

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RS08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	126 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-DIP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9rs08ka4cpj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MCU	Block Diagram
2		ssignments
3	Electr	rical Characteristics
	3.1	Introduction
	3.2	Parameter Classification
	3.3	Absolute Maximum Ratings
	3.4	Thermal Characteristics
	3.5	ESD Protection and Latch-Up Immunity7
	3.6	DC Characteristics
	3.7	Supply Current Characteristics
	3.8	External Oscillator (XOSC) Characteristics

	3.9	AC Characteristics
		3.9.1 Control Timing 19
		3.9.2 TPM/MTIM Module Timing
	3.10	Analog Comparator (ACMP) Electrical
	3.11	Internal Clock Source Characteristics
	3.12	ADC Characteristics
		Flash Specifications
4	Orde	ring Information
5	Mech	nanical Drawings

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision	Date	Description of Changes
1	1/22/2008	Initial public release
2	10/7/2008	Updated Figure 4 and Figure 10. Updated "How to Reach Us" information. Added 16-pin TSSOP package information.
3	11/4/2008	Updated operating voltage in Table 7.
4	6/11/2009	Added output voltage of high drive at 5 V, $I_{load} = 10$ mA in the Table 7.

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com

Reference Manual (MC9RS08KA8RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9RS08KA8 MCU.

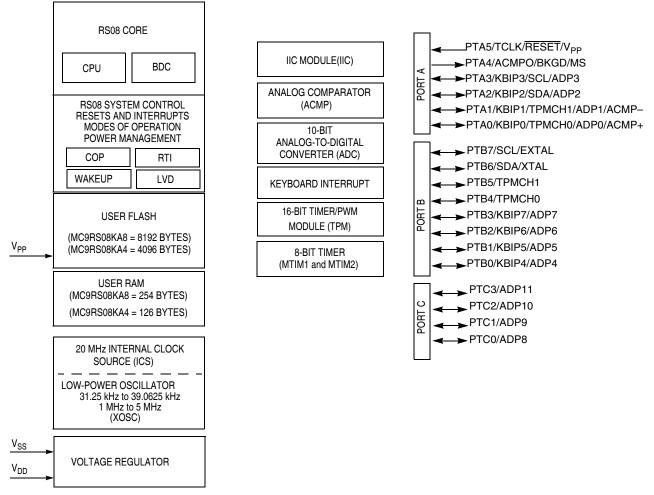


Figure 1. MC9RS08KA8 Series Block Diagram

2 Pin Assignments

This section shows the pin assignments in the packages available for the MC9RS08KA8 series.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this chapter.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	۱ _D	±25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table	3.	Absolute	Maximum	Ratings
IUNIO	•••	/10001010	maximani	namgo

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

² All functional non-supply pins are internally clamped to V_{SS} and V_{DD} except the $\overline{\text{RESET}}/V_{PP}$ pin which is internally clamped to V_{SS} only.

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H -40 to 85	°C
Maximum junction temperature	T _{JMAX}	105	°C
Thermal resistance 16-pin PDIP	θ_{JA}	80	°C/W
Thermal resistance 16-pin SOIC	θ_{JA}	112	°C/W

Rating	Symbol	Value	Unit
Thermal resistance 16-pin TSSOP	θ_{JA}	75	°C/W
Thermal resistance 20-pin PDIP	θ_{JA}	75	°C/W
Thermal resistance 20-pin SOIC	θ_{JA}	96	°C/W

Table 4. Thermal Characteristics (continued)

The average chip-junction temperature (TJ) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, °C

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C /W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between PD and TJ (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_{D} \times (T_{A} + 273^{\circ}C) + \theta_{JA} \times (PD)^{2}$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions must be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
Dody	Number of pulses per pin	—	3	_
Machine	Series resistance	R1	0	Ω
	Storage capacitance	С	200	pF
	Number of pulses per pin	—	3	_
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	—	7.5	V

 Table 5. ESD and Latch-up Test Conditions

Table 6. ESD and Latch-Up Protection Characterist	ics
---	-----

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	—	V
2	Machine model (MM)	V _{MM}	±200	—	V
3	Charge device model (CDM)	V _{CDM}	±500	—	V
4	Latch-up current at $T_A = 85^{\circ}C$ (applies to all pins except pin 9 PTC3/ADP11)	I _{LAT}	±100 ²	_	mA
	Latch-up current at T _A = 85°C (applies to pin 9 PTC3/ADP11)	I _{LAT}	±75 ³	_	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

 $^2~$ These pins meet JESD78A Class II (section 1.2) Level A (section 1.3) requirement of $\pm 100 m A.$

 $^3\,$ This pin meets JESD78A Class II (section 1.2) Level B (section 1.3) characterization to ± 75 mA. This pin is only present on 20 pin package types.

