the CCLK pin 11.0 - Setup time on the CSI_B pin before the active edge of the CCLK pin 10.0 - Setup time on the RDWR_B pin before active edge of the CCLK pin 23.0 - The time from the active edge of the CCLK pin to the point when data is last held at the D0-D7 pins 1.0 - The time from the active edge of the CCLK pin to the point when a logic level is last held 0 - The time from the active edge of the CCLK pin to the point when a logic level is last held 0 - The time from the active edge of the CCLK pin to the point when a logic level is last held 0 -

Table 141: PQ208 Package Pinout (Cont'd)

Bank	XC3S250E XC3S500E Pin Name	PQ208 Pin	Туре
3	IO_L14P_3	P41	I/O
3	IO_L15N_3	P48	I/O
3	IO_L15P_3	P47	I/O
3	IO_L16N_3	P50	I/O
3	IO_L16P_3	P49	I/O
3	IP	P6	INPUT
3	IP	P14	INPUT
3	IP	P26	INPUT
3	IP	P32	INPUT
3	IP	P43	INPUT
3	IP	P51	INPUT
3	IP/VREF_3	P20	VREF
3	VCCO_3	P21	VCCO
3	VCCO_3	P38	VCCO
3	VCCO_3	P46	VCCO
GND	GND	P10	GND
GND	GND	P17	GND
GND	GND	P27	GND
GND	GND	P37	GND
GND	GND	P52	GND
GND	GND	P53	GND
GND	GND	P70	GND
GND	GND	P79	GND
GND	GND	P85	GND
GND	GND	P95	GND
GND	GND	P105	GND
GND	GND	P121	GND
GND	GND	P131	GND
GND	GND	P141	GND
GND	GND	P156	GND
GND	GND	P173	GND
GND	GND	P182	GND
GND	GND	P188	GND
GND	GND	P198	GND
GND	GND	P208	GND
VCCAUX	DONE	P104	CONFIG
VCCAUX	PROG_B	P1	CONFIG
VCCAUX	ТСК	P158	JTAG
VCCAUX	TDI	P207	JTAG
VCCAUX	TDO	P157	JTAG
VCCAUX	TMS	P155	JTAG
VCCAUX	VCCAUX	P7	VCCAUX
	1		

Table 141: PQ208 Package Pinout (Cont'd)

Bank	XC3S250E XC3S500E Pin Name	PQ208 Pin	Туре
VCCAUX	VCCAUX	P66	VCCAUX
VCCAUX	VCCAUX	P92	VCCAUX
VCCAUX	VCCAUX	P111	VCCAUX
VCCAUX	VCCAUX	P149	VCCAUX
VCCAUX	VCCAUX	P166	VCCAUX
VCCAUX	VCCAUX	P195	VCCAUX
VCCINT	VCCINT	P13	VCCINT
VCCINT	VCCINT	P67	VCCINT
VCCINT	VCCINT	P117	VCCINT
VCCINT	VCCINT	P170	VCCINT

