
NXP USA Inc. - MC9RS08KA8CTG Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RS08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	254 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9rs08ka8ctg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this chapter.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	۱ _D	±25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table	3.	Absolute	Maximum	Ratings
IUNIO	•••	/10001010	maximani	namgo

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

² All functional non-supply pins are internally clamped to V_{SS} and V_{DD} except the $\overline{\text{RESET}}/V_{PP}$ pin which is internally clamped to V_{SS} only.

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H -40 to 85	°C
Maximum junction temperature	T _{JMAX}	105	°C
Thermal resistance 16-pin PDIP	θ_{JA}	80	°C/W
Thermal resistance 16-pin SOIC	θ_{JA}	112	°C/W

Rating	Symbol	Value	Unit
Thermal resistance 16-pin TSSOP	θ_{JA}	75	°C/W
Thermal resistance 20-pin PDIP	θ_{JA}	75	°C/W
Thermal resistance 20-pin SOIC	θ_{JA}	96	°C/W

Table 4. Thermal Characteristics (continued)

The average chip-junction temperature (TJ) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, °C

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C /W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between PD and TJ (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_{D} \times (T_{A} + 273^{\circ}C) + \theta_{JA} \times (PD)^{2}$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions must be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Parameter	Symbol	Min	Typical	Max	Unit
Input high voltage (V _{DD} > 2.3V) (all digital inputs)	V _{IH}	$0.70 \times V_{DD}$	_	—	V
Input high voltage (1.8 V \leq V _{DD} \leq 2.3 V) (all digital inputs)	V _{IH}	$0.85 \times V_{DD}$	_	—	V
Input low voltage (V _{DD} > 2.3 V) (all digital inputs)	V _{IL}	_	_	$0.30 \times V_{DD}$	V
Input low voltage (1.8 V \leq V _{DD} \leq 2.3 V) (all digital inputs)	V _{IL}	—		$0.30\times V_{DD}$	V
Input hysteresis (all digital inputs)	V _{hys} ¹	$0.06 \times V_{DD}$	—	—	V
Input leakage current (per pin) $V_{In} = V_{DD}$ or V_{SS} , all input only pins	llinl	—	0.025	1.0	μA
High impedance (off-state) leakage current (per pin) $V_{In} = V_{DD}$ or V_{SS} , all input/output	llozi	—	0.025	1.0	μA
Internal pullup resistors ² (all port pins)	R _{PU}	20	45	65	kΩ
Internal pulldown resistors ² (all port pins except PTA5)	R _{PD}	20	45	65	kΩ
PTA5 Internal pulldown resistor	_	45	—	95	kΩ
Output high voltage — Low Drive (PTxDSn = 0) 5 V, $I_{Load} = 2 \text{ mA}$ 3 V, $I_{Load} = 1 \text{ mA}$ 1.8 V, $I_{Load} = 0.5 \text{ mA}$		V _{DD} – 0.8		 	
Output high voltage — High Drive (PTxDSn = 1) 5 V, I_{Load} = 10 mA 5 V, I_{Load} = 5 mA 3 V, I_{Load} = 3 mA 1.8 V, I_{Load} = 2 mA	V _{OH}	V _{DD} – 0.8	_ _ _	 	V
Maximum total IOH for all port pins	I _{OHT}	—		40	mA
Output low voltage — Low Drive (PTxDSn = 0) 5 V, $I_{Load} = 2 \text{ mA}$ 3 V, $I_{Load} = 1 \text{ mA}$ 1.8 V, $I_{Load} = 0.5 \text{ mA}$				0.8	
Output low voltage — High Drive (PTxDSn = 1) 5 V, $I_{Load} = 10 \text{ mA}$ 5 V, $I_{Load} = 5 \text{ mA}$ 3 V, $I_{Load} = 3 \text{ mA}$ 1.8 V, $I_{Load} = 2 \text{ mA}$	V _{OL}	 	 	0.8	V
Maximum total IoL for all port pins	I _{OLT}	—	—	40	mA
DC injection current ^{3, 4, 5, 6} $V_{In} < V_{SS}, V_{In} > V_{DD}$ Single pin limit Total MCU limit, includes sum of all stressed pins				0.2 0.8	mA
Input capacitance (all non-supply pins)	C _{In}	—	—	7	pF

Table 7. DC Characteristics (Temperature Range = -40 to 85°C Ambient) (continued)

¹ This parameter is characterized and not tested on each device.

