

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RS08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	254 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.295", 7.50mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9rs08ka8cwg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9RS08KA8 MCU.

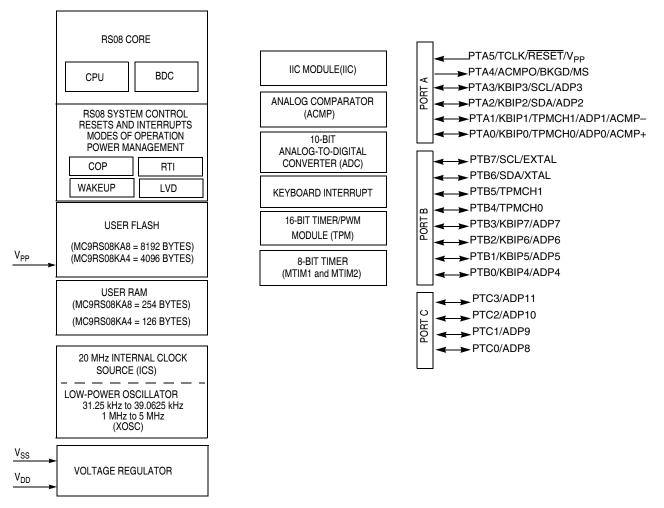


Figure 1. MC9RS08KA8 Series Block Diagram

2 Pin Assignments

This section shows the pin assignments in the packages available for the MC9RS08KA8 series.

Absolute Maximum Ratings 3.3

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this chapter.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	I _D	±25	mA
Storage temperature range	T _{stg}	-55 to 150	°C

Table 3. Absolute Maximum Ratings

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits and it is user-determined rather than being controlled by the MCU design. In order to take P_{I/O} into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table 4. Thermal Characteristics

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H -40 to 85	°C
Maximum junction temperature	T _{JMAX}	105	°C
Thermal resistance 16-pin PDIP	$\theta_{\sf JA}$	80	°C/W
Thermal resistance 16-pin SOIC	$\theta_{\sf JA}$	112	°C/W

MC9RS08KA8 Series MCU Data Sheet, Rev. 4

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp voltages, then use the larger of the two resistance values.

 $^{^2}$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} except the \overline{RESET}/V_{PP} pin which is internally clamped to V_{SS} only.

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

Rating	Symbol	Value	Unit
Thermal resistance 16-pin TSSOP	$\theta_{\sf JA}$	75	°C/W
Thermal resistance 20-pin PDIP	$\theta_{\sf JA}$	75	°C/W
Thermal resistance 20-pin SOIC	$\theta_{\sf JA}$	96	°C/W

The average chip-junction temperature (TJ) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 $T_A =$ Ambient temperature, °C

 θ_{JA} = Package thermal resistance, junction-to-ambient, °C /W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between PD and TJ (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_A + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_\Delta + 273^{\circ}C) + \theta_{J\Delta} \times (PD)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions must be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 5. ESD and Latch-up Test Conditions

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
	Number of pulses per pin — 3	3	_	
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	_	3	_
Lotob up	Minimum input voltage limit	_	-2.5	٧
Latch-up	Maximum input voltage limit	_	7.5	V

Table 6. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V_{HBM}	±2000	_	V
2	Machine model (MM)	V _{MM}	±200	_	V
3	Charge device model (CDM)	V _{CDM}	±500	_	V
4	Latch-up current at T _A = 85°C (applies to all pins except pin 9 PTC3/ADP11)	I _{LAT}	±100 ²	_	mA
	Latch-up current at T _A = 85°C (applies to pin 9 PTC3/ADP11)	C ±100 ² —	mA		

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Table 7. DC Characteristics (Temperature Range = −40 to 85°C Ambient)