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S500E Pin Name	XC3S1200E Pin Name	FT256 Ball	Туре
0	IO_L12P_0	IO_L12P_0	IO_L12P_0	E8	I/O
0	N.C. (�)	IO_L13N_0	IO_L13N_0	C7	250E: N.C. 500E: I/O 1200E: I/O
0	N.C. (�)	IO_L13P_0	IO_L13P_0	B7	250E: N.C. 500E: I/O 1200E: I/O
0	IO_L14N_0/VREF_0	IO_L14N_0/VREF_0	IO_L14N_0/VREF_0	D7	VREF
0	IO_L14P_0	IO_L14P_0	IO_L14P_0	E7	I/O
0	IO_L15N_0	IO_L15N_0	IO_L15N_0	D6	I/O
0	IO_L15P_0	IO_L15P_0	IO_L15P_0	C6	I/O
0	IO_L17N_0/VREF_0	IO_L17N_0/VREF_0	IO_L17N_0/VREF_0	A4	VREF
0	IO_L17P_0	IO_L17P_0	IO_L17P_0	A5	I/O
0	IO_L18N_0	IO_L18N_0	IO_L18N_0	C4	I/O
0	IO_L18P_0	IO_L18P_0	IO_L18P_0	C5	I/O
0	IO_L19N_0/HSWAP	IO_L19N_0/HSWAP	IO_L19N_0/HSWAP	B3	DUAL
0	IO_L19P_0	IO_L19P_0	IO_L19P_0	C3	I/O
0	IP	IP	IP	A3	INPUT
0	IP	IP	IP	C13	INPUT
0	IP_L02N_0	IP_L02N_0	IP_L02N_0	C12	INPUT
0	IP_L02P_0	IP_L02P_0	IP_L02P_0	D12	INPUT
0	IP_L07N_0	IP_L07N_0	IP_L07N_0	C9	INPUT
0	IP_L07P_0	IP_L07P_0	IP_L07P_0	C10	INPUT
0	IP_L10N_0/GCLK9	IP_L10N_0/GCLK9	IP_L10N_0/GCLK9	B8	GCLK
0	IP_L10P_0/GCLK8	IP_L10P_0/GCLK8	IP_L10P_0/GCLK8	A8	GCLK
0	IP_L16N_0	IP_L16N_0	IP_L16N_0	E6	INPUT
0	IP_L16P_0	IP_L16P_0	IP_L16P_0	D5	INPUT
0	VCCO_0	VCCO_0	VCCO_0	B5	VCCO
0	VCCO_0	VCCO_0	VCCO_0	B12	VCCO
0	VCCO_0	VCCO_0	VCCO_0	F7	VCCO
0	VCCO_0	VCCO_0	VCCO_0	F10	VCCO
1	IO_L01N_1/A15	IO_L01N_1/A15	IO_L01N_1/A15	R15	DUAL
1	IO_L01P_1/A16	IO_L01P_1/A16	IO_L01P_1/A16	R16	DUAL
1	IO_L02N_1/A13	IO_L02N_1/A13	IO_L02N_1/A13	P15	DUAL
1	IO_L02P_1/A14	IO_L02P_1/A14	IO_L02P_1/A14	P16	DUAL
1	N.C. (�)	IO_L03N_1/VREF_1	IO_L03N_1/VREF_1	N15	250E: N.C. 500E: VREF 1200E: VREF
1	N.C. (�)	IO_L03P_1	IO_L03P_1	N14	250E: N.C. 500E: I/O 1200E: I/O
1	IO_L04N_1/VREF_1	IO_L04N_1/VREF_1	IO_L04N_1/VREF_1	M16	VREF
1	IO_L04P_1	IO_L04P_1	IO_L04P_1	N16	I/O
1	N.C. (�)	IO_L05N_1	IO_L05N_1	L13	250E: N.C. 500E: I/O 1200E: I/O

www.xilinx.com

Table 143: FT256 Package Pinout (Cont'd)