3.6 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Parameter	Symbol	Min	Typical	Max	Unit
Supply voltage (run, wait and stop modes.) 0 < f _{Bus} <10MHz V _{DD} rising V _{DD} falling	V _{DD}	2.0 1.8	_	5.5	v
Minimum RAM retention supply voltage applied to V_{DD}	V _{RAM}	0.8 ¹	—	—	V
Low-voltage Detection threshold (V _{DD} falling) (V _{DD} rising)	V _{LVD}	1.80 1.88	1.86 1.94	1.95 2.03	v
Power on RESET (POR) voltage	V _{POR} ¹	0.9	—	1.7	V

Figure 4. Typical I_{OH} vs. V_{DD} – V_{OH} V_{DD} = 5.5 V (High Drive)

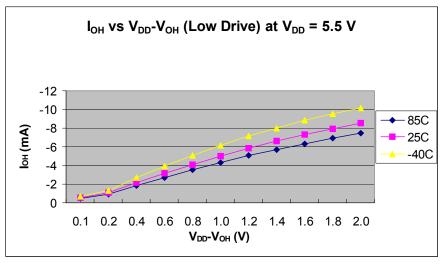


Figure 5. Typical I_{OH} vs. V_{DD}–V_{OH} V_{DD} = 5.5 V (Low Drive)

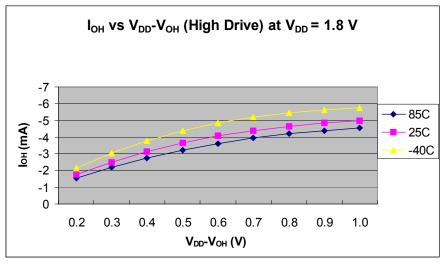


Figure 8. Typical I_{OH} vs. V_{DD} - V_{OH} V_{DD} = 1.8 V (High Drive)

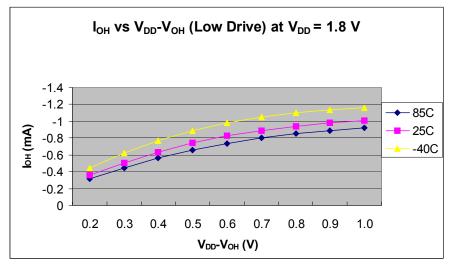


Figure 9. Typical I_{OH} vs. V_{DD}–V_{OH} V_{DD} = 1.8 V (Low Drive)

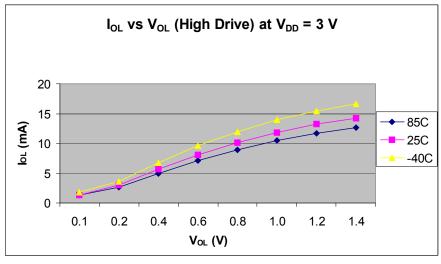


Figure 12. Typical I_{OL} vs. V_{DD} – V_{OL} V_{DD} = 3 V (High Drive)

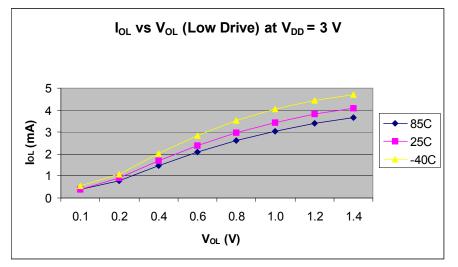


Figure 13. Typical I_{OL} vs. V_{DD} – V_{OL} V_{DD} = 3 V (Low Drive)

MC9RS08KA8 Series MCU Data Sheet, Rev. 4

Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Temp. (°C)
		5	0.42 mA	2 mA	25 85
Run supply current ³ measured at (f _{Bus} = 1.25 MHz)	RI _{DD1}	3	0.42 mA	_	25 85
		1.80	0.3 mA	_	25 85
		5	2.4 μA	5 μΑ 8 μΑ	25 85
Stop mode supply current	SI _{DD}	3	2 μΑ	_	25 85
		1.80	1.5 μA	_	25 85
		5	128 μA	150 μΑ 165 μΑ	25 85
ADC adder from stop ⁴	_	3	121 μA	_	25 85
		1.80	79 μA	_	25 85
		5	21 μA	22 μA	25 85
ACMP adder from stop (ACME = 1)	_	3	18.5 μA	_	25 85
		1.80	17.5 μA	_	25 85
		5	2.4 μA	2 μΑ	25 85
RTI adder from stop with 1 kHz clock source enabled ⁵	_	3	1.9 μA	_	25 85
		1.80	1.5 μA	_	25 85
		5	2.1 μA	2 μΑ	25 85
RTI adder from stop with 1 MHz external clock source reference enabled	_	3	1.6 μA	_	25 85
enableu		1.80	1.2 μA	_	25 85
		5	70 μA	80 μA	25 85
LVI adder from stop (LVDE=1 and LVDSE=1)	_	3	65 μA	_	25 85
		1.80	60 μA		25 85

¹ Typicals are measured at 25°C.