Parameter	Symbol	Min	Typical	Max	Unit
Supply voltage (run, wait and stop modes.) $0 < f_{Bus} < 10 MHz$ V_{DD} rising V_{DD} falling	V _{DD}	2.0 1.8	_	5.5	V
Minimum RAM retention supply voltage applied to V _{DD}	V _{RAM}	0.81	_	_	V
Low-voltage Detection threshold (V _{DD} falling) (V _{DD} rising)	V _{LVD}	1.80 1.88	1.86 1.94	1.95 2.03	V
Power on RESET (POR) voltage	V _{POR} ¹	0.9	_	1.7	V

MC9RS08KA8 Series MCU Data Sheet, Rev. 4

 $^{^2}$ These pins meet JESD78A Class II (section 1.2) Level A (section 1.3) requirement of ± 100 mA.

 $^{^3}$ This pin meets JESD78A Class II (section 1.2) Level B (section 1.3) characterization to ± 75 mA. This pin is only present on 20 pin package types.

Table 7. DC Characteristics (Temperature Range = −40 to 85°C Ambient) (continued)

Parameter	Symbol	Min	Typical	Max	Unit
Input high voltage (V _{DD} > 2.3V) (all digital inputs)	V _{IH}	$0.70 \times V_{DD}$	_	_	V
Input high voltage (1.8 V \leq V _{DD} \leq 2.3 V) (all digital inputs)	V _{IH}	$0.85 \times V_{DD}$	_	_	V
Input low voltage (V _{DD} > 2.3 V) (all digital inputs)	V _{IL}	_	_	$0.30 \times V_{DD}$	V
Input low voltage (1.8 V \leq V _{DD} \leq 2.3 V) (all digital inputs)	V _{IL}	_	_	$0.30 \times V_{DD}$	V
Input hysteresis (all digital inputs)	V _{hys} ¹	$0.06 \times V_{DD}$		_	V
Input leakage current (per pin) V _{In} = V _{DD} or V _{SS} , all input only pins	llinl	_	0.025	1.0	μΑ
High impedance (off-state) leakage current (per pin) $V_{In} = V_{DD}$ or V_{SS} , all input/output	llozl	_	0.025	1.0	μΑ
Internal pullup resistors ² (all port pins)	R _{PU}	20	45	65	kΩ
Internal pulldown resistors²(all port pins except PTA5)	R _{PD}	20	45	65	kΩ
PTA5 Internal pulldown resistor	_	45	_	95	kΩ
Output high voltage — Low Drive (PTxDSn = 0) 5 V, I _{Load} = 2 mA 3 V, I _{Load} = 1 mA 1.8 V, I _{Load} = 0.5 mA		V _{DD} – 0.8	_ _ _		
Output high voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = 10 mA 5 V, I _{Load} = 5 mA 3 V, I _{Load} = 3 mA 1.8 V, I _{Load} = 2 mA	$\begin{array}{c} \text{ge} - \text{Low Drive (PTxDSn} = 0) \\ \text{mA} \\ \text{ge} - \text{High Drive (PTxDSn} = 1)} \\ \text{A} \\ \text{V}_{\text{OH}} \\ \text{V}_{\text{DD}} - 0.8 \\ \text{A} \\ \text{H for all port pins} \\ \end{array}$		_ _ _ _	_ _ _ _	V
Maximum total IOH for all port pins	I _{OHT}	_	_	40	mA
Output low voltage — Low Drive (PTxDSn = 0) 5 V, I _{Load} = 2 mA 3 V, I _{Load} = 1 mA 1.8 V, I _{Load} = 0.5 mA		_ _ _	_ _ _	0.8	
Output low voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = 10 mA 5 V, I _{Load} = 5 mA 3 V, I _{Load} = 3 mA 1.8 V, I _{Load} = 2 mA	V _{OL}	_ _ _	_ _ _ _	0.8	V
Maximum total lo∟ for all port pins	I _{OLT}	_	_	40	mA
DC injection current ^{3, 4, 5, 6} $V_{In} < V_{SS}, V_{In} > V_{DD}$ Single pin limit Total MCU limit, includes sum of all stressed pins				0.2 0.8	mA
Input capacitance (all non-supply pins)	C _{In}	_	_	7	pF

¹ This parameter is characterized and not tested on each device.

