E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	1164
Number of Logic Elements/Cells	10476
Total RAM Bits	368640
Number of I/O	66
Number of Gates	500000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3s500e-4vqg100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Configuration

Spartan-3E FPGAs are programmed by loading configuration data into robust, reprogrammable, static CMOS configuration latches (CCLs) that collectively control all functional elements and routing resources. The FPGA's configuration data is stored externally in a PROM or some other non-volatile medium, either on or off the board. After applying power, the configuration data is written to the FPGA using any of seven different modes:

- Master Serial from a Xilinx Platform Flash PROM
- Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash
- Byte Peripheral Interface (BPI) Up or Down from an industry-standard x8 or x8/x16 parallel NOR Flash
- Slave Serial, typically downloaded from a processor
- Slave Parallel, typically downloaded from a processor
- Boundary Scan (JTAG), typically downloaded from a processor or system tester.

Furthermore, Spartan-3E FPGAs support MultiBoot configuration, allowing two or more FPGA configuration bitstreams to be stored in a single parallel NOR Flash. The FPGA application controls which configuration to load next and when to load it.

I/O Capabilities

The Spartan-3E FPGA SelectIO interface supports many popular single-ended and differential standards. Table 2 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination.

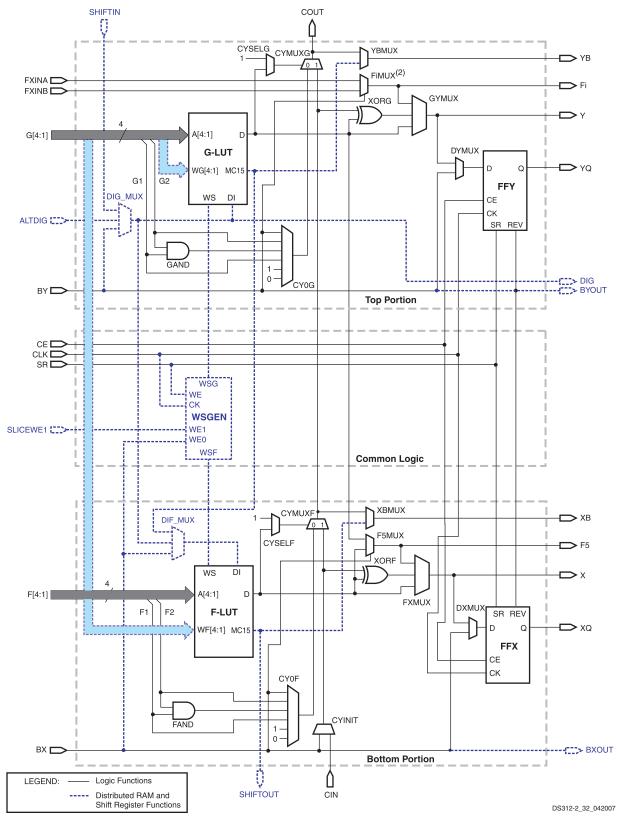
Spartan-3E FPGAs support the following single-ended standards:

- 3.3V low-voltage TTL (LVTTL)
- Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V
- 3V PCI at 33 MHz, and in some devices, <u>66 MHz</u>
- HSTL I and III at 1.8V, commonly used in memory applications
- SSTL I at 1.8V and 2.5V, commonly used for memory applications

Spartan-3E FPGAs support the following differential standards:

- LVDS
- Bus LVDS
- mini-LVDS
- RSDS
- Differential HSTL (1.8V, Types I and III)
- Differential SSTL (2.5V and 1.8V, Type I)
- 2.5V LVPECL inputs

Package	VQ1 VQG		CP [.] CPG	132 132		144 6144	PQ: PQC			256 1256		320 3320		400 6400	FG4 FGG	
Footprint Size (mm)	16 x	16	8 :	x 8	22 >	c 22	30.5 >	c 30.5	17 ג	k 17	19 >	c 19	21 >	k 21	23 x	x 23
Device	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff
XC3S100E	66⁽²⁾ 9(7)	30 (2)	83 (11)	35 (2)	108 (28)	40 (4)	-	-	-	-	-	-	-	-	-	-
XC3S250E	66 (7)	30 (2)	92 (7)	41 (2)	108 (28)	40 (4)	158 (32)	65 (5)	172 (40)	68 (8)	-	-	-	-	-	-
XC3S500E	66⁽³⁾ (7)	30 (2)	92 (7)	41 (2)	-	-	158 (32)	65 (5)	190 (41)	77 (8)	232 (56)	92 (12)	-	-	-	-
XC3S1200E	-	-	-	-	-	-	-	-	190 (40)	77 (8)	250 (56)	99 (12)	304 (72)	124 (20)	-	-
XC3S1600E	-	-	-	-	-	-	-	-	-	-	250 (56)	99 (12)	304 (72)	124 (20)	376 (82)	156 (21)


Table 2: Available User I/Os and Differential (Diff) I/O Pairs

Notes:

1. All Spartan-3E devices provided in the same package are pin-compatible as further described in Module 4, Pinout Descriptions.

2. The number shown in **bold** indicates the maximum number of I/O and input-only pins. The number shown in (*italics*) indicates the number of input-only pins.

3. The XC3S500E is available in the VQG100 Pb-free package and not the standard VQ100. The VQG100 and VQ100 pin-outs are identical and general references to the VQ100 will apply to the XC3S500E.

Notes:

- 1. Options to invert signal polarity as well as other options that enable lines for various functions are not shown.
- 2. The index i can be 6, 7, or 8, depending on the slice. The upper SLICEL has an F8MUX, and the upper SLICEM has an F7MUX. The lower SLICEL and SLICEM both have an F6MUX.

Figure 15: Simplified Diagram of the Left-Hand SLICEM

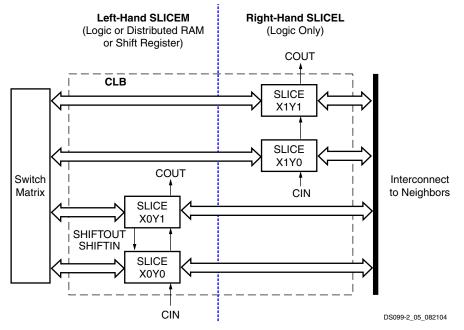
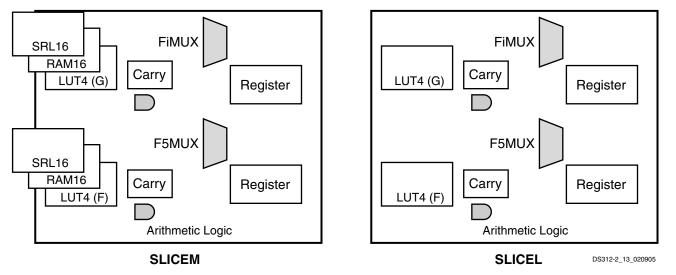
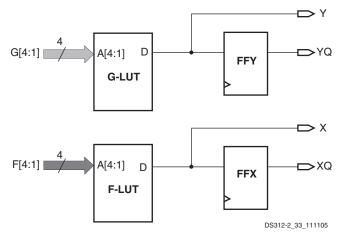