Bank	XC3S250E Pin Name	XC3S500E Pin Name	XC3S1200E Pin Name	FT256 Ball	Туре
2	N.C. (�)	IO_L14N_2/VREF_2	IO_L14N_2/VREF_2	R10	250E: N.C. 500E: VREF 1200E: VREF
2	N.C. (�)	IO_L14P_2	IO_L14P_2	P10	250E: N.C. 500E: I/O 1200E: I/O
2	IO_L15N_2	IO_L15N_2	IO_L15N_2	M10	I/O
2	IO_L15P_2	IO_L15P_2	IO_L15P_2	N10	I/O
2	IO_L16N_2/A22	IO_L16N_2/A22	IO_L16N_2/A22	P11	DUAL
2	IO_L16P_2/A23	IO_L16P_2/A23	IO_L16P_2/A23	R11	DUAL
2	IO_L18N_2/A20	IO_L18N_2/A20	IO_L18N_2/A20	N12	DUAL
2	IO_L18P_2/A21	IO_L18P_2/A21	IO_L18P_2/A21	P12	DUAL
2	IO_L19N_2/VS1/A18	IO_L19N_2/VS1/A18	IO_L19N_2/VS1/A18	R13	DUAL
2	IO_L19P_2/VS2/A19	IO_L19P_2/VS2/A19	IO_L19P_2/VS2/A19	T13	DUAL
2	IO_L20N_2/CCLK	IO_L20N_2/CCLK	IO_L20N_2/CCLK	R14	DUAL
2	IO_L20P_2/VS0/A17	IO_L20P_2/VS0/A17	IO_L20P_2/VS0/A17	P14	DUAL
2	IP	IP	IP	T2	INPUT
2	IP	IP	IP	T14	INPUT
2	IP_L02N_2	IP_L02N_2	IP_L02N_2	R3	INPUT
2	IP_L02P_2	IP_L02P_2	IP_L02P_2	Т3	INPUT
2	IP_L08N_2/VREF_2	IP_L08N_2/VREF_2	IP_L08N_2/VREF_2	T7	VREF
2	IP_L08P_2	IP_L08P_2	IP_L08P_2	R7	INPUT
2	IP_L11N_2/M2/GCLK1	IP_L11N_2/M2/GCLK1	IP_L11N_2/M2/GCLK1	R9	DUAL/GCLK
2	IP_L11P_2/RDWR_B/ GCLK0	IP_L11P_2/RDWR_B/ GCLK0	IP_L11P_2/RDWR_B/ GCLK0	Т9	DUAL/GCLK
2	IP_L17N_2	IP_L17N_2	IP_L17N_2	M11	INPUT
2	IP_L17P_2	IP_L17P_2	IP_L17P_2	N11	INPUT
2	VCCO_2	VCCO_2	VCCO_2	L7	VCCO
2	VCCO_2	VCCO_2	VCCO_2	L10	VCCO
2	VCCO_2	VCCO_2	VCCO_2	R5	VCCO
2	VCCO_2	VCCO_2	VCCO_2	R12	VCCO
3	IO_L01N_3	IO_L01N_3	IO_L01N_3	B2	I/O
3	IO_L01P_3	IO_L01P_3	IO_L01P_3	B1	I/O
3	IO_L02N_3/VREF_3	IO_L02N_3/VREF_3	IO_L02N_3/VREF_3	C2	VREF
3	IO_L02P_3	IO_L02P_3	IO_L02P_3	C1	I/O
3	IO_L03N_3	IO_L03N_3	IO_L03N_3	E4	I/O
3	IO_L03P_3	IO_L03P_3	IO_L03P_3	E3	I/O
3	N.C. (�)	IO_L04N_3/VREF_3	IO_L04N_3/VREF_3	F4	250E: N.C. 500E: VREF 1200E: VREF
3	N.C. (�)	IO_L04P_3	IO_L04P_3	F3	250E: N.C. 500E: I/O 1200E: I/O
3	IO_L05N_3	IO_L05N_3	IO_L05N_3	E1	I/O
3	IO_L05P_3	IO_L05P_3	IO_L05P_3	D1	I/O
3	IO_L06N_3	IO_L06N_3	IO_L06N_3	G4	I/O

User I/Os by Bank

Table 144, Table 145, and Table 146 indicate how the available user-I/O pins are distributed between the four I/O banks on the FT256 package.

The XC3S250E FPGA in the FT256 package has 18 unconnected balls, labeled with an "N.C." type. These pins are also indicated with the black diamond (♦) symbol in Figure 85.

Table 144: User I/Os Per Bank on XC3S250E in the FT256 Package

Package	I/O Bank	Maximum I/O	All Possible I/O Pins by Type					
Edge	I/O Bank		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾	
Тор	0	44	20	10	1	5	8	
Right	1	42	10	7	21	4	0(2)	
Bottom	2	44	8	9	24	3	0(2)	
Left	3	42	24	7	0	3	8	
TOTAL		172	62	33	46	15	16	

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 145: User I/Os Per Bank on XC3S500E in the FT256 Package

Package	1/O Bonk	Maximum I/O	All Possible I/O Pins by Type					
Edge	I/O Bank		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾	
Тор	0	46	22	10	1	5	8	
Right	1	48	15	7	21	5	0 ⁽²⁾	
Bottom	2	48	11	9	24	4	0(2)	
Left	3	48	28	7	0	5	8	
TOTAL		190	76	33	46	19	16	