 $^2~$ Measurement condition for pull resistors: V_In = V_{SS} for pullup and V_In = V_{DD} for pulldown.

³ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} except the RESET/V_{PP} which is internally clamped to V_{SS} only.

- ⁴ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁵ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁶ This parameter is characterized and not tested on each device.

MC9RS08KA8 Series MCU Data Sheet, Rev. 4

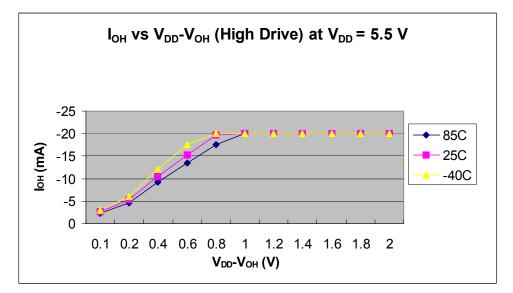


Figure 4. Typical I_{OH} vs. V_{DD} – V_{OH} V_{DD} = 5.5 V (High Drive)

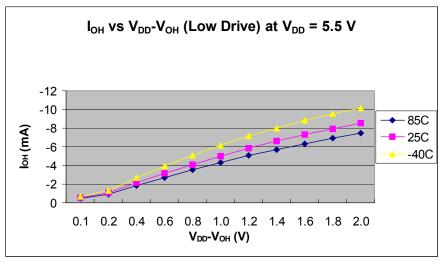


Figure 5. Typical I_{OH} vs. V_{DD}–V_{OH} V_{DD} = 5.5 V (Low Drive)

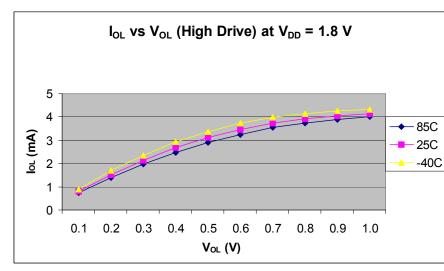


Figure 14. Typical I_{OL} vs. V_{DD}–V_{OL} V_{DD} = 1.8 V (High Drive)

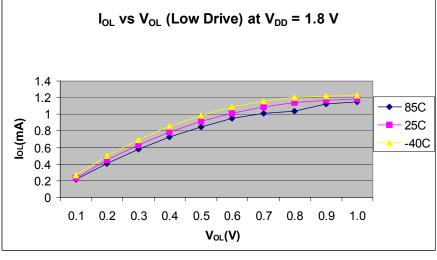


Figure 15. Typical I_{OL} vs. V_{DD}–V_{OL} V_{DD} = 1.8 V (Low Drive)

3.7 Supply Current Characteristics

Table 8.	Supply	Current	Characteristics
----------	--------	---------	-----------------

Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Temp. (°C)
		5	2.4 mA	5 mA	25 85
Run supply current ³ measured at (f _{Bus} = 10 MHz)	RI _{DD10}	3	2.4 mA	_	25 85
		1.80	1.7 mA		25 85

⁵ Most customers are expected to find that auto-wakeup from stop can be used instead of the higher current wait mode. Wait mode typical is 1.3 mA at 3 V and 1 mA at 2 V with $f_{Bus} = 1$ MHz.

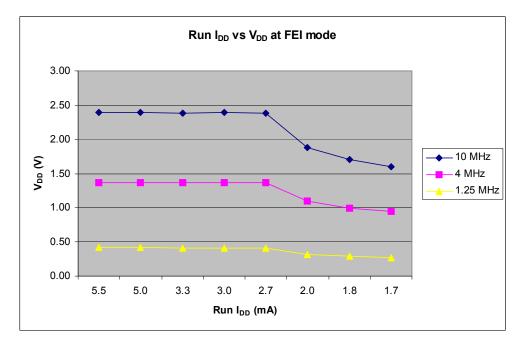
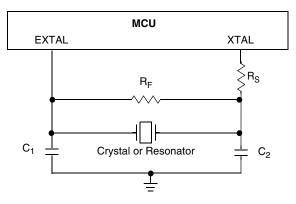


Figure 16. Typical Run I_{DD} vs. V_{DD} for FEI Mode

3.8 External Oscillator (XOSC) Characteristics

Table 9. Oscillator Electrical Specifications (Temperature Range = -40 to 125°C Ambient)


Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1, HGO = 1) FBELP mode High range (RANGE = 1, HGO = 0) FBELP mode	f _{lo} f _{hi} f _{hi-hgo} f _{hi-lp}	32 1 1 1		38.4 5 16 8	kHz MHz MHz MHz
2	D	Load capacitors	C _{1,} C ₂	r	crystal or re manufactur	er's	or
3	D	Feedback resistor Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz)	R _F	_	10 1	_	MΩ
4	D	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) $\geq 8 \text{ MHz}$ 4 MHz 1 MHz	R _S		0 100 0 0 0 0	 10 20	kΩ
5	С	Crystal start-up time ³ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁴ High range, high gain (RANGE = 1, HGO = 1) ⁴	t CSTL-LP t CSTL-HGO t CSTH-LP t CSTH-HGO		200 400 5 20		ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² FBELP mode	f _{extal}	0.03125 0	_	5 40	MHz

¹ Typical data was characterized at 5.0 V, 25 °C or is recommended value.

² The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.

⁴ 4 MHz crystal.

3.9 AC Characteristics

This section describes AC timing characteristics for each peripheral system.

3.9.2 TPM/MTIM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Num	С	Rating	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	D	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

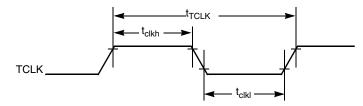


Figure 19. Timer External Clock

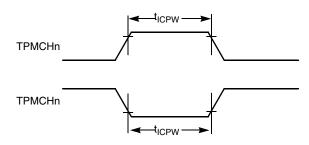


Figure 20. Timer Input Capture Pulse

3.10 Analog Comparator (ACMP) Electrical

Table 12. Analog Comparator Electrical Specifications

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage	V _{DD}	1.80		5.5	V
2	Р	Supply current (active)	I _{DDAC}	_	20	35	μA
3	D	Analog input voltage ¹	V _{AIN}	V _{SS} – 0.3	—	V _{DD}	V
4	Р	Analog input offset voltage ¹	V _{AIO}	_	20	40	mV
5	С	Analog Comparator hysteresis ¹	V _H	3.0	9.0	15.0	mV
6	С	Analog source impedance ¹	R _{AS}	_	—	10	kΩ
7	Р	Analog input leakage current	I _{ALKG}	_	—	1.0	μA
8	С	Analog Comparator initialization delay	t _{AINIT}	_	—	1.0	μS

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
9	Ρ	Analog Comparator bandgap reference voltage	V_{BG}	1.1	1.208	1.3	V

Table 12. Analog Comparator Electrical Specifications (continued)

¹ These data are characterized but not production tested.

3.11 Internal Clock Source Characteristics

Table 13. Internal Clock Source Specifications

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	С	Average internal reference frequency — untrimmed	f _{int_ut}	25	31.25	41.66	kHz
2	Ρ	Average internal reference frequency — trimmed	f _{int_t}	31.25	39.06	39.0625	kHz
3	С	DCO output frequency range — untrimmed	f _{dco_ut}	12.8	16	21.33	MHz
4	Ρ	DCO output frequency range — trimmed	f _{dco_t}	16	20	20	MHz
5	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature	$\Delta f_{dco_res_t}$	_	_	0.2	%fdco
6	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	_	2	%fdco
7	С	FLL acquisition time ^{2,3}	t _{acquire}	_	—	1	ms
8	С	Stop recovery time (FLL wakeup to previous acquired frequency) IREFSTEN = 0 IREFSTEN = 1	t_wakeup	_	100 86	_	μS

¹ Data in typical column was characterized at 3.0 V and 5.0 V, 25 °C or is typical recommended value.

² This parameter is characterized and not tested on each device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBILP) to FLL enabled (FEI, FBI).

3.12 ADC Characteristics

Table 14. 5 Volt 10-bit ADC Operating Conditions

С	Characteristic	Conditions	Symb	Min.	Typical	Max.	Unit
D	Input voltage	—	V _{ADIN}	V_{SS}	—	V_{DD}	V
С	Accuracy	V _{DD} = 2 V			8 bit	_	—
С	Input capacitance	—	C _{ADIN}	_	4.5	5.5	pF
С	Input resistance	_	R _{ADIN}	_	3	5	kΩ
С	Analog source resistance external to MCU	10 bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			5 10	kΩ
		8 bit mode (all valid f _{ADCK})		_	_	10	