Figure 16: Arrangement of Slices within the CLB

Slice Location Designations

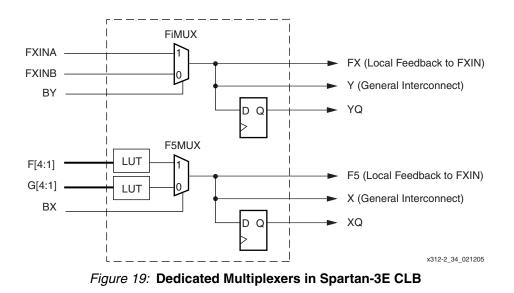

The Xilinx development software designates the location of a slice according to its X and Y coordinates, starting in the bottom left corner, as shown in Figure 14. The letter 'X' followed by a number identifies columns of slices, incrementing from the left side of the die to the right. The letter 'Y' followed by a number identifies the position of each slice in a pair as well as indicating the CLB row, incrementing from the bottom of the die. Figure 16 shows the CLB located in the lower left-hand corner of the die. The SLICEM always has an even 'X' number, and the SLICEL always has an odd 'X' number.

Slice Overview


A slice includes two LUT function generators and two storage elements, along with additional logic, as shown in Figure 17.

Both SLICEM and SLICEL have the following elements in common to provide logic, arithmetic, and ROM functions:

- Two 4-input LUT function generators, F and G
- Two storage elements
- Two wide-function multiplexers, F5MUX and FiMUX
- Carry and arithmetic logic



Wide Multiplexers

For additional information, refer to the "Using Dedicated Multiplexers" chapter in UG331.

Wide-function multiplexers effectively combine LUTs in order to permit more complex logic operations. Each slice has two of these multiplexers with F5MUX in the bottom portion of the slice and FiMUX in the top portion. The F5MUX multiplexes the two LUTs in a slice. The FiMUX multiplexes two CLB inputs which connect directly to the F5MUX and FiMUX results from the same slice or from other slices. See Figure 19.

Depending on the slice, FiMUX takes on the name F6MUX, F7MUX, or F8MUX. The designation indicates the number of inputs possible without restriction on the function. For example, an F7MUX can generate any function of seven inputs. Figure 20 shows the names of the multiplexers in each position in the Spartan-3E CLB. The figure also includes the direct connections within the CLB, along with the F7MUX connection to the CLB below.

Each mux can create logic functions of more inputs than indicated by its name. The F5MUX, for example, can generate any function of five inputs, with four inputs duplicated to two LUTs and the fifth input controlling the mux. Because each LUT can implement independent 2:1 muxes, the F5MUX can combine them to create a 4:1 mux, which is a six-input function. If the two LUTs have completely independent sets of inputs, some functions of all nine inputs can be implemented. Table 11 shows the connections for each multiplexer and the number of inputs possible for different types of functions.

Table 23: Block RAM Port Signals

Signal Description	Port A Signal Name	Port B Signal Name	Direction	Function
Address Bus	ADDRA	ADDRB	Input	The Address Bus selects a memory location for read or write operations. The width (w) of the port's associated data path determines the number of available address lines (r), as per Table 22.
				Whenever a port is enabled (ENA or ENB = High), address transitions must meet the data sheet setup and hold times with respect to the port clock (CLKA or CLKB), as shown in Table 103, page 138. This requirement must be met even if the RAM read output is of no interest.
Data Input Bus	DIA	DIB	Input	Data at the DI input bus is written to the RAM location specified by the address input bus (ADDR) during the active edge of the CLK input, when the clock enable (EN) and write enable (WE) inputs are active.
				It is possible to configure a port's DI input bus width (w-p) based on Table 22. This selection applies to both the DI and DO paths of a given port.
Parity Data Input(s)	DIPA	DIPB	Input	Parity inputs represent additional bits included in the data input path. Although referred to herein as "parity" bits, the parity inputs and outputs have no special functionality for generating or checking parity and can be used as additional data bits. The number of parity bits 'p' included in the DI (same as for the DO bus) depends on a port's total data path width (w). See Table 22.
Data Output Bus	DOA	DOB	Output	Data is written to the DO output bus from the RAM location specified by the address input bus, ADDR. See the DI signal description for DO port width configurations.
				Basic data access occurs on the active edge of the CLK when WE is inactive and EN is active. The DO outputs mirror the data stored in the address ADDR memory location. Data access with WE active if the WRITE_MODE attribute is set to the value: WRITE_FIRST, which accesses data after the write takes place. READ_FIRST accesses data before the write occurs. A third attribute, NO_CHANGE, latches the DO outputs upon the assertion of WE. See Block RAM Data Operations for details on the WRITE_MODE attribute.
Parity Data Output(s)	DOPA	DOPB	Output	Parity outputs represent additional bits included in the data input path. The number of parity bits 'p' included in the DI bus (same as for the DO bus) depends on a port's total data path width (w). See the DIP signal description for configuration details.
Write Enable	WEA	WEB	Input	When asserted together with EN, this input enables the writing of data to the RAM. When WE is inactive with EN asserted, read operations are still possible. In this case, a latch passes data from the addressed memory location to the DO outputs.
Clock Enable	ENA	ENB	Input	When asserted, this input enables the CLK signal to perform read and write operations to the block RAM. When inactive, the block RAM does not perform any read or write operations.
Set/Reset	SSRA	SSRB	Input	When asserted, this pin forces the DO output latch to the value of the SRVAL attribute. It is synchronized to the CLK signal.
Clock	CLKA	CLKB	Input	This input accepts the clock signal to which read and write operations are synchronized. All associated port inputs are required to meet setup times with respect to the clock signal's active edge. The data output bus responds after a clock-to-out delay referenced to the clock signal's active edge.

Delay-Locked Loop (DLL)

The most basic function of the DLL component is to eliminate clock skew. The main signal path of the DLL consists of an input stage, followed by a series of discrete delay elements or *steps*, which in turn leads to an output stage. This path together with logic for phase detection and control forms a system complete with feedback as shown in Figure 41. In Spartan-3E FPGAs, the DLL is implemented using a counter-based delay line. The DLL component has two clock inputs, CLKIN and CLKFB, as well as seven clock outputs, CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV as described in Table 28. The clock outputs drive simultaneously. Signals that initialize and report the state of the DLL are discussed in Status Logic.

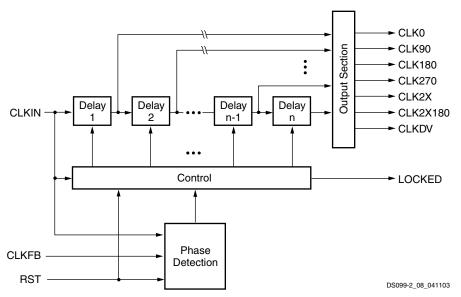


Figure 41: Simplified Functional Diagram of DLL

Table 28: DLL Signals

Signal	Direction	Description
CLKIN	Input	Receives the incoming clock signal. See Table 30, Table 31, and Table 32 for optimal external inputs to a DCM.
CLKFB	Input	Accepts either CLK0 or CLK2X as the feedback signal. (Set the CLK_FEEDBACK attribute accordingly).
CLK0	Output	Generates a clock signal with the same frequency and phase as CLKIN.
CLK90	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 90°.
CLK180	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 180°.
CLK270	Output	Generates a clock signal with the same frequency as CLKIN, phase-shifted by 270°.
CLK2X	Output	Generates a clock signal with the same phase as CLKIN, and twice the frequency.
CLK2X180	Output	Generates a clock signal with twice the frequency of CLKIN, and phase-shifted 180° with respect to CLK2X.
CLKDV	Output	Divides the CLKIN frequency by CLKDV_DIVIDE value to generate lower frequency clock signal that is phase-aligned to CLKIN.