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 146: User I/Os Per Bank on XC3S1200E in the FT256 Package

Package	I/O Bonk	Maximum I/O	All Possible I/O Pins by Type					
Edge	I/O Bank		I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾	
Тор	0	46	24	8	1	5	8	
Right	1	48	14	8	21	5	0(2)	
Bottom	2	48	13	7	24	4	0(2)	
Left	3	48	27	8	0	5	8	
TOTAL		190	78	31	46	19	16	

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Table 148: FG320 Package Pinout (Cont'd)

Bank	XC3S500E Pin Name	XC3S1200E Pin Name	XC3S1600E Pin Name	FG320 Ball	Туре
3	N.C. (�)	IO_L04N_3	IO_L04N_3	E3	500E: N.C. 1200E: I/O 1600E: I/O
3	N.C. (�)	IO_L04P_3	IO_L04P_3	E4	500E: N.C. 1200E: I/O 1600E: I/O
3	IO_L05N_3	IO_L05N_3	IO_L05N_3	F2	I/O
3	IO_L05P_3	IO_L05P_3	IO_L05P_3	F1	I/O
3	IO_L06N_3/VREF_3	IO_L06N_3/VREF_3	IO_L06N_3/VREF_3	G4	VREF
3	IO_L06P_3	IO_L06P_3	IO_L06P_3	G3	I/O
3	IO_L07N_3	IO_L07N_3	IO_L07N_3	G5	I/O
3	IO_L07P_3	IO_L07P_3	IO_L07P_3	G6	I/O
3	IO_L08N_3	IO_L08N_3	IO_L08N_3	H5	I/O
3	IO_L08P_3	IO_L08P_3	IO_L08P_3	H6	I/O
3	IO_L09N_3	IO_L09N_3	IO_L09N_3	H3	I/O
3	IO_L09P_3	IO_L09P_3	IO_L09P_3	H4	I/O
3	IO_L10N_3	IO_L10N_3	IO_L10N_3	H1	I/O
3	IO_L10P_3	IO_L10P_3	IO_L10P_3	H2	I/O
3	IO_L11N_3/LHCLK1	IO_L11N_3/LHCLK1	IO_L11N_3/LHCLK1	J4	LHCLK
3	IO_L11P_3/LHCLK0	IO_L11P_3/LHCLK0	IO_L11P_3/LHCLK0	J5	LHCLK
3	IO_L12N_3/LHCLK3/ IRDY2	IO_L12N_3/LHCLK3/ IRDY2	IO_L12N_3/LHCLK3/ IRDY2	J2	LHCLK
3	IO_L12P_3/LHCLK2	IO_L12P_3/LHCLK2	IO_L12P_3/LHCLK2	J1	LHCLK
3	IO_L13N_3/LHCLK5	IO_L13N_3/LHCLK5	IO_L13N_3/LHCLK5	K4	LHCLK
3	IO_L13P_3/LHCLK4/ TRDY2	IO_L13P_3/LHCLK4/ TRDY2	IO_L13P_3/LHCLK4/ TRDY2	K3	LHCLK
3	IO_L14N_3/LHCLK7	IO_L14N_3/LHCLK7	IO_L14N_3/LHCLK7	K5	LHCLK
3	IO_L14P_3/LHCLK6	IO_L14P_3/LHCLK6	IO_L14P_3/LHCLK6	K6	LHCLK
3	IO_L15N_3	IO_L15N_3	IO_L15N_3	L2	I/O
3	IO_L15P_3	IO_L15P_3	IO_L15P_3	L1	I/O
3	IO_L16N_3	IO_L16N_3	IO_L16N_3	L4	I/O
3	IO_L16P_3	IO_L16P_3	IO_L16P_3	L3	I/O
3	IO_L17N_3/VREF_3	IO_L17N_3/VREF_3	IO_L17N_3/VREF_3	L5	VREF
3	IO_L17P_3	IO_L17P_3	IO_L17P_3	L6	I/O
3	IO_L18N_3	IO_L18N_3	IO_L18N_3	M3	I/O
3	IO_L18P_3	IO_L18P_3	IO_L18P_3	M4	I/O
3	IO_L19N_3	IO_L19N_3	IO_L19N_3	M6	I/O
3	IO_L19P_3	IO_L19P_3	IO_L19P_3	M5	I/O
3	IO_L20N_3	IO_L20N_3	IO_L20N_3	N5	I/O
3	IO_L20P_3	IO_L20P_3	IO_L20P_3	N4	I/O
3	IO_L21N_3	IO_L21N_3	IO_L21N_3	P1	I/O
3	IO_L21P_3	IO_L21P_3	IO_L21P_3	P2	I/O
3	N.C. (�)	IO_L22N_3	IO_L22N_3	P4	500E: N.C. 1200E: I/O 1600E: I/O