² Maximum value is measured at the nominal V_{DD} voltage times 10% tolerance. Values given here are preliminary estimates prior to completing characterization.

³ Not include any DC loads on port pins.
 ⁴ Required asynchronous ADC clock and LVD to be enabled.

⁵ Most customers are expected to find that auto-wakeup from stop can be used instead of the higher current wait mode. Wait mode typical is 1.3 mA at 3 V and 1 mA at 2 V with $f_{Bus} = 1$ MHz.

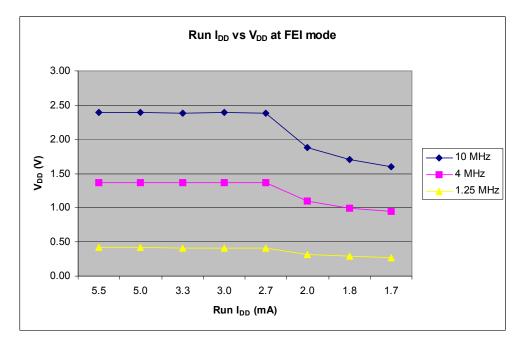
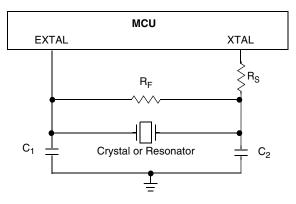


Figure 16. Typical Run I_{DD} vs. V_{DD} for FEI Mode

3.8 External Oscillator (XOSC) Characteristics

Table 9. Oscillator Electrical Specifications (Temperature Range = -40 to 125°C Ambient)


Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1, HGO = 1) FBELP mode High range (RANGE = 1, HGO = 0) FBELP mode	f _{lo} f _{hi} f _{hi-hgo} f _{hi-lp}	32 1 1 1		38.4 5 16 8	kHz MHz MHz MHz
2	D	Load capacitors	C _{1,} C ₂	r	crystal or re manufactur	er's	or
3	D	Feedback resistor Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz)	R _F	_	10 1	_	MΩ
4	D	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) $\geq 8 \text{ MHz}$ 4 MHz 1 MHz	R _S		0 100 0 0 0 0	 10 20	kΩ
5	С	Crystal start-up time ³ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁴ High range, high gain (RANGE = 1, HGO = 1) ⁴	t CSTL-LP t CSTL-HGO t CSTH-LP t CSTH-HGO		200 400 5 20		ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² FBELP mode	f _{extal}	0.03125 0	_	5 40	MHz

¹ Typical data was characterized at 5.0 V, 25 °C or is recommended value.

² The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁴ 4 MHz crystal.

3.9 AC Characteristics

This section describes AC timing characteristics for each peripheral system.

С	Characteristic	Conditions	Symb	Min.	Typical	Max.	Unit
	D ADC conversion clock frequency	High Speed (ADLPC=0)	f	0.4		8.0	MHz
D		Low Power (ADLPC=1)	IADCK	0.4		8.0	1011 12

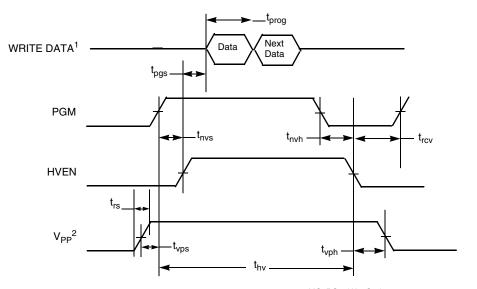
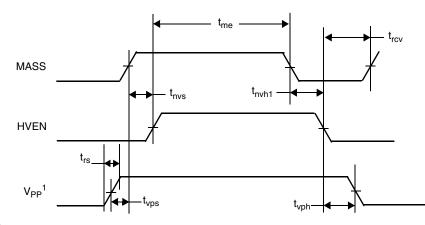
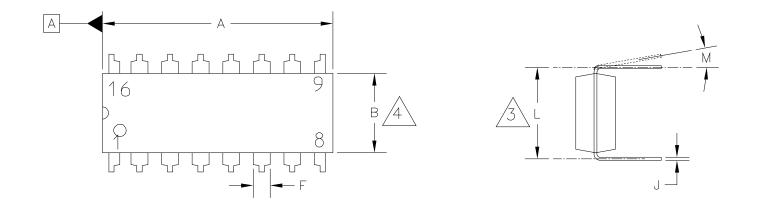
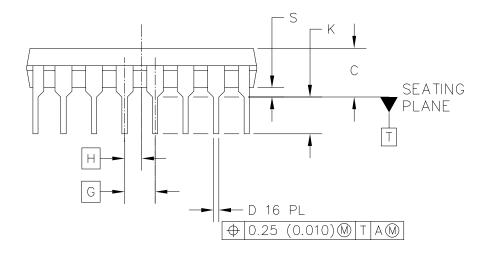