The clock signal supplied to the CLKIN input serves as a reference waveform. The DLL seeks to align the rising-edge of feedback signal at the CLKFB input with the rising-edge of CLKIN input. When eliminating clock skew, the common approach to using the DLL is as follows: The CLK0 signal is passed through the clock distribution network that feeds all the registers it synchronizes. These registers are either

internal or external to the FPGA. After passing through the clock distribution network, the clock signal returns to the DLL via a feedback line called CLKFB. The control block inside the DLL measures the phase error between CLKFB and CLKIN. This phase error is a measure of the clock skew that the clock distribution network introduces. The control block activates the appropriate number of delay steps to

Daisy-Chaining

If the application requires multiple FPGAs with different configurations, then configure the FPGAs using a daisy chain, as shown in Figure 57. Daisy-chaining from a single SPI serial Flash PROM is supported in Stepping 1 devices. It is not supported in Stepping 0 devices. Use SPI Flash mode (M[2:0] = <0:0:1>) for the FPGA connected to the Platform Flash PROM and Slave Serial mode (M[2:0] = <1:1:1>) for all other FPGAs in the daisy-chain. After the master FPGA—the FPGA on the left in the diagram—finishes loading its configuration data from the SPI Flash PROM, the master device uses its DOUT output pin to supply data to the next device in the daisy-chain, on the falling CCLK edge.

Design Note

SPI mode daisy chains are supported only in Stepping 1 silicon versions.

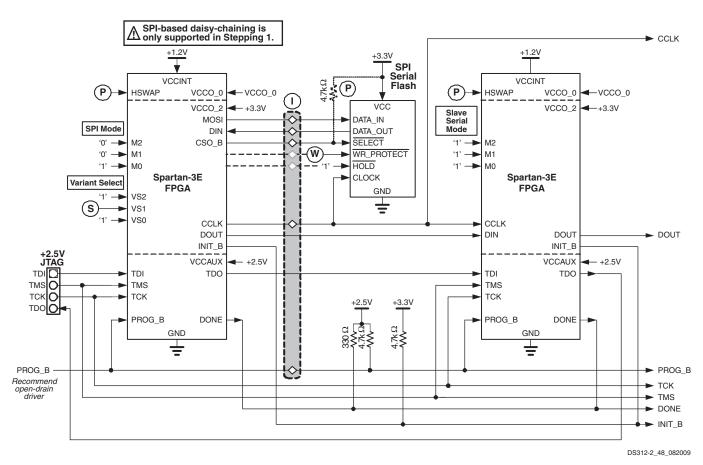


Figure 57: Daisy-Chaining from SPI Flash Mode (Stepping 1)

Programming Support

For successful daisy-chaining, the *DONE_cycle* configuration option must be set to cycle 5 or sooner. The default cycle is 4. See Table 69 and the Start-Up section for additional information.

U In production applications, the SPI Flash PROM is usually pre-programmed before it is mounted on the printed circuit board. The <u>Xilinx ISE development software</u> produces industry-standard programming files that can be used with third-party gang programmers. Consult your specific SPI Flash vendor for recommended production programming solutions. In-system programming support is available from some third-party PROM programmers using a socket adapter with attached wires. To gain access to the SPI Flash signals, drive the FPGA's PROG_B input Low with an open-drain driver. This action places all FPGA I/O pins, including those attached to the SPI Flash, in high-impedance (Hi-Z). If the HSWAP input is Low, the I/Os have pull-up resistors to the V_{CCO} input on their respective I/O bank. The external programming hardware then has direct access to the SPI Flash pins. The programming access points are highlighted in the gray box in Figure 53, Figure 54, and Figure 57.

Beginning with the Xilinx ISE 8.2i software release, the iMPACT programming utility provides direct, in-system prototype programming support for STMicro M25P-series

Pin Name	FPGA Direction	Description	During Configuration	After Configuration
DONE	Open-drain bidirectional I/O	FPGA Configuration Done . Low during configuration. Goes High when FPGA successfully completes configuration. Requires external 330Ω pull-up resistor to 2.5V.	Low indicates that the FPGA is not yet configured.	Pulled High via external pull-up. When High, indicates that the FPGA is successfully configured.
PROG_B	Input	Program FPGA . Active Low. When asserted Low for 500 ns or longer, forces the FPGA to restart its configuration process by clearing configuration memory and resetting the DONE and INIT_B pins once PROG_B returns High. Recommend external 4.7 k Ω pull-up resistor to 2.5V. Internal pull-up value may be weaker (see Table 78). If driving externally with a 3.3V output, use an open-drain or open-collector driver or use a current limiting series resistor.	Must be High to allow configuration to start.	Drive PROG_B Low and release to reprogram FPGA. Hold PROG_B to force FPGA I/O pins into Hi-Z, allowing direct programming access to Flash PROM pins.

Table 59: Byte-Wide Peripheral Interface (BPI) Connections (Cont'd)

Voltage Compatibility

V The FPGA's parallel Flash interface signals are within I/O Banks 1 and 2. The majority of parallel Flash PROMs use a single 3.3V supply voltage. Consequently, in most cases, the FPGA's VCCO_1 and VCCO_2 supply voltages must also be 3.3V to match the parallel Flash PROM. There are some 1.8V parallel Flash PROMs available and the FPGA interfaces with these devices if the VCCO_1 and VCCO_2 supplies are also 1.8V.

Power-On Precautions if PROM Supply is Last in Sequence

Like SPI Flash PROMs, parallel Flash PROMs typically require some amount of internal initialization time when the supply voltage reaches its minimum value.

The PROM supply voltage also connects to the FPGA's VCCO_2 supply input. In many systems, the PROM supply feeding the FPGA's VCCO_2 input is valid before the FPGA's other V_{CCINT} and V_{CCAUX} supplies, and consequently, there is no issue. However, if the PROM supply is last in the sequence, a potential race occurs between the FPGA and the parallel Flash PROM. See

Power-On Precautions if 3.3V Supply is Last in Sequence for a similar description of the issue for SPI Flash PROMs.

Supported Parallel NOR Flash PROM Densities

Table 60 indicates the smallest usable parallel Flash PROMto program a single Spartan-3E FPGA. Parallel Flashdensity is specified in bits but addressed as bytes. TheFPGA presents up to 24 address lines during configurationbut not all are required for single FPGA applications.Table 60 shows the minimum required number of addresslines between the FPGA and parallel Flash PROM. Theactual number of address line required depends on thedensity of the attached parallel Flash PROM.