www.xilinx.com

	Bank 0									
11	12	13	14	15	16	17	18	19	20	1
GND	I/O	I/O L09N_0 VREF_0	I/O L09P_0	I/O L06N_0	I/O L04P_0	I/O L04N_0	I/O L03N_0 VREF_0	I/O L03P_0	GND	Α
INPUT L14N_0	INPUT L14P_0	I/O L10N_0	GND	I/O L06P_0	VCCO_0	I/O L01N_0	INPUT	TDO	INPUT	В
I/O VREF_0	I/O L12N_0	I/O L10P_0	I/O L07N_0	INPUT L05P_0	INPUT L02N_0	I/O L01P_0	GND	I/O L30N_1 LDC2	I/O L30P_1 LDC1	с
VCCAUX	I/O L12P_0	VCCO_0	I/O L07P_0	INPUT L05N_0	INPUT L02P_0	тск	I/O L29N_1 LDC0	VCCO_1	I/O L28N_1	D
I/O L16P_0 GCLK6	I/O L13N_0	I/O	INPUT L08N_0	INPUT L08P_0	I/O	тмѕ	I/O L29P_1 HDC	INPUT VREF_1	I/O L28P_1	E
I/O L15P_0 GCLK4	I/O L13P_0	I/O	I/O	GND	I/O L25P_1	I/O L27P_1	I/O L27N_1	I/O L26N_1	I/O L26P_1	F
I/O L15N_0 GCLK5	GND	INPUT L11P_0	INPUT L11N_0	INPUT	I/O L25N_1	VCCO_1	INPUT	GND	I/O L24P_1	G
VCCINT	VCCAUX	VCCINT	INPUT	I/O L22N_1	I/O L22P_1	I/O L23P_1	I/O L23N_1	I/O L21N_1	I/O L24N_1 VREF_1	н
GND	VCCINT	I/O L19N_1 A0	I/O L19P_1	INPUT	I/O L18P_1 A2	I/O L20N_1	I/O L20P_1	I/O L21P_1	I/O L17N_1 A3 RHCLK7	J
VCCINT	GND	L16P_1 A6 RHCLK4	I/O L16N_1 A5 RHCLK5	VCCO_1	I/O L18N_1 A1	GND	INPUT VREF_1	VCCO_1	I/O L17P_1 A4 RHCLK6	K F
GND	VCCINT	GND	I/O L15N_1 A7 RHCLK3 TRDY1	I/O L15P_1 A8 RHCLK2	I/O L14N_1 A9 RHCLK1	VCCAUX	INPUT	I/O L13N_1 VREF_1	GND	л Bank
VCCINT	GND	VCCINT	VCCAUX	I/O L11P_1	I/O L14P_1 A10 RHCLK0	I/O L12P_1 A12	I/O L12N_1 A11	I/O L13P_1	INPUT	М
I/O D5	VCCINT	GND	INPUT	I/O L11N_1	I/O L09P_1	VCCO_1	I/O L10P_1	I/O L10N_1	INPUT	N
INPUT L17P_2 RDWR_B GCLK0	INPUT L17N_2 M2 GCLK1	I/O	I/O L25N_2	INPUT	I/O L09N_1	I/O L07P_1	I/O L07N_1	GND	I/O L08N_1 VREF_1	Ρ
VCCO_2	INPUT L20P_2	1/0	I/O L25P_2	GND	INPUT	I/O L05P_1	I/O L05N_1	INPUT	I/O L08P_1	R
I/O M1	INPUT L20N_2	INPUT L23N_2 VREF_2	INPUT L23P_2	I/O L28N_2	INPUT	I/O L02P_1 A14	I/O L02N_1 A13	VCCO_1	I/O L06N_1	т
GND	I/O L21N_2	I/O L24N_2	VCCO_2	I/O L28P_2	I/O L30P_2 A21	I/O L01P_1 A16	I/O L01N_1 A15	I/O L03P_1	I/O L06P_1	U
I/O L18N_2 D1 GCLK3	I/O L21P_2	I/O L24P_2	INPUT L26N_2	INPUT L26P_2	I/O L30N_2 A20	DONE	GND	I/O L03N_1 VREF_1	I/O L04P_1	v
VCCO_2	I/O L22N_2 VREF_2	I/O L22P_2	GND	I/O	INPUT L29N_2	VCCO_2	I/O L31P_2 VS2 A19	I/O L32N_2 CCLK	I/O L04N_1	w
I/O L19P_2 M0	I/O L19N_2 DIN D0	I/O	I/O L27N_2 A22	I/O L27P_2 A23	INPUT L29P_2	I/O VREF_2	I/O L31N_2 VS1 A18	I/O L32P_2 VS0 A17	GND	Y
	Bank 2								DS312-4_09_101905	

