E·XFL

NXP USA Inc. - MC9RS08KA4CWJ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RS08
Core Size	8-Bit
Speed	20MHz
Connectivity	l²C
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	126 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9rs08ka4cwj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 3. MC9RS08KA8 Series in 16-Pin PDIP/SOIC/TSSOP Package

3 Electrical Characteristics

3.1 Introduction

This chapter contains electrical and timing specifications for the MC9RS08KA8 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

Rating	Symbol	Value	Unit
Thermal resistance 16-pin TSSOP	θ_{JA}	75	°C/W
Thermal resistance 20-pin PDIP	θ_{JA}	75	°C/W
Thermal resistance 20-pin SOIC	θ_{JA}	96	°C/W

Table 4. Thermal Characteristics (continued)

The average chip-junction temperature (TJ) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, °C

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C /W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between PD and TJ (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_{D} \times (T_{A} + 273^{\circ}C) + \theta_{JA} \times (PD)^{2}$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions must be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Parameter	Symbol	Min	Typical	Max	Unit
Input high voltage (V _{DD} > 2.3V) (all digital inputs)	V _{IH}	$0.70 \times V_{DD}$	—	—	V
Input high voltage (1.8 V \leq V _{DD} \leq 2.3 V) (all digital inputs)	V _{IH}	$0.85 \times V_{DD}$	—	—	V
Input low voltage (V _{DD} > 2.3 V) (all digital inputs)	V _{IL}	—	—	$0.30\times V_{DD}$	V
Input low voltage (1.8 V \leq V _{DD} \leq 2.3 V) (all digital inputs)	V _{IL}	—	_	$0.30 \times V_{DD}$	V
Input hysteresis (all digital inputs)	V _{hys} ¹	$0.06 \times V_{DD}$	—	—	V
Input leakage current (per pin) $V_{In} = V_{DD}$ or V_{SS} , all input only pins	llinl	_	0.025	1.0	μA
High impedance (off-state) leakage current (per pin) $V_{In} = V_{DD}$ or V_{SS} , all input/output	llozl	_	0.025	1.0	μA
Internal pullup resistors ² (all port pins)	R _{PU}	20	45	65	kΩ
Internal pulldown resistors ² (all port pins except PTA5)	R _{PD}	20	45	65	kΩ
PTA5 Internal pulldown resistor	—	45	—	95	kΩ
Output high voltage — Low Drive (PTxDSn = 0) 5 V, $I_{Load} = 2 \text{ mA}$ 3 V, $I_{Load} = 1 \text{ mA}$ 1.8 V, $I_{Load} = 0.5 \text{ mA}$		V _{DD} – 0.8			
Output high voltage — High Drive (PTxDSn = 1) 5 V, $I_{Load} = 10 \text{ mA}$ 5 V, $I_{Load} = 5 \text{ mA}$ 3 V, $I_{Load} = 3 \text{ mA}$ 1.8 V, $I_{Load} = 2 \text{ mA}$	V _{OH}	V _{DD} – 0.8			V
Maximum total IOH for all port pins	I _{OHT}	—	_	40	mA
Output low voltage — Low Drive (PTxDSn = 0) 5 V, $I_{Load} = 2 \text{ mA}$ 3 V, $I_{Load} = 1 \text{ mA}$ 1.8 V, $I_{Load} = 0.5 \text{ mA}$				0.8	
Output low voltage — High Drive (PTxDSn = 1) 5 V, $I_{Load} = 10 \text{ mA}$ 5 V, $I_{Load} = 5 \text{ mA}$ 3 V, $I_{Load} = 3 \text{ mA}$ 1.8 V, $I_{Load} = 2 \text{ mA}$	V _{OL}	 	 	0.8	V
Maximum total IoL for all port pins	I _{OLT}	—	—	40	mA
DC injection current ^{3, 4, 5, 6} $V_{ln} < V_{SS}, V_{ln} > V_{DD}$ Single pin limit Total MCU limit, includes sum of all stressed pins				0.2 0.8	mA _
Input capacitance (all non-supply pins)	C _{In}	—	—	7	pF

Table 7. DC Characteristics (Temperature Range = -40 to 85°C Ambient) (continued)

¹ This parameter is characterized and not tested on each device.

 $^2~$ Measurement condition for pull resistors: V_In = V_{SS} for pullup and V_In = V_{DD} for pulldown.

³ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} except the RESET/V_{PP} which is internally clamped to V_{SS} only.

- ⁴ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁵ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁶ This parameter is characterized and not tested on each device.

MC9RS08KA8 Series MCU Data Sheet, Rev. 4

Figure 4. Typical I_{OH} vs. V_{DD} – V_{OH} V_{DD} = 5.5 V (High Drive)

Figure 5. Typical I_{OH} vs. V_{DD}–V_{OH} V_{DD} = 5.5 V (Low Drive)

Figure 6. Typical I_{OH} vs. V_{DD} - V_{OH} V_{DD} = 3 V (High Drive)

Figure 7. Typical I_{OH} vs. V_{DD} - V_{OH} V_{DD} = 3 V (Low Drive)

MC9RS08KA8 Series MCU Data Sheet, Rev. 4

Figure 12. Typical I_{OL} vs. V_{DD} – V_{OL} V_{DD} = 3 V (High Drive)

Figure 13. Typical I_{OL} vs. V_{DD} – V_{OL} V_{DD} = 3 V (Low Drive)

MC9RS08KA8 Series MCU Data Sheet, Rev. 4

Figure 14. Typical I_{OL} vs. V_{DD}–V_{OL} V_{DD} = 1.8 V (High Drive)

Figure 15. Typical I_{OL} vs. V_{DD}–V_{OL} V_{DD} = 1.8 V (Low Drive)

3.7 Supply Current Characteristics

Table 8.	Supply	Current	Characteristics
----------	--------	---------	-----------------

Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Temp. (°C)
		5	2.4 mA	5 mA	25 85
Run supply current ³ measured at (f _{Bus} = 10 MHz)	RI _{DD10}	3	2.4 mA	-	25 85
		1.80	1.7 mA	_	25 85

⁵ Most customers are expected to find that auto-wakeup from stop can be used instead of the higher current wait mode. Wait mode typical is 1.3 mA at 3 V and 1 mA at 2 V with $f_{Bus} = 1$ MHz.

Figure 16. Typical Run I_{DD} vs. V_{DD} for FEI Mode

3.9.1 Control Timing

Table	10.	Control	Timing
-------	-----	---------	--------

Num	С	Parameter	Symbol	Min	Typical	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	0	_	10	MHz
2	D	Real time interrupt internal oscillator period	t _{RTI}	700	1000	1300	μS
3	D	External RESET pulse width ¹	t _{extrst}	150	-	—	ns
4	D	KBI pulse width ²	t _{KBIPW}	1.5 t _{cyc}		—	ns
5	D	KBI pulse width in stop ¹	t _{KBIPWS}	100	-	—	ns
6	D	Port rise and fall time $(load = 50 \text{ pF})^3$ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		11 35		ns

¹ This is the shortest pulse guaranteed to pass through the pin input filter circuitry. Shorter pulses may or may not be recognized.

² This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 3 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 85°C.

Figure 17. Reset Timing

Figure 18. KBI Pulse Width

3.9.2 TPM/MTIM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Num	С	Rating	Symbol	Min	Мах	Unit
1	D	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	D	External clock period	t _{TPMext}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Figure 19. Timer External Clock

Figure 20. Timer Input Capture Pulse

3.10 Analog Comparator (ACMP) Electrical

Table 12. Analog Comparator Electrical Specifications

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage	V _{DD}	1.80	_	5.5	V
2	Р	Supply current (active)	I _{DDAC}	_	20	35	μA
3	D	Analog input voltage ¹	V _{AIN}	V _{SS} – 0.3	_	V _{DD}	V
4	Р	Analog input offset voltage ¹	V _{AIO}	_	20	40	mV
5	С	Analog Comparator hysteresis ¹	V _H	3.0	9.0	15.0	mV
6	С	Analog source impedance ¹	R _{AS}		_	10	kΩ
7	Р	Analog input leakage current	I _{ALKG}		_	1.0	μA
8	С	Analog Comparator initialization delay	t _{AINIT}			1.0	μS

С	Characteristic	Conditions	Symb	Min.	Typical	Max.	Unit
D	ADC conversion clock	High Speed (ADLPC=0)	f	0.4	_	8.0	MU-7
D	frequency	Low Power (ADLPC=1)	IADCK	0.4	_	8.0	IVIHZ

Figure 21. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions	С	Symb	Min	Typical ¹	Max	Unit
Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1	_	Т	I _{DDAD}	_	133		μΑ
Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1	-	Т	I _{DDAD}	_	218	_	μΑ
Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1	1	Т	I _{DDAD}		327	_	μΑ
Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1	_	С	I _{DDAD}		0.582	1	mA

¹ Next Data applies if programming multiple bytes in a single row, refer to $^{MC9RS08KA8 Series}$ Reference Manual. ² V_{DD} must be at a valid operating voltage before voltage is applied or removed from the V_{PP} pin.