A multiple-FPGA daisy-chained application requires a parallel Flash PROM large enough to contain the sum of the FPGA file sizes. An application can also use a larger-density parallel Flash PROM to hold additional data beyond just FPGA configuration data. For example, the parallel Flash PROM can also contain the application code for a MicroBlaze RISC processor core implemented within the Spartan-3E FPGA. After configuration, the MicroBlaze processor can execute directly from external Flash or can copy the code to other, faster system memory before executing the code.

Table 60: Number of Bits to Program a Spartan-3E FPGA and Smallest Parallel Flash PROM

Spartan-3E FPGA	Uncompressed File Sizes (bits)	Smallest Usable Parallel Flash PROM	Minimum Required Address Lines		
XC3S100E	581,344	1 Mbit	A[16:0]		
XC3S250E	1,353,728	2 Mbit	A[17:0]		
XC3S500E	2,270,208	4 Mbit	A[18:0]		
XC3S1200E	3,841,184	4 Mbit	A[18:0]		
XC3S1600E	5,969,696	8 Mbit	A[19:0]		

support byte-wide data. However, after configuration, the FPGA supports either x8 or x16 modes. In x16 mode, up to eight additional user I/O pins are required for the upper data bits, D[15:8].

Connecting a Spartan-3E FPGA to a x8/x16 Flash PROM is simple, but does require a precaution. Various Flash PROM vendors use slightly different interfaces to support both x8 and x16 modes. Some vendors (Intel, Micron, some STMicroelectronics devices) use a straightforward interface with pin naming that matches the FPGA connections. However, the PROM's A0 pin is wasted in x16 applications and a separate FPGA user-I/O pin is required for the D15 data line. Fortunately, the FPGA A0 pin is still available as a user I/O after configuration, even though it connects to the Flash PROM. Other vendors (AMD, Atmel, Silicon Storage Technology, some STMicroelectronics devices) use a pin-efficient interface but change the function of one pin, called IO15/A-1, depending if the PROM is in x8 or x16 mode. In x8 mode, BYTE# = 0, this pin is the least-significant address line. The A0 address line selects the halfword location. The A-1 address line selects the byte location. When in x16 mode, BYTE# = 1, the IO15/A-1 pin becomes the most-significant data bit, D15 because byte addressing is not required in this mode. Check to see if the Flash PROM has a pin named "IO15/A-1" or "DQ15/A-1". If so, be careful to connect x8/x16 Flash PROMs correctly, as shown in Table 63. Also, remember that the D[14:8] data connections require FPGA user I/O pins but that the D15 data is already connected for the FPGA's A0 pin.

FPGA Pin	Connection to Flash PROM with IO15/A-1 Pin	x8 Flash PROM Interface After FPGA Configuration	x16 Flash PROM Interface After FPGA Configuration		
LDC2	BYTE#	Drive LDC2 Low or leave unconnected and tie PROM BYTE# input to GND	Drive LCD2 High		
LDC1	OE#	Active-Low Flash PROM output-enable control	Active-Low Flash PROM output-enable control		
LDC0	CS#	Active-Low Flash PROM chip-select control	Active-Low Flash PROM chip-select control		
HDC	WE#	Flash PROM write-enable control	Flash PROM write-enable control		
A[23:1]	A[n:0]	A[n:0]	A[n:0]		
A0	IO15/A-1	IO15/A-1 is the least-significant address input	IO15/A-1 is the most-significant data line, IO15		
D[7:0]	IO[7:0]	IO[7:0]	IO[7:0]		
User I/O	Upper data lines IO[14:8] not required unless used as x16 Flash interface after configuration	Upper data lines IO[14:8] not required	IO[14:8]		

Table 63: FPGA Connections to Flash PROM with IO15/A-1 Pin

Some x8/x16 Flash PROMs have a long setup time requirement on the BYTE# signal. For the FPGA to configure correctly, the PROM must be in x8 mode with BYTE# = 0 at power-on or when the FPGA's PROG_B pin is pulsed Low. If required, extend the BYTE# setup time for a 3.3V PROM using an external 680 Ω pull-down resistor on the FPGA's LDC2 pin or by delaying assertion of the CSI_B select input to the FPGA.

Daisy-Chaining

If the application requires multiple FPGAs with different configurations, then configure the FPGAs using a daisy chain, as shown in Figure 59. Use BPI mode (M[2:0] = <0:1:0> or <0:1:1>) for the FPGA connected to the parallel NOR Flash PROM and Slave Parallel mode (M[2:0] = <1:1:0>) for all downstream FPGAs in the daisy-chain. If there are more than two FPGAs in the chain, then last FPGA in the chain can be from any Xilinx FPGA family. However, all intermediate FPGAs located in the

chain between the first and last FPGAs must from either the Spartan-3E or Virtex®-5 FPGA families.

After the master FPGA—the FPGA on the left in the diagram—finishes loading its configuration data from the parallel Flash PROM, the master device continues generating addresses to the Flash PROM and asserts its CSO_B output Low, enabling the next FPGA in the daisy-chain. The next FPGA then receives parallel configuration data from the Flash PROM. The master FPGA's CCLK output synchronizes data capture.

If HSWAP = 1, an external $4.7k\Omega$ pull-up resistor must be added on the CSO_B pin. If HSWAP = 0, no external pull-up is necessary.

Design Note

BPI mode daisy chain software support is available starting in ISE 8.2i.

http://www.xilinx.com/support/answers/23061.htm

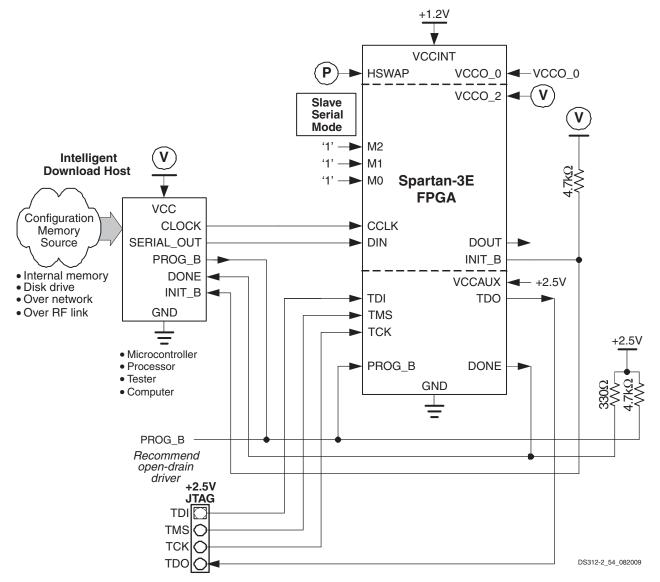
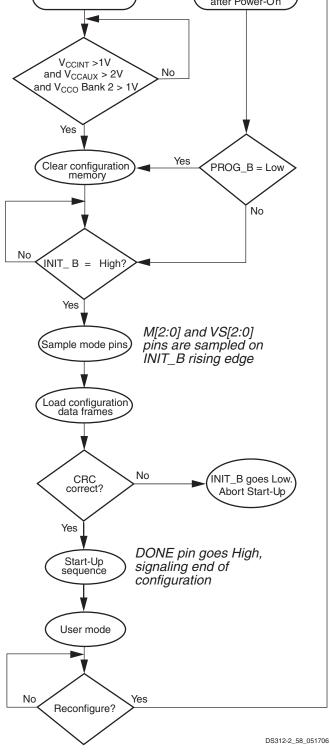


Figure 63: Slave Serial Configuration

The mode select pins, M[2:0], are sampled when the FPGA's INIT_B output goes High and must be at defined logic levels during this time. After configuration, when the FPGA's DONE output goes High, the mode pins are available as full-featured user-I/O pins.