FG400 Footprint

Right Half of Package (top view)

www.xilinx.com

Revision History

The following table shows the revision history for this document.

Date	Version	Revision					
03/01/05	1.0	Initial Xilinx release.					
03/21/05	1.1	Added XC3S250E in the CP132 package to Table 129. Corrected number of differential I/O pairs on CP132. Added pinout and footprint information for the CP132, FG400, and FG484 packages. Removed IRDY and TRDY pins from the VQ100, TQ144, and PQ208 packages.					
11/23/05	2.0	Corrected title of Table 153. Updated differential pair numbering for some pins in Bank 0 of the FG400 package, affecting Table 152 and Figure 87. Pin functionality and ball assignment were not affected. Added Package Thermal Characteristics section. Added package mass values to Table 125.					
03/22/06	3.0	Included I/O pins, not just input-only pins under the VREF description in Table 124. Clarified that some global clock inputs are Input-only pins in Table 124. Added information on the XC3S100E in the CP132 package, affecting Table 129, Table 130, Table 133, Table 134, Table 136, and Figure 81. Ball A12 on the XC3S1600E in the FG320 package a full I/O pin, not an Input-only pin. Corrected the I/O counts for the XC3S1600E in the FG320 package, affecting Table 129, Table 129, Table 130, Table 129, Table 129, Table 151, and Figure 86. Corrected pin type for XC3S1600E balls N14 and N15 in Table 148.					
05/19/06	3.1	Minor text edits.					
11/09/06	3.4	Added package thermal data for the XC3S100E in the CP132 package to Table 130. Corrected pin migration arrows for balls E17 and F4 between the XC3S500E and XC3S1600E in Table 151. Promoted Module 4 to Production status. Synchronized all modules to v3.4.					
03/16/07	3.5	Minor formatting changes.					
05/29/07	3.6	Corrected 'Lxx' to 'Lxxy' in Table 124. Noted that some GCLK and VREF pins are on INPUT pins in Table 124 and Table 129. Added link before Table 127 to Material Declaration Data Sheets.					
04/18/08	3.7	Added XC3S500E VQG100 package. Added Material Declaration Data Sheet links in Table 127. Updated Thermal Characteristics in Table 130. Updated links.					
08/26/09	3.8	Minor typographical updates.					
10/29/12	4.0	Added Notice of Disclaimer. This product is not recommended for new designs. Updated the XC3S250E-FT256 in Table 129.					

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.

CRITICAL APPLICATIONS DISCLAIMER

XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, "CRITICAL APPLICATIONS"). FURTHERMORE, XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL APPLICATIONS.