Characteristic	Conditions	С	Symb	Min	Typical ¹	Max	Unit	
Supply current	Stop, reset, module off	т	I _{DDAD}	—	0.011	1	μA	
ADC asynchronous clock	High speed (ADLPC = 0)		f	_	3.3		MHz	
source	Low power (ADLPC = 1)	Т	f _{ADACK}	_	2			
Conversion time (including	Short sample (ADLSMP=0)	Р	+	—	20		ADCK	
sample time)	Long sample (ADLSMP=1)		t _{ADC}	_	40		cycles	
Sample time	Short sample (ADLSMP=0)	Р	+	—	3.5		ADCK	
Sample une	Long sample (ADLSMP=1)		t _{ADS}	_	23.5		cycles	
Total upadiustad arrar	10 bit mode	с	E	—	±1	±2.5	LSB ²	
Total unadjusted error	8 bit mode		E _{TUE}	_	±0.5	±1.0	LOR-	
	10 bit mode	Р	DNL	—	±0.5	±1.0	LSB ²	
Differential non-linearity	8 bit mode	Т	DINE	—	±0.3	±0.5	130	
	Monotonicity and No-Missing-Codes guaranteed							
Integral non-linearity	10 bit mode	с	INL	—	±0.5	±1.0	LSB ²	
integral non-intearity	8 bit mode			—	±0.3	±0.5	LOD	
Zero-scale error	10 bit mode	Р	E _{ZS}	—	±0.5	±1.5	LSB ²	
	8 bit mode	т	⊢zs	—	±0.5	±0.5	100	
Full-Scale error	10 bit mode	Р	E	—	±0.5	±1.5	LSB ²	
VADIN = VDDA	8 bit mode	Т	E _{FS}	—	±0.5	±0.5	130	
Quantization error	10 bit mode	D	E.	—	—	±0.5	LSB ²	
	8 bit mode		EQ	_	—	±0.5	LOD	
Input leakage error	10 bit mode	D	F	—	±0.2	±2.5	LSB ²	
pad leakage ³ * RAS	8 bit mode		E _{IL}	_	±0.1	±1	LOD	

Table 15. 10-bit ADC Characteristics (continued	Table	15.	10-bit	ADC	Characteristics	(continued)
---	-------	-----	--------	-----	-----------------	-------------

¹ Typical values assume Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Based on input pad leakage current. Refer to pad electrical.

3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory. For detailed information about program/erase operations, see the reference manual.

Table	16.	Flash	Characteristics
-------	-----	-------	-----------------

Characteristic	Symbol	Min	Typical ¹	Max	Unit
Supply voltage for program/erase	V _{DD}	2.7	-	5.5	V

MC9RS08KA8 Series MCU Data Sheet, Rev. 4

Characteristic	Symbol	Min	Typical ¹	Мах	Unit
Program/Erase voltage	V _{PP}	11.8	12	12.2	V
VPP current Program Mass erase	I _{VPP_prog} I _{VPP_erase}	_		200 100	μA μA
Supply voltage for read operation 0 < fBus < 10 MHz	V _{Read}	1.8	_	5.5	V
Byte program time	t _{prog}	20	—	40	μS
Mass erase time	t _{me}	500	—	_	ms
Cumulative program HV time ²	t _{hv}	_	—	8	ms
Total cumulative HV time (total of tme & thy applied to device)	t _{hv_total}	_	—	2	hours
HVEN to program setup time	t _{pgs}	10	—		μS
PGM/MASS to HVEN setup time	t _{nvs}	5	—		μS
HVEN hold time for PGM	t _{nvh}	5	—		μS
HVEN hold time for MASS	t _{nvh1}	100	—		μS
V _{PP} to PGM/MASS setup time	t _{vps}	20	—		ns
HVEN to V _{PP} hold time	t _{vph}	20	—		ns
V _{PP} rise time ³	t _{vrs}	200	—		ns
Recovery time	t _{rcv}	1	-		μS
Program/erase endurance TL to TH = -40° C to 85° C	_	1000	_	_	cycles
Data retention	t _{D_ret}	15	—	_	years

Table 16. Flash Characteristics (continued)

¹ Typicals are measured at 25 °C.

² t_{hv} is the cumulative high voltage programming time to the same row before next erase. Same address can not be programmed more than twice before next erase.

³ Fast V_{PP} rise time may potentially trigger the ESD protection structure, which may result in over current flowing into the pad and cause permanent damage to the pad. External filtering for the V_{PP} power source is recommended. An example V_{PP} filter is shown in Figure 22.