 $^{^2}$ Measurement condition for pull resistors: $\rm V_{ln}$ = $\rm V_{SS}$ for pullup and $\rm V_{ln}$ = $\rm V_{DD}$ for pulldown.

³ All functional non-supply pins are internally clamped to V_{SS} and V_{DD} except the \overline{RESET}/V_{PP} which is internally clamped to V_{SS} only.

⁴ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁵ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁶ This parameter is characterized and not tested on each device.

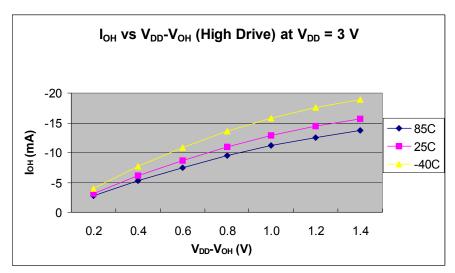


Figure 6. Typical I_{OH} vs. V_{DD} - V_{OH} V_{DD} = 3 V (High Drive)

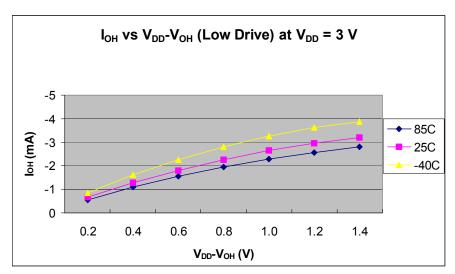


Figure 7. Typical I_{OH} vs. $V_{DD}-V_{OH}$ V_{DD} = 3 V (Low Drive)

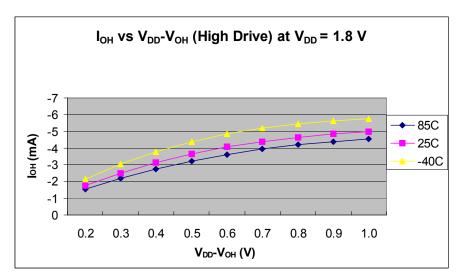


Figure 8. Typical I_{OH} vs. V_{DD} - V_{OH} V_{DD} = 1.8 V (High Drive)

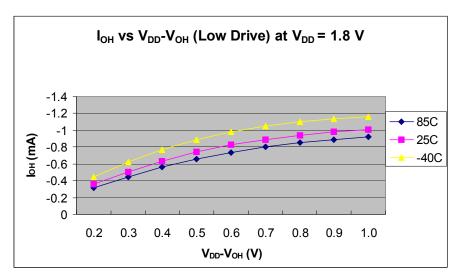


Figure 9. Typical I_{OH} vs. $V_{DD} - V_{OH}$ $V_{DD} = 1.8 \text{ V (Low Drive)}$

3.9.1 Control Timing

Table 10. Control Timing

Num	С	Parameter	Symbol	Min	Typical	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	0	_	10	MHz
2	D	Real time interrupt internal oscillator period	t _{RTI}	700	1000	1300	μS
3	D	External RESET pulse width ¹	t _{extrst}	150	_	_	ns
4	D	KBI pulse width ²	t _{KBIPW}	1.5 t _{cyc}	_	_	ns
5	D	KBI pulse width in stop ¹	t _{KBIPWS}	100	_	_	ns
6	D	Port rise and fall time (load = 50 pF) ³ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}	_	11 35		ns

¹ This is the shortest pulse guaranteed to pass through the pin input filter circuitry. Shorter pulses may or may not be recognized.

 $^{^3}$ Timing is shown with respect to 20% $\rm V_{DD}$ and 80% $\rm V_{DD}$ levels. Temperature range $-40^{\circ}\rm C$ to 85°C.