Figure 21. ADC Input Impedance Equivalency Diagram


Characteristic	Conditions	С	Symb	Min	Typical ¹	Max	Unit
Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1	_	т	I _{DDAD}	_	133	_	μΑ
Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1	_	т	I _{DDAD}	_	218	_	μΑ
Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		т	I _{DDAD}	_	327	_	μΑ
Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1	_	С	I _{DDAD}		0.582	1	mA

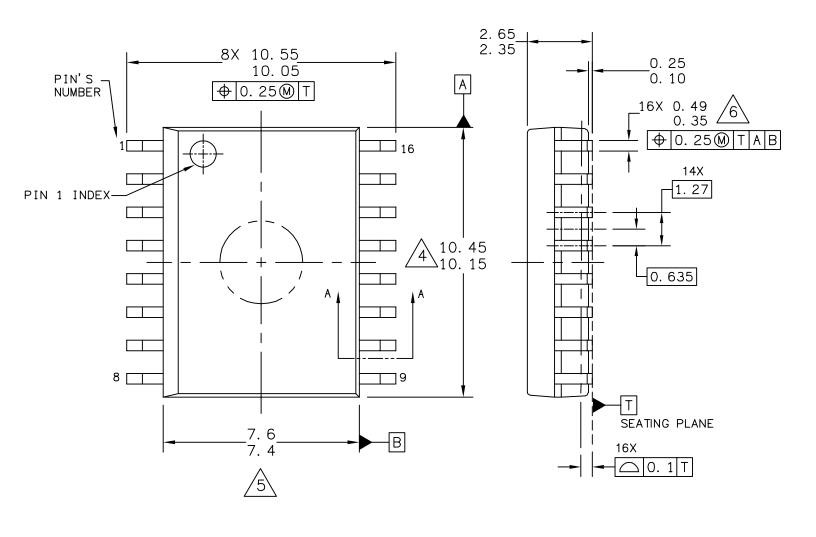
¹ Next Data applies if programming multiple bytes in a single row, refer to $^{MC9RS08KA8 Series}$ Reference Manual. ² V_{DD} must be at a valid operating voltage before voltage is applied or removed from the V_{PP} pin.

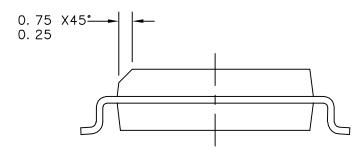

Figure 23. Flash Program Timing

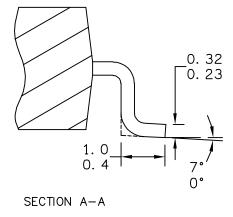


 1 V_{DD} must be at a valid operating voltage before voltage is applied or removed from the V_{PP} pin.

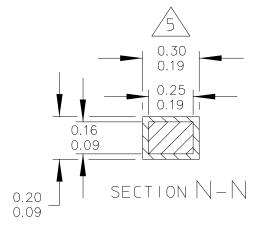
Figure 24. Flash Mass Erase Timing

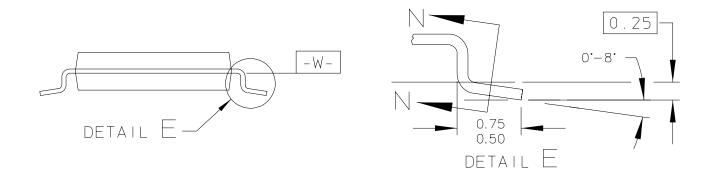




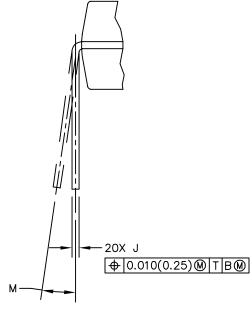


© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NI	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASB42431B	RE∨: T
		CASE NUMBER	2: 648-08	19 MAY 2005
		STANDARD: NE	IN-JEDEC	