P Similarly, the FPGA's HSWAP pin must be Low to enable pull-up resistors on all user-I/O pins or High to disable the pull-up resistors. The HSWAP control must remain at a constant logic level throughout FPGA configuration. After configuration, when the FPGA's DONE output goes High, the HSWAP pin is available as full-featured user-I/O pin and is powered by the VCCO_0 supply.


Voltage Compatibility

W Most Slave Serial interface signals are within the FPGA's I/O Bank 2, supplied by the VCCO_2 supply input. The VCCO_2 voltage can be 3.3V, 2.5V, or 1.8V to match the requirements of the external host, ideally 2.5V. Using 3.3V or 1.8V requires additional design considerations as the DONE and PROG_B pins are powered by the FPGA's 2.5V V_{CCAUX} supply. See <u>XAPP453</u>: *The 3.3V Configuration of Spartan-3 FPGAs* for additional information.

Daisy-Chaining

If the application requires multiple FPGAs with different configurations, then configure the FPGAs using a daisy chain, as shown in Figure 64. Use Slave Serial mode (M[2:0] = <1:1:>) for all FPGAs in the daisy-chain. After the lead FPGA is filled with its configuration data, the lead

EXILINX.

General DC Characteristics for I/O Pins

Table 78: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins

Symbol	Description	Test Conditions	Min	Тур	Мах	Units
۱ _L (3)	Leakage current at User I/O, Input-only, Dual-Purpose, and Dedicated pins	Driver is in a high-impedance state, V _{IN} = 0V or V _{CCO} max, sample-tested	-10	_	+10	μA
I _{RPU} (2)	Current through pull-up resistor at User I/O,	$V_{IN} = 0V, V_{CCO} = 3.3V$	-0.36	_	-1.24	mA
	Dual-Purpose, Input-only, and Dedicated pins	$V_{IN} = 0V, V_{CCO} = 2.5V$	-0.22	-	-0.80	mA
		$V_{IN} = 0V, V_{CCO} = 1.8V$	-0.10	-	-0.42	mA
		$V_{IN} = 0V, V_{CCO} = 1.5V$	-0.06	-	-0.27	mA
		$V_{IN} = 0V, V_{CCO} = 1.2V$	-0.04	-	-0.22	mA
R _{PU} (2)	Equivalent pull-up resistor value at User	$V_{IN} = 0V, V_{CCO} = 3.0V \text{ to } 3.465V$	2.4	_	10.8	kΩ
	I/O, Dual-Purpose, Input-only, and Dedicated pins (based on I _{RPU} per Note 2)	$V_{IN} = 0V, V_{CCO} = 2.3V \text{ to } 2.7V$	2.7	-	11.8	kΩ
		$V_{IN} = 0V, V_{CCO} = 1.7V \text{ to } 1.9V$	4.3	-	20.2	kΩ
		$V_{IN} = 0V, V_{CCO} = 1.4V \text{ to } 1.6V$	5.0	-	25.9	kΩ
		$V_{IN} = 0V, V_{CCO} = 1.14V$ to 1.26V	5.5	_	32.0	kΩ
I _{RPD} ⁽²⁾	Current through pull-down resistor at User I/O, Dual-Purpose, Input-only, and Dedicated pins	V _{IN} = V _{CCO}	0.10	_	0.75	mA
R _{PD} ⁽²⁾	Equivalent pull-down resistor value at User	$V_{IN} = V_{CCO} = 3.0V \text{ to } 3.465V$	4.0	_	34.5	kΩ
	I/O, Dual-Purpose, Input-only, and Dedicated pins (based on I _{RPD} per Note 2)	$V_{IN} = V_{CCO} = 2.3V$ to 2.7V	3.0	-	27.0	kΩ
	nor in the second se	$V_{IN} = V_{CCO} = 1.7V$ to 1.9V	2.3	_	19.0	kΩ
		$V_{IN} = V_{CCO} = 1.4V$ to 1.6V	1.8	_	16.0	kΩ
		$V_{IN} = V_{CCO} = 1.14V$ to 1.26V	1.5	_	12.6	kΩ
I _{REF}	V _{REF} current per pin	All V _{CCO} levels	-10	_	+10	μA
C _{IN}	Input capacitance	_	-	-	10	pF
R _{DT}	Resistance of optional differential termination circuit within a differential I/O pair. Not available on Input-only pairs.	$\begin{array}{c} V_{OCM} \mbox{ Min} \leq V_{ICM} \leq V_{OCM} \mbox{ Max} \\ V_{OD} \mbox{ Min} \leq V_{ID} \leq V_{OD} \mbox{ Max} \\ V_{CCO} = 2.5 V \end{array}$	_	120	_	Ω

Notes:

The numbers in this table are based on the conditions set forth in Table 77. 1.

2.

This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$. For single-ended signals that are placed on a differential-capable I/O, V_{IN} of -0.2V to -0.5V is supported but can cause increased leakage between the two pins. See *Parasitic Leakage* in <u>UG331</u>, *Spartan-3 Generation FPGA User Guide*. З.

I/O Timing

Table 86: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

				Speed		
Symbol	Description	Conditions	Device	-5	-4	Units
				Max ⁽²⁾	Max ⁽²⁾	
Clock-to-Outp	out Times					
TICKOFDCM	When reading from the Output Flip-Flop (OFF), the time from the active transition on the Global Clock pin to data appearing at the Output pin. The DCM is used.	LVCMOS25 ⁽³⁾ , 12 mA output drive, Fast slew rate, with DCM ⁽⁴⁾	XC3S100E	2.66	2.79	ns
			XC3S250E	3.00	3.45	ns
			XC3S500E	3.01	3.46	ns
			XC3S1200E	3.01	3.46	ns
			XC3S1600E	3.00	3.45	ns
T _{ICKOF}	When reading from OFF, the time from the	LVCMOS25 ⁽³⁾ , 12 mA	XC3S100E	5.60	5.92	ns
	active transition on the Global Clock pin to data appearing at the Output pin. The	output drive, Fast slew rate, without DCM	XC3S250E	4.91	5.43	ns
	DCM is not used.		XC3S500E	4.98	5.51	ns
			XC3S1200E	5.36	5.94	ns
			XC3S1600E	5.45	6.05	ns

Notes:

1. The numbers in this table are tested using the methodology presented in Table 95 and are based on the operating conditions set forth in Table 77 and Table 80.

- 2. For minimums, use the values reported by the Xilinx timing analyzer.
- 3. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, *add* the appropriate Input adjustment from Table 91. If the latter is true, *add* the appropriate Output adjustment from Table 94.
- 4. DCM output jitter is included in all measurements.