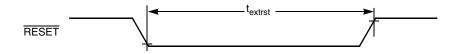


Figure 17. Reset Timing

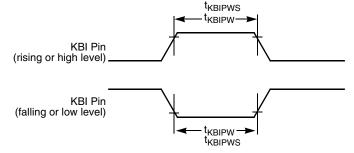


Figure 18. KBI Pulse Width

² This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

Table 14. 5 Volt 10-bit ADC Operating Conditions (continued)

С	Characteristic	Conditions	Symb	Min.	Typical	Max.	Unit
D	ADC conversion clock	High Speed (ADLPC=0)	f	0.4	_	8.0	MHz
	frequency	Low Power (ADLPC=1)	IADCK	0.4	_	8.0	IVIMZ

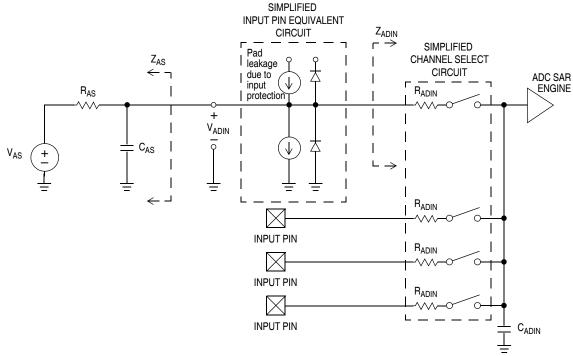


Figure 21. ADC Input Impedance Equivalency Diagram

Table 15. 10-bit ADC Characteristics

Characteristic	Conditions	С	Symb	Min	Typical ¹	Max	Unit
Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1	_	Т	I _{DDAD}	_	133	_	μΑ
Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1	_	Т	I _{DDAD}	_	218		μΑ
Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1	_	Т	I _{DDAD}	_	327		μΑ
Supply current ADLPC = 0 ADLSMP = 0 ADCO = 1	_	С	I _{DDAD}	_	0.582	1	mA

MC9RS08KA8 Series MCU Data Sheet, Rev. 4

Table 15. 10-bit ADC Characteristics (continued)

Characteristic	Conditions	С	Symb	Min	Typical ¹	Max	Unit			
Supply current	Stop, reset, module off	Т	I _{DDAD}	_	0.011	1	μА			
ADC asynchronous clock	High speed (ADLPC = 0)		4	_	3.3	_	NALI			
source	Low power (ADLPC = 1)	T FADACK		_	2	_	MHz			
Conversion time (including	Short sample (ADLSMP=0)	Р		_	20	_	ADCK			
sample time)	Long sample (ADLSMP=1)		t _{ADC}	_	40	_	cycles			
Sample time	Short sample (ADLSMP=0)	Р	+	_	3.5	_	ADCK			
Sample time	Long sample (ADLSMP=1)] [t _{ADS}	_	23.5	_	cycles			
Total unadjusted error	10 bit mode	С	F	_	±1	±2.5	- LSB ²			
Total unaujusteu error	8 bit mode		E _{TUE}	_	±0.5	±1.0				
Differential non-linearity	10 bit mode	Р	DNL	_	±0.5	±1.0	LSB ²			
	8 bit mode	Т	DIVL	_	±0.3	±0.5				
	Monotonicity and No-Missing-Codes guaranteed									
Integral non-linearity	10 bit mode	С	INL	_	±0.5	±1.0	LSB ²			
megrai non-imeamy	8 bit mode		IINL	_	±0.3	±0.5	LOD			
Zero-scale error	10 bit mode	Р	E _{ZS}	_	±0.5	±1.5	LSB ²			
Zeio-scale eiioi	8 bit mode	Т	⊏ZS	_	±0.5	±0.5	LOD			
Full-Scale error	10 bit mode	Р	_	_	±0.5	±1.5	LSB ²			
VADIN = VDDA	8 bit mode	Т	E _{FS}	_	±0.5	±0.5	LOD			
Quantization error	10 bit mode	D	E.	_	_	±0.5	LSB ²			
	8 bit mode	ן ד	D E _Q	_	_	±0.5	LOD			
Input leakage error	10 bit mode	D	_	_	±0.2	±2.5	LSB ²			
pad leakage ³ * RAS	8 bit mode	ן כ	E _{IL}	_	±0.1	±1				

Typical values assume Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

3.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the flash memory. For detailed information about program/erase operations, see the reference manual.