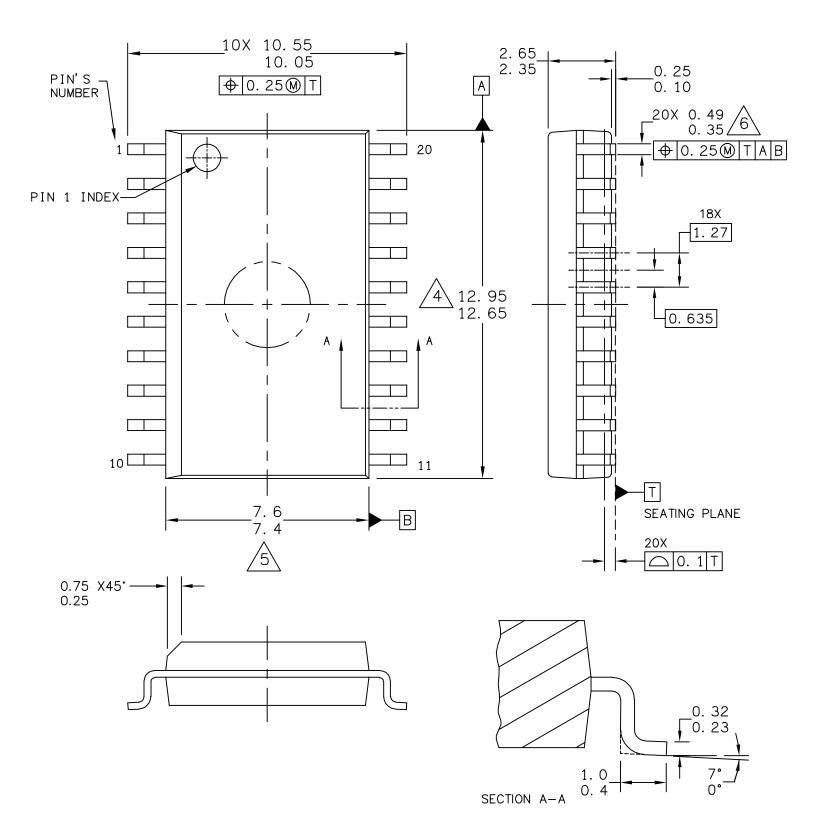
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO	: 98ASB42567B	REV: F
16LD SOIC W/B, 1.27 PITCH CASE-OUTLINE		CASE NUMBER: 751G-04 02 JUN 20		
		STANDARD: JE	DEC MS-013AA	



© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:	DOCUMENT NE	RE∨: B		
16 LD TSSOP, PITCH 0.	CASE NUMBER: 948F-01 19 MAY			
	STANDARD: JEDEC			

VIEW D

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.	MECHANICAL OUTLINE	PRINT VERSION N	IT TO SCALE
TITLE:	DOCUMENT	ND: 98ASB42899B	RE∨: B
20LD .300 PDIF	CASE NUMB	ER: 738C-01	24 MAY 2005
	STANDARD:	NON-JEDEC	



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

DIM	MILLIM MIN	IETERS MAX	DIM	IN MIN	ICHES MAX	DIM	MILLIM	ETERS MAX	DIM	MI	INCHES N MAX	
А	24.39	24.99		0.960	0.984							
В	6.96	7.49		0.274	0.295							
С	3.56	5.08		0.140	0.200							
D	0.38	0.56		0.015	0.022							
E	1.27 BSC			0.050 BSC								
F	1.14	1.52		0.045	0.060							
G	2.54 BSC			0.100 BSC								
J	0.20	0.38		0.008	0.015							
К	2.79	3.76		0.110	0.148							
L	7.62 BSC			0.300 BSC								
М	0.	15 .		0.	15 '							
N	0.50	1.01		0.020	0.040							
R	•••••	1.29		•••••	0.051							
								l				
© FREESCALE SEMICONDUCTOR, INC. All rights reserved.						CAL	OUTLINE PRINT VERSION NOT TO SC			T TO SCALE		
TITLE:						I	DOCUMENT NO: 98ASB42899B				RE∨: B	
20LD .300 PDIP							CASE NUMBER: 738C-01				24 MAY 200	5
						5	STANDARD: NON-JEDEC					

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:		DOCUMENT NO: 98ASB42343B		REV: J
20LD SOIC W/B, 1. CASE-OUTLI		CASE NUMBER: 751D-07		23 MAR 2005
		STANDARD: JE	DEC MS-013AC	