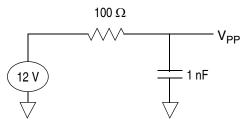


Figure 22. Example V_{PP} Filtering

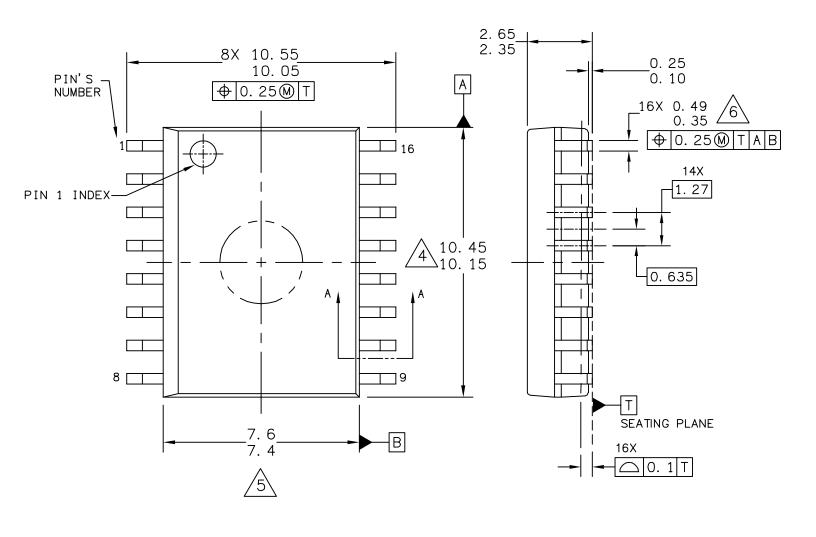
NOTES:

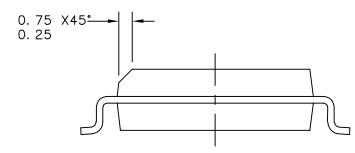
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.
- A DIMENSION TO CENTER OF LEADS WHEN FORMED PARALLEL.
- A DIMENSIONS DOES NOT INCLUDE MOLD FLASH.
- 5. ROUNDED CORNERS OPTIONAL.
- 6. 648-01 THRU -08 OBSOLETE, NEW STANDARD 648-09.

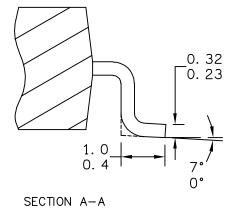
	MILLIN	IETERS		NCHES		MILL	MILLIMETERS		NCHES
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	18.80	19.55	0.740	0.770					
В	6.35	6.85	0.250	0.270					
С	3.69	4.44	0.145	0.175					
D	0.39	0.53	0.015	0.021					
F	1.02	1.77	0.040	0.070					
G	2.54	BSC	0.1	100 BSC					
Н	1.27	BSC	0.0)50 BSC					
J	0.21	0.38	0.008	0.015					
K	2.80	3.30	0.110	0.130					
L	7.50	7.74	0.295	0.305					
М	0.	10°	0.	10°					
S	0.51	1.01	0.020	0.040					
© FI		ICONDUCTOR, I S RESERVED.	NC.	MECHANICA	L OUT	LINE	PRINT VER	SION NO	DT TO SCALE
TITLE	-:				DOCU	Ment nc	: 98ASB4243	1B	REV: T
		16 LD F	DIP		CASE	NUMBER	2:648-08		19 MAY 2005
					STAN	DARD: NC	N-JEDEC		

STYLE 1:

PIN 1. CATHODE

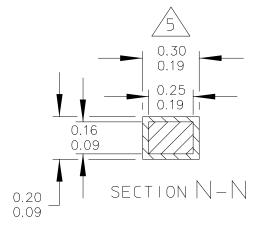

- 2. CATHODE
- 3. CATHODE
- 4. CATHODE
- 5. CATHODE
- 6. CATHODE
- 7. CATHODE
- 8. CATHODE
- 9. ANODE
- 10. ANODE
- 11. ANODE
- 12. ANODE
- 13. ANODE
- 14. ANODE
- 15. ANODE
- 16. ANODE

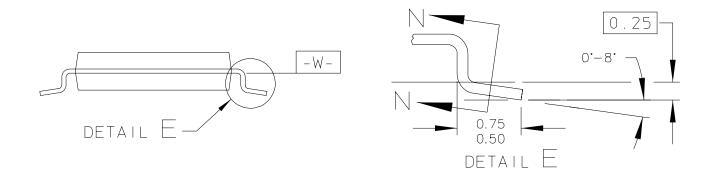

STYLE 2:


- PIN 1. COMMON DRAIN
 - 2. COMMON DRAIN
 - 3. COMMON DRAIN
 - 4. COMMON DRAIN
 - 5. COMMON DRAIN
 - 6. COMMON DRAIN
 - 7. COMMON DRAIN
 - 8. COMMON DRAIN
 - 9. GATE
 - 10. SOURCE
 - 11. GATE
 - 12. SOURCE
 - 13. GATE
 - 14. SOURCE
 - 15. GATE
 - 16. SOURCE

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO): 98ASB42431B	REV: T	
16 LD PDIP		CASE NUMBER	CASE NUMBER: 648–08		
		STANDARD: NO	N-JEDEC		

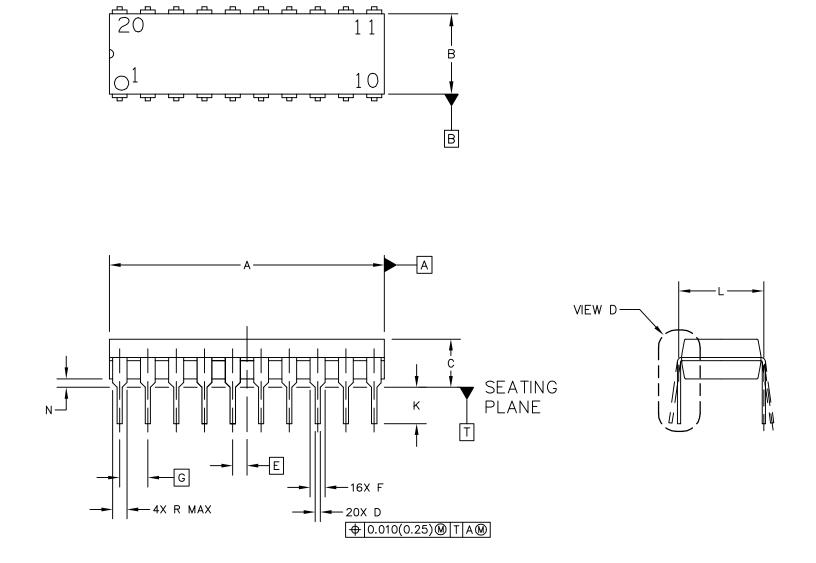
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO	: 98ASB42567B	REV: F
16LD SOIC W/B, 1. CASE-OUTLI	CASE NUMBER: 751G-04 02 JUN 20			
		STANDARD: JE	DEC MS-013AA	




NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 5. THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 6. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO	: 98ASB42567B	REV: F
16LD SOIC W/B, 1.27 Case outline	CASE NUMBER: 751G-04 02 JUN 20			
	-	STANDARD: JEDEC MS-013AA		



© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NE	IT TO SCALE
TITLE:	DOCUMENT NE	RE∨: B		
16 LD TSSOP, PITCH 0.65MM		CASE NUMBER	19 MAY 2005	
		STANDARD: JEDEC		

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NOT TO SCALE		
TITLE:		DOCUMENT NO]: 98ASB42899B	RE∨: B	
20LD .300 PDI	5	CASE NUMBER	24 MAY 2005		
		STANDARD: NE			

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

DIM	MILLIM MIN	IETERS MAX	DIM	IN MIN	ICHES MAX	DIM	MILLIM	ETERS MAX	DIM	MI	INCHES N MAX	
А	24.39	24.99		0.960	0.984							
В	6.96	7.49		0.274	0.295							
С	3.56	5.08		0.140	0.200							
D	0.38	0.56		0.015	0.022							
E	E 1.27 BSC			0.05	0 BSC							
F	1.14	1.52		0.045	0.060							
G	2.54	2.54 BSC 0.10		0 BSC								
J	0.20	0.38		0.008	0.015							
К	2.79	3.76		0.110	0.148							
L	7.62 BSC			0.300) BSC							
М	0.	15 .		0.	15 '							
N	0.50	1.01		0.020	0.040							
R	•••••	1.29		•••••	0.051							
C FREESCALE SEMICONDUCTOR, INC. All rights reserved.			MECHANICAL OUTLINE		PRINT VERSION N			T TO SCALE				
TITLE:					I	D□CUMENT N□: 98ASB42899B REV: B			RE∨: B			
20LD .300 PDIP						CASE NUMBER: 738C-01 24 MA			24 MAY 200	5		
					5	STANDARD: NON-JEDEC						

NP

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9RS08KA8 Rev. 4 6/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2009. All rights reserved.