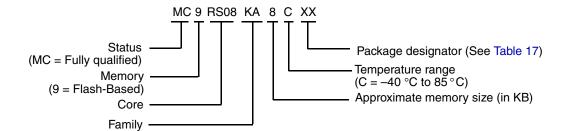
Table 16. Flash Characteristics

Characteristic	Symbol	Min	Typical ¹	Max	Unit
Supply voltage for program/erase	V_{DD}	2.7	_	5.5	V

MC9RS08KA8 Series MCU Data Sheet, Rev. 4

² 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

³ Based on input pad leakage current. Refer to pad electrical.

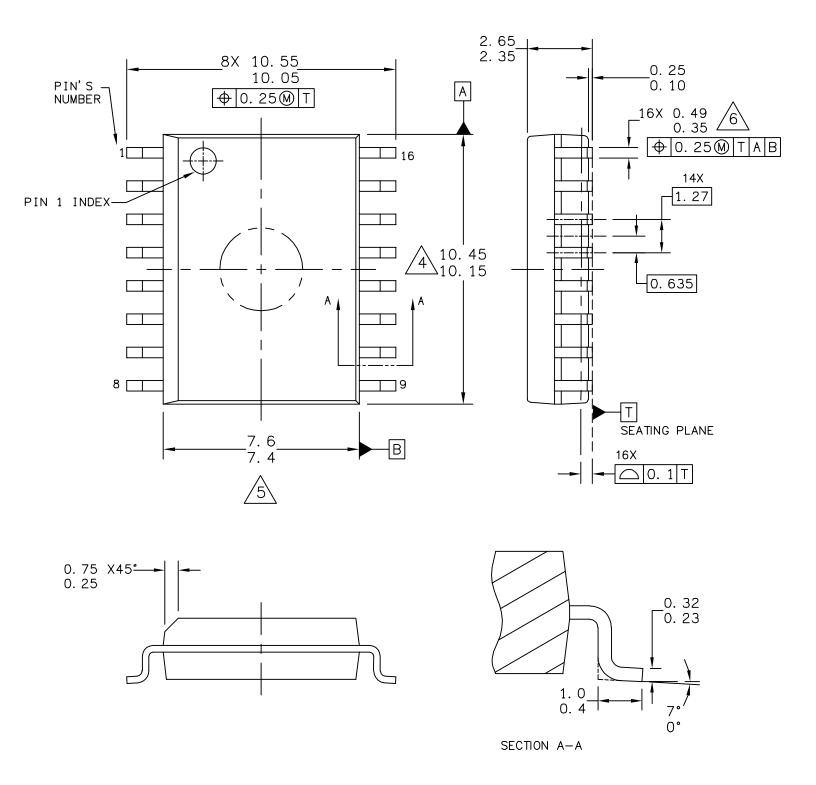

Ordering Information

4 Ordering Information

This section contains ordering numbers for MC9RS08KA8 series devices. See below for an example of the device numbering system.