Table 105: Switching Characteristics for the DLL (Cont'd)

					Speed	Grade		
Symbol	Description	Description			-5		-4	
					Мах	Min	Max	-
Phase Alignment ⁽⁴⁾								
CLKIN_CLKFB_PHASE	Phase offset between the CLK inputs	Phase offset between the CLKIN and CLKFB inputs		-	±200	-	±200	ps
CLKOUT_PHASE_DLL	OUT_PHASE_DLL Phase offset between DLL CLK0 to CLK2X outputs (not CLK2X180)			-	±[1% of CLKIN period + 100]	-	±[1% of CLKIN period + 100]	ps
		All others		-	±[1% of CLKIN period + 200]	-	±[1% of CLKIN period + 200]	ps
Lock Time								
LOCK_DLL ⁽³⁾	When using the DLL alone: The time from deassertion at	$\begin{array}{l} 5 \text{ MHz} \leq F_{CLKIN} \\ \leq 15 \text{ MHz} \end{array}$	All	-	5	-	5	ms
	the DCM's Reset input to the rising transition at its LOCKED output. When the DCM is locked, the CLKIN and CLKFB signals are in phase	F _{CLKIN} > 15 MHz		-	600	-	600	μs
Delay Lines								
DCM_DELAY_STEP	Finest delay resolution		All	20	40	20	40	ps

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 77 and Table 104.

2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.

3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.

4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. Example: The data sheet specifies a maximum jitter of ±[1% of CLKIN period + 150]. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250 ps.

Digital Frequency Synthesizer (DFS)

Table 106: Recommended Operating Conditions for the DFS

Symbol								
		Description	-	5	-	Units		
				Min	Max	Min	Max	
Input Fre	quency Ranges ⁽²⁾							
F _{CLKIN}	CLKIN_FREQ_FX	Frequency for the CLKIN input		0.200	333 <mark>(4)</mark>	0.200	333 <mark>(4)</mark>	MHz
Input Clo	ck Jitter Tolerance ⁽³⁾							
CLKIN_C	YC_JITT_FX_LF	Cycle-to-cycle jitter at the	$F_{CLKFX} \le 150 \text{ MHz}$	-	±300	-	±300	ps
CLKIN_C	CLKIN_CYC_JITT_FX_HF CLKIN input, based on CLKFX output frequency		F _{CLKFX} > 150 MHz	-	±150	-	±150	ps
CLKIN_P	ER_JITT_FX	Period jitter at the CLKIN input		-	±1	-	±1	ns

Notes:

1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.

2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Table 104.

3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.

4. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM.

User I/Os by Bank

Table 132 indicates how the 66 available user-I/O pins are distributed between the four I/O banks on the VQ100 package.

Table 132: User I/Os Per Bank for XC3S100E, XC3S250E, and XC3S500E in the VQ100 Package

Package Edge	VO Bonk	Maximum	All Possible I/O Pins by Type						
	I/O Bank	I/O	I/O	INPUT	DUAL	VREF ⁽¹⁾	CLK ⁽²⁾		
Тор	0	15	5	0	1	1	8		
Right	1	15	6	0	0	1	8		
Bottom	2	19	0	0	18	1	0 ⁽²⁾		
Left	3	17	5	1	2	1	8		
TOTAL		66	16	1	21	4	24		

Notes:

1. Some VREF and CLK pins are on INPUT pins.

2. The eight global clock pins in this bank have optional functionality during configuration and are counted in the DUAL column.

Footprint Migration Differences

The production XC3S100E, XC3S250E, and XC3S500E FPGAs have identical footprints in the VQ100 package. Designs can migrate between the devices without further consideration.

CP132: 132-ball Chip-scale Package

The XC3S100E, XC3S250E and the XC3S500E FPGAs are available in the 132-ball chip-scale package, CP132. The devices share a common footprint for this package as shown in Table 133 and Figure 81.

Table 133 lists all the CP132 package pins. They are sorted by bank number and then by pin name. Pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each pin and the pin type, as defined earlier.

Physically, the D14 and K2 balls on the XC3S100E and XC3S250E FPGAs are not connected but should be connected to VCCINT to maintain density migration compatibility.

Similarly, the A4, C1, and P10 balls on the XC3S100E FPGA are not connected but should be connected to GND to maintain density migration compatibility.

The XC3S100E FPGA has four fewer BPI address pins, A[19:0], whereas the XC3S250E and XC3S500E support A[23:0].

An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx web site at:

http://www.xilinx.com/support/documentation/data_sheets/s3e_pin.zip

Pinout Table

 Table 133:
 CP132 Package Pinout

Bank	XC3S100E Pin Name	XC3S250E XC3S500E Pin Name	CP132 Ball	Туре
0	IO_L01N_0	IO_L01N_0	C12	I/O
0	IO_L01P_0	IO_L01P_0	A13	I/O
0	N.C. (�)	IO_L02N_0	A12	100E: N.C. Others: I/O
0	N.C. (�)	IO_L02P_0	B12	100E: N.C. Others: I/O
0	N.C. (�)	IO_L03N_0/VREF_0	B11	100E: N.C. Others: VREF (I/O)
0	IP	IO_L03P_0	C11	100E: INPUT Others: I/O
0	IO_L04N_0/GCLK5	IO_L04N_0/GCLK5	C9	GCLK
0	IO_L04P_0/GCLK4	IO_L04P_0/GCLK4	A10	GCLK
0	IO_L05N_0/GCLK7	IO_L05N_0/GCLK7	A9	GCLK
0	IO_L05P_0/GCLK6	IO_L05P_0/GCLK6	B9	GCLK
0	IO_L07N_0/GCLK11	IO_L07N_0/GCLK11	B7	GCLK
0	IO_L07P_0/GCLK10	IO_L07P_0/GCLK10	A7	GCLK
0	IO_L08N_0/VREF_0	IO_L08N_0/VREF_0	C6	VREF
0	IO_L08P_0	IO_L08P_0	B6	I/O
0	IO_L09N_0	IO_L09N_0	C5	I/O
0	IO_L09P_0	IO_L09P_0	B5	I/O
0	N.C. (�)	IO_L10N_0	C4	100E: N.C. Others: I/O
0	IP	IO_L10P_0	B4	100E: INPUT Others: I/O
0	IO_L11N_0/HSWAP	IO_L11N_0/HSWAP	B3	DUAL
0	IO_L11P_0	IO_L11P_0	A3	I/O
0	IP_L06N_0/GCLK9	IP_L06N_0/GCLK9	C8	GCLK
0	IP_L06P_0/GCLK8	IP_L06P_0/GCLK8	B8	GCLK
0	VCCO_0	VCCO_0	A6	VCCO

www.xilinx.com

Table 133: CP132 Package Pinout (Cont'd)