Figure 23. Flash Program Timing

 1 V_{DD} must be at a valid operating voltage before voltage is applied or removed from the V_{PP} pin.

Figure 24. Flash Mass Erase Timing

Ordering Information

4 Ordering Information

This section contains ordering numbers for MC9RS08KA8 series devices. See below for an example of the device numbering system.

Device Number	Memory		Package			
	Flash	RAM	Туре	Designator	Document No.	
MC9RS08KA8 8K byte MC9RS08KA4 4K byte		254 bytes 126 bytes	16 PDIP	PG	98ASB42431B	
	8K bytes		16 W-SOIC	WG	98ASB42567B	
	4K bytes		16 TSSOP	TG	98ASH70247A	
		20 PDIP	PJ	98ASB42899B		
			20 W-SOIC	WJ	98ASB42343B	

5 Mechanical Drawings

This following pages contain mechanical specifications for MC9RS08KA8 series package options.

- 16-pin PDIP (plastic dual in-line pin)
- 16-pin W-SOIC (wide body small outline integrated circuit)
- 16-pin TSSOP (thin shrink sSmall outline package)
- 20-pin PDIP (plastic dual in-line pin)
- 20-pin W-SOIC (wide body small outline integrated circuit)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.
- A DIMENSION TO CENTER OF LEADS WHEN FORMED PARALLEL.
- A DIMENSIONS DOES NOT INCLUDE MOLD FLASH.
- 5. ROUNDED CORNERS OPTIONAL.
- 6. 648-01 THRU -08 OBSOLETE, NEW STANDARD 648-09.

	MILLIN	ETERS		NCHES		MILLIMETERS			INCHES
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	18.80	19.55	0.740	0.770					
В	6.35	6.85	0.250	0.270					
С	3.69	4.44	0.145	0.175					
D	0.39	0.53	0.015	0.021					
F	1.02	1.77	0.040	0.070					
G	2.54	BSC	0.1	00 BSC					
Н	1.27	BSC	0.0	50 BSC					
J	0.21	0.38	0.008	0.015					
K	2.80	3.30	0.110	0.130					
L	7.50	7.74	0.295	0.305					
М	0.	10°	0.	10°					
S	0.51	1.01	0.020	0.040					
© FF	REESCALE SEM All RIGHT	ICONDUCTOR, I S RESERVED.	INC.	MECHANICA	CAL OUTLINE PRINT VERSION NOT TO		DT TO SCALE		
TITLE	:				DOCUMENT NO: 98ASB42431B			REV: T	
		16 LD F	PDIP		CASE NUMBER: 648–08 19 MA			19 MAY 2005	
					STANDARD: NON-JEDEC				

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: 16LD SOIC W/B, 1.27 PITCH CASE-OUTLINE		DOCUMENT NO	: 98ASB42567B	REV: F
		CASE NUMBER: 751G-04 02 JUN 2		02 JUN 2005
		STANDARD: JE	DEC MS-013AA	

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 5. THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 6. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: 16LD SOIC W/B, 1.27 PITCH, CASE OUTLINE		DOCUMENT NO	: 98ASB42567B	REV: F
		CASE NUMBER	: 751G-04	02 JUN 2005
		STANDARD: JE	DEC MS-013AA	

VIEW D

© FREESCALE SEMICONDUCTOR, INC. All rights reserved.		LOUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:		DOCUMENT NE]: 98ASB42899B	REV⊨B
)	CASE NUMBER	R: 738C-01	24 MAY 2005
2010 .000 101		STANDARD: NO	IN-JEDEC	

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: 20LD SOIC W/B, 1.27 PITCH CASE-OUTLINE		DOCUMENT NO): 98ASB42343B	REV: J
		CASE NUMBER	R: 751D-07	23 MAR 2005
		STANDARD: JE	DEC MS-013AC	

NP

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9RS08KA8 Rev. 4 6/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2009. All rights reserved.