Device Number	Men	nory	Package			
Device Number	Flash RAM		Туре	Designator	Document No.	
		8K bytes 254 bytes	16 PDIP	PG	98ASB42431B	
	MC9RS08KA8 MC9RS08KA4 8K bytes 4K bytes		16 W-SOIC	WG	98ASB42567B	
		126 bytes	16 TSSOP	TG	98ASH70247A	
			20 PDIP	PJ	98ASB42899B	
1			20 W-SOIC	WJ	98ASB42343B	

Table 17. Device Numbering System

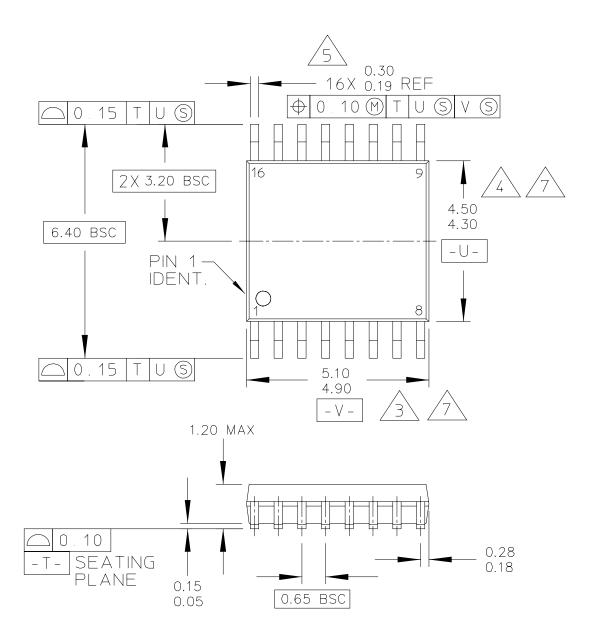

5 Mechanical Drawings

This following pages contain mechanical specifications for MC9RS08KA8 series package options.

- 16-pin PDIP (plastic dual in-line pin)
- 16-pin W-SOIC (wide body small outline integrated circuit)
- 16-pin TSSOP (thin shrink sSmall outline package)
- 20-pin PDIP (plastic dual in-line pin)
- 20-pin W-SOIC (wide body small outline integrated circuit)

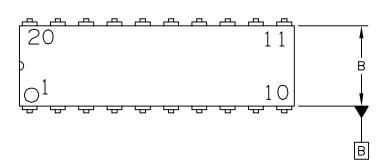
MC9RS08KA8 Series MCU Data Sheet, Rev. 4

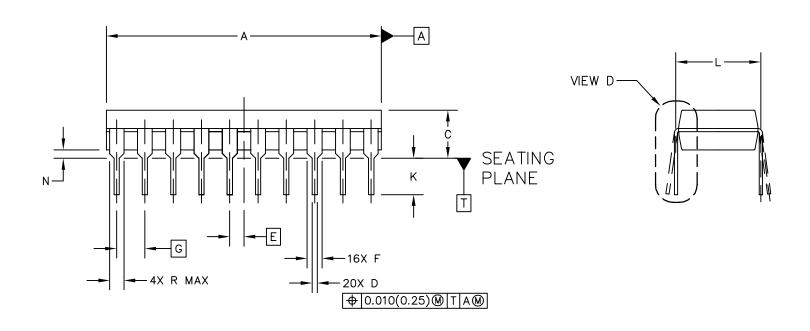
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:	07 017011	DOCUMENT NO): 98ASB42567B	REV: F
16LD SOIC W/B, 1.27 PITCH CASE-OUTLINE		CASE NUMBER: 751G-04 02 JUN		
CASL-OOTE1	INL	STANDARD: JE	DEC MS-013AA	



NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE INTER—LEAD FLASH OR PROTRUSIONS. INTER—LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.


© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:	-	DOCUMENT NO): 98ASB42567B	REV: F
16LD SOIC W/B, 1.2° Case outline	•	CASE NUMBER	R: 751G-04	02 JUN 2005
CASE OUTETNE	_	STANDARD: JE	IDEC MS-013AA	