Bank	XC3S100E Pin Name	XC3S250E XC3S500E Pin Name	CP132 Ball	Туре
2	N.C. (♦)	IO_L08P_2/A23	N9	100E: N.C. Others: DUAL
2	N.C. (�)	IO_L09N_2/A20	M10	100E: N.C. Others: DUAL
2	N.C. (�)	IO_L09P_2/A21	N10	100E: N.C. Others: DUAL
2	IO_L10N_2/VS1/A18	IO_L10N_2/VS1/A18	M11	DUAL
2	IO_L10P_2/VS2/A19	IO_L10P_2/VS2/A19	N11	DUAL
2	IO_L11N_2/CCLK	IO_L11N_2/CCLK	N12	DUAL
2	IO_L11P_2/VS0/A17	IO_L11P_2/VS0/A17	P12	DUAL
2	IP/VREF_2	IP/VREF_2	N3	VREF
2	IP_L05N_2/M2/GCLK1	IP_L05N_2/M2/GCLK1	N6	DUAL/GCLK
2	IP_L05P_2/RDWR_B/GCLK0	IP_L05P_2/RDWR_B/GCLK0	M6	DUAL/GCLK
2	VCCO_2	VCCO_2	M8	VCCO
2	VCCO_2	VCCO_2	P3	VCCO
3	IO	IO	J3	I/O
3	IP/VREF_3	IO/VREF_3	K3	100E: VREF(INPUT) Others: VREF(I/O)
3	IO_L01N_3	IO_L01N_3	B1	I/O
3	IO_L01P_3	IO_L01P_3	B2	I/O
3	IO_L02N_3	IO_L02N_3	C2	I/O
3	IO_L02P_3	IO_L02P_3	C3	I/O
3	N.C. (♠)	IO_L03N_3	D1	100E: N.C. Others: I/O
3	IO	IO_L03P_3	D2	I/O
3	IO_L04N_3/LHCLK1	IO_L04N_3/LHCLK1	F2	LHCLK
3	IO_L04P_3/LHCLK0	IO_L04P_3/LHCLK0	F3	LHCLK
3	IO_L05N_3/LHCLK3/IRDY2	IO_L05N_3/LHCLK3/IRDY2	G1	LHCLK
3	IO_L05P_3/LHCLK2	IO_L05P_3/LHCLK2	F1	LHCLK
3	IO_L06N_3/LHCLK5	IO_L06N_3/LHCLK5	H1	LHCLK
3	IO_L06P_3/LHCLK4/TRDY2	IO_L06P_3/LHCLK4/TRDY2	G3	LHCLK
3	IO_L07N_3/LHCLK7	IO_L07N_3/LHCLK7	H3	LHCLK
3	IO_L07P_3/LHCLK6	IO_L07P_3/LHCLK6	H2	LHCLK
3	IO_L08N_3	IO_L08N_3	L2	I/O
3	IO_L08P_3	IO_L08P_3	L1	I/O
3	IO_L09N_3	IO_L09N_3	M1	I/O
3	IO_L09P_3	IO_L09P_3	L3	I/O
3	IP/VREF_3	IP/VREF_3	E2	VREF
3	VCCO_3	VCCO_3	E1	VCCO
3	VCCO_3	VCCO_3	J2	VCCO
GND	N.C. (GND)	GND	A4	GND
GND	GND	GND	A8	GND
GND	N.C. (GND)	GND	C1	GND
GND	GND	GND	C7	GND

www.xilinx.com

Table 133: CP132 Package Pinout (Cont'd)

Bank	XC3S100E Pin Name	XC3S250E XC3S500E Pin Name	CP132 Ball	Туре
GND	GND	GND	C10	GND
GND	GND	GND	E3	GND
GND	GND	GND	E14	GND
GND	GND	GND	G2	GND
GND	GND	GND	H14	GND
GND	GND	GND	J1	GND
GND	GND	GND	K12	GND
GND	GND	GND	M3	GND
GND	GND	GND	M7	GND
GND	GND	GND	P5	GND
GND	N.C. (GND)	GND	P10	GND
GND	GND	GND	P14	GND
VCCAUX	DONE	DONE	P13	CONFIG
VCCAUX	PROG_B	PROG_B	A1	CONFIG
VCCAUX	ТСК	ТСК	B13	JTAG
VCCAUX	TDI	TDI	A2	JTAG
VCCAUX	TDO	TDO	A14	JTAG
VCCAUX	TMS	TMS	B14	JTAG
VCCAUX	VCCAUX	VCCAUX	A5	VCCAUX
VCCAUX	VCCAUX	VCCAUX	E12	VCCAUX
VCCAUX	VCCAUX	VCCAUX	K1	VCCAUX
VCCAUX	VCCAUX	VCCAUX	P9	VCCAUX
VCCINT	VCCINT	VCCINT	A11	VCCINT
VCCINT	VCCINT	VCCINT	D3	VCCINT
VCCINT	N.C. (VCCINT)	VCCINT	D14	VCCINT
VCCINT	N.C. (VCCINT)	VCCINT	K2	VCCINT
VCCINT	VCCINT	VCCINT	L12	VCCINT
VCCINT	VCCINT	VCCINT	P2	VCCINT

Table 152: FG400 Package Pinout (Cont'd)

Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре
0	IP_L17P_0/GCLK8	H10	GCLK
0	IP_L20N_0	G9	INPUT
0	IP_L20P_0	G8	INPUT
0	IP_L23N_0	C8	INPUT
0	IP_L23P_0	D8	INPUT
0	IP_L26N_0	E6	INPUT
0	IP_L26P_0	E7	INPUT
0	IP_L29N_0	A4	INPUT
0	IP_L29P_0	A5	INPUT
0	VCCO_0	B4	VCCO
0	VCCO_0	B10	VCCO
0	VCCO_0	B16	VCCO
0	VCCO_0	D7	VCCO
0	VCCO_0	D13	VCCO
0	VCCO_0	F10	VCCO
1	IO_L01N_1/A15	U18	DUAL
1	IO_L01P_1/A16	U17	DUAL
1	IO_L02N_1/A13	T18	DUAL
1	IO_L02P_1/A14	T17	DUAL
1	IO_L03N_1/VREF_1	V19	VREF
1	IO_L03P_1	U19	I/O
1	IO_L04N_1	W20	I/O
1	IO_L04P_1	V20	I/O
1	IO_L05N_1	R18	I/O
1	IO_L05P_1	R17	I/O
1	IO_L06N_1	T20	I/O
1	IO_L06P_1	U20	I/O
1	IO_L07N_1	P18	I/O
1	IO_L07P_1	P17	I/O
1	IO_L08N_1/VREF_1	P20	VREF
1	IO_L08P_1	R20	I/O
1	IO_L09N_1	P16	I/O
1	IO_L09P_1	N16	I/O
1	IO_L10N_1	N19	I/O
1	IO_L10P_1	N18	I/O
1	IO_L11N_1	N15	I/O
1	IO_L11P_1	M15	I/O
1	IO_L12N_1/A11	M18	DUAL
1	IO_L12P_1/A12	M17	DUAL
1	IO_L13N_1/VREF_1	L19	VREF
1	IO_L13P_1	M19	I/O
1	IO_L14N_1/A9/RHCLK1	L16	RHCLK/ DUAL

Table 152: FG400 Package Pinout (Cont'd)

Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре
1	IO_L14P_1/A10/RHCLK0	M16	RHCLK/ DUAL
1	IO_L15N_1/A7/RHCLK3/ TRDY1	L14	RHCLK/ DUAL
1	IO_L15P_1/A8/RHCLK2	L15	RHCLK/ DUAL
1	IO_L16N_1/A5/RHCLK5	K14	RHCLK/ DUAL
1	IO_L16P_1/A6/RHCLK4/ IRDY1	K13	RHCLK/ DUAL
1	IO_L17N_1/A3/RHCLK7	J20	RHCLK/ DUAL
1	IO_L17P_1/A4/RHCLK6	K20	RHCLK/ DUAL
1	IO_L18N_1/A1	K16	DUAL
1	IO_L18P_1/A2	J16	DUAL
1	IO_L19N_1/A0	J13	DUAL
1	IO_L19P_1	J14	I/O
1	IO_L20N_1	J17	I/O
1	IO_L20P_1	J18	I/O
1	IO_L21N_1	H19	I/O
1	IO_L21P_1	J19	I/O
1	IO_L22N_1	H15	I/O
1	IO_L22P_1	H16	I/O
1	IO_L23N_1	H18	I/O
1	IO_L23P_1	H17	I/O
1	IO_L24N_1/VREF_1	H20	VREF
1	IO_L24P_1	G20	I/O
1	IO_L25N_1	G16	I/O
1	IO_L25P_1	F16	I/O
1	IO_L26N_1	F19	I/O
1	IO_L26P_1	F20	I/O
1	IO_L27N_1	F18	I/O
1	IO_L27P_1	F17	I/O
1	IO_L28N_1	D20	I/O
1	IO_L28P_1	E20	I/O
1	IO_L29N_1/LDC0	D18	DUAL
1	IO_L29P_1/HDC	E18	DUAL
1	IO_L30N_1/LDC2	C19	DUAL
1	IO_L30P_1/LDC1	C20	DUAL
1	IP	B20	INPUT
1	IP	G15	INPUT
1	IP	G18	INPUT
1	IP	H14	INPUT
1	IP	J15	INPUT

Table 152: FG400 Package Pinout (Cont'd)

Bank	XC3S1200E XC3S1600E Pin Name	FG400 Ball	Туре
1	IP	L18	INPUT
1	IP	M20	INPUT
1	IP	N14	INPUT
1	IP	N20	INPUT
1	IP	P15	INPUT
1	IP	R16	INPUT
1	IP	R19	INPUT
1	IP/VREF_1	E19	VREF
1	IP/VREF_1	K18	VREF
1	VCCO_1	D19	VCCO
1	VCCO_1	G17	VCCO
1	VCCO_1	K15	VCCO
1	VCCO_1	K19	VCCO
1	VCCO_1	N17	VCCO
1	VCCO_1	T19	VCCO
2	IO	P8	I/O
2	IO	P13	I/O
2	IO	R9	I/O
2	IO	R13	I/O
2	IO	W15	I/O
2	IO	Y5	I/O
2	IO	Y7	I/O
2	IO	Y13	I/O
2	IO/D5	N11	DUAL
2	IO/M1	T11	DUAL
2	IO/VREF_2	Y3	VREF
2	IO/VREF_2	Y17	VREF
2	IO_L01N_2/INIT_B	V4	DUAL
2	IO_L01P_2/CSO_B	U4	DUAL
2	IO_L03N_2/MOSI/CSI_B	V5	DUAL
2	IO_L03P_2/DOUT/BUSY	U5	DUAL
2	IO_L04N_2	Y4	I/O
2	IO_L04P_2	W4	I/O
2	IO_L06N_2	Т6	I/O
2	IO_L06P_2	T5	I/O
2	IO_L07N_2	U7	I/O
2	IO_L07P_2	V7	I/O
2	IO_L09N_2/VREF_2	R7	VREF
2	IO_L09P_2	T7	I/O
2	IO_L10N_2	V8	I/O
2	IO_L10P_2	W8	I/O
2	IO_L12N_2	U9	I/O
2	IO_L12P_2	V9	I/O

Table 152: FG400 Package Pinout (Cont'd)

2 IO_L15P_2/D7/GCLK12 W9 I 2 IO_L16N_2/D3/GCLK15 P10 I 2 IO_L16P_2/D4/GCLK14 R10 I 2 IO_L18P_2/D1/GCLK3 V11 I 2 IO_L18P_2/D2/GCLK2 V10 I	I/O I/O DUAL/ GCLK
2 IO_L15N_2/D6/GCLK13 W10 I 2 IO_L15P_2/D7/GCLK12 W9 I 2 IO_L16N_2/D3/GCLK15 P10 I 2 IO_L16P_2/D4/GCLK14 R10 I 2 IO_L18N_2/D1/GCLK3 V11 I 2 IO_L18N_2/D1/GCLK3 V11 I	DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL
2 IO_L15P_2/D7/GCLK12 W9 I 2 IO_L16N_2/D3/GCLK15 P10 I 2 IO_L16P_2/D4/GCLK14 R10 I 2 IO_L18P_2/D1/GCLK3 V11 I 2 IO_L18P_2/D2/GCLK2 V10 I	GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL
2 IO_L16N_2/D3/GCLK15 P10 I 2 IO_L16P_2/D4/GCLK14 R10 I 2 IO_L18N_2/D1/GCLK3 V11 I 2 IO_L18N_2/D2/GCLK2 V10 I	GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL
2 IO_L16P_2/D4/GCLK14 R10 I 2 IO_L18N_2/D1/GCLK3 V11 I 2 IO_L18P_2/D2/GCLK2 V10 I	GCLK DUAL/ GCLK DUAL/ GCLK DUAL/ GCLK DUAL
2 IO_L18N_2/D1/GCLK3 V11 I 2 IO_L18P_2/D2/GCLK2 V10 I	GCLK DUAL/ GCLK DUAL/ GCLK DUAL
2 IO_L18P_2/D2/GCLK2 V10 [GCLK DUAL/ GCLK DUAL
	GCLK DUAL
2 IO L19N 2/DIN/D0 Y12	
2 IO_L19P_2/M0 Y11	DUAL
2 IO_L21N_2 U12	I/O
2 IO_L21P_2 V12	I/O
2 IO_L22N_2/VREF_2 W12	VREF
2 IO_L22P_2 W13	I/O
2 IO_L24N_2 U13	I/O
2 IO_L24P_2 V13	I/O
2 IO_L25N_2 P14	I/O
2 IO_L25P_2 R14	I/O
2 IO_L27N_2/A22 Y14	DUAL
2 IO_L27P_2/A23 Y15	DUAL
2 IO_L28N_2 T15	I/O
2 IO_L28P_2 U15	I/O
2 IO_L30N_2/A20 V16	DUAL
2 IO_L30P_2/A21 U16	DUAL
2 IO_L31N_2/VS1/A18 Y18	DUAL
2 IO_L31P_2/VS2/A19 W18	DUAL
2 IO_L32N_2/CCLK W19	DUAL
2 IO_L32P_2/VS0/A17 Y19	DUAL
2 IP T16 I	NPUT
2 IP W3 I	NPUT
2 IP_L02N_2 Y2 I	NPUT
2 IP_L02P_2 W2 I	NPUT
	NPUT
	NPUT
	NPUT
2 IP_L08P_2 W6 I	NPUT
	NPUT
	NPUT
	VREF