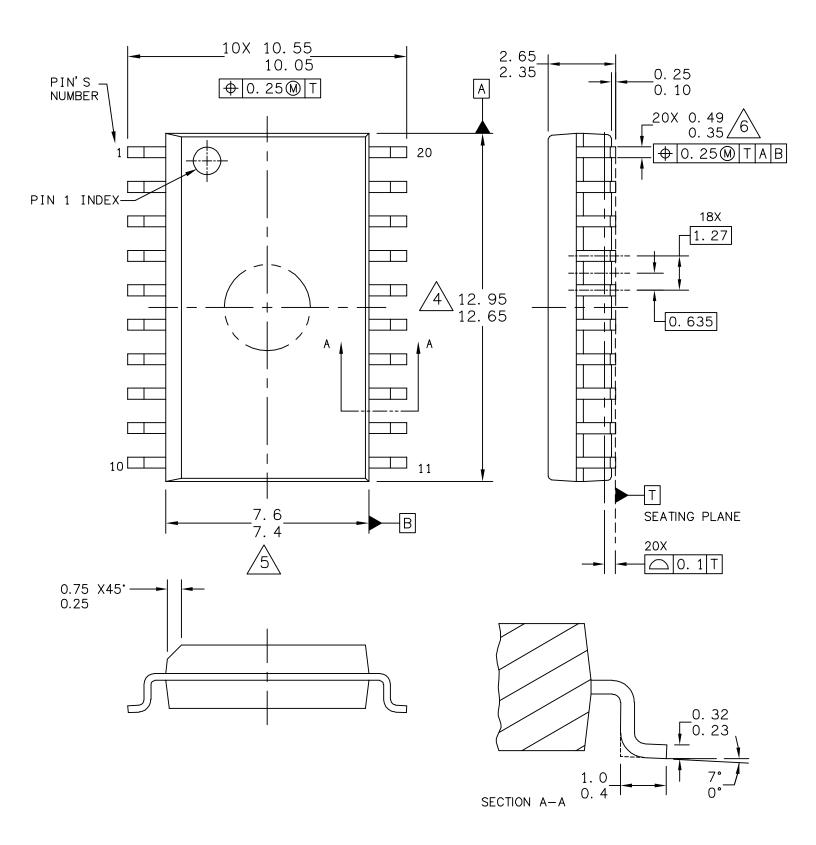
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	TO SCALE
TITLE:		DOCUMENT NO	REV: B	
16 LD TSSOP, PITCH 0.6	5MM	CASE NUMBER	19 MAY 2005	
		STANDARD: JE	DEC	

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NO	TO SCALE	
TITLE:		DOCUMENT NO	l: 98ASB42899B	REV: B
20LD .300 PDIF)	CASE NUMBER	2: 738C−01	24 MAY 2005
2010 .300 1 011		STANDARD: NO	IN-JEDEC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

20LD .300 PDIP


DIM	MILLIME MIN	ETERS MAX	DIM	IN MIN	CHES MAX	DIM	MILLIME MIN	ETERS MAX	DIM	М	INCHE In	ES MAX
Α	24.39	24.99		0.960	0.984							
В	6.96	7.49		0.274	0.295							
С	3.56	5.08		0.140	0.200							
D	0.38	0.56		0.015	0.022							
E	1.27 E	3SC		0.050	D BSC							
F	1.14	1.52		0.045	0.060							
G	2.54 E	3SC		0.100	D BSC							
J	0.20	0.38		0.008	0.015							
K	2.79	3.76		0.110	0.148							
L	7.62 BS	SC		0.300	BSC							
М	0.	15°		0.	15°							
N	0.50	1.01		0.020	0.040							
R	•••••	1.29		••••	0.051							
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			MECHANI	CAL	OUTLINE	PRINT '	VERS:		T TO	SCALE		
TITLE: DOCUMENT NO: 98ASB42899B REV: B					3							

CASE NUMBER: 738C-01

STANDARD: NON-JEDEC

24 MAY 2005

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:	07 017011		: 98ASB42343B	REV: J
20LD SOIC W/B, 1. CASE-OUTLI	CASE NUMBER	: 751D-07	23 MAR 2005	
	INL	STANDARD: JE	DEC MS-013AC	

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9RS08KA8

Rev. 4 6/2009 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale $^{\text{TM}}$ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2009. All rights reserved.

