

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RS08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	254 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.295", 7.50mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9rs08ka8cwgr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MCU	Block Diagram
2		ssignments
3	Electr	rical Characteristics
	3.1	Introduction
	3.2	Parameter Classification
	3.3	Absolute Maximum Ratings
	3.4	Thermal Characteristics
	3.5	ESD Protection and Latch-Up Immunity7
	3.6	DC Characteristics
	3.7	Supply Current Characteristics
	3.8	External Oscillator (XOSC) Characteristics

	3.9	AC Characteristics
		3.9.1 Control Timing 19
		3.9.2 TPM/MTIM Module Timing
	3.10	Analog Comparator (ACMP) Electrical
	3.11	Internal Clock Source Characteristics
	3.12	ADC Characteristics
		Flash Specifications
4	Orde	ring Information
5	Mech	nanical Drawings

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision	Date	Description of Changes
1	1/22/2008	Initial public release
2	10/7/2008	Updated Figure 4 and Figure 10. Updated "How to Reach Us" information. Added 16-pin TSSOP package information.
3	11/4/2008	Updated operating voltage in Table 7.
4	6/11/2009	Added output voltage of high drive at 5 V, $I_{load} = 10$ mA in the Table 7.

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com

Reference Manual (MC9RS08KA8RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9RS08KA8 MCU.

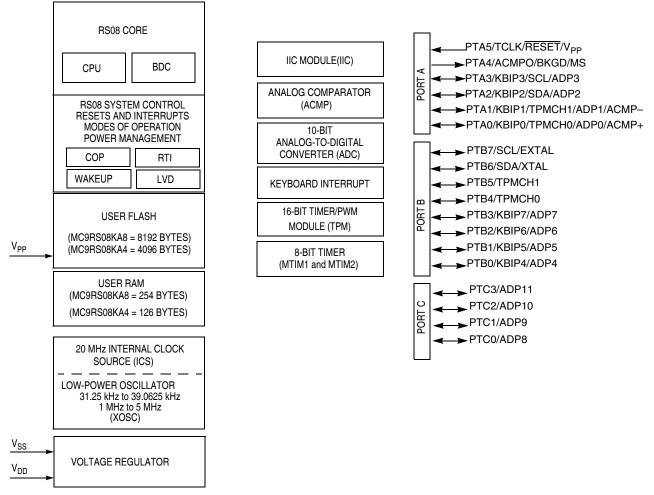
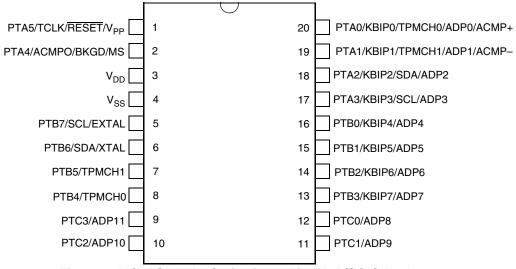


Figure 1. MC9RS08KA8 Series Block Diagram

2 Pin Assignments

This section shows the pin assignments in the packages available for the MC9RS08KA8 series.


Pin Assignments

	in nber		< Low	est Priority	> Highest	
20	16	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4
1	1	PTA5		TCLK	RESET	V _{PP}
2	2	PTA4	ACMPO	BKGD	MS	
3	3					V _{DD}
4	4					V _{SS}
5	5	PTB7	SCL ¹			EXTAL
6	6	PTB6	SDA ¹			XTAL
7	7	PTB5	TPMCH1 ²			
8	8	PTB4	TPMCH0 ²			
9	_	PTC3			ADP11	
10	_	PTC2			ADP10	
11	_	PTC1			ADP9	
12	_	PTC0			ADP8	
13	9	PTB3	KBIP7		ADP7	
14	10	PTB2	KBIP6		ADP6	
15	11	PTB1	KBIP5		ADP5	
16	12	PTB0	KBIP4		ADP4	
17	13	PTA3	KBIP3	SCL ¹	ADP3	
18	14	PTA2	KBIP2	SDA ¹	ADP2	
19	15	PTA1	KBIP1	TPMCH1 ²	ADP1	ACMP-
20	16	PTA0	KBIP0	TPMCH0 ²	ADP0	ACMP+

 Table 1. Pin Availability by Package Pin-Count

¹ IIC pins can be remapped to PTA3 and PTA2

² TPM pins can be remapped to PTA0 and PTA1

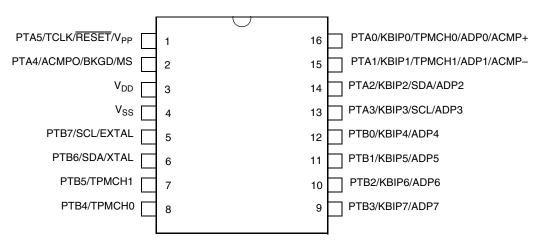


Figure 3. MC9RS08KA8 Series in 16-Pin PDIP/SOIC/TSSOP Package

3 Electrical Characteristics

3.1 Introduction

This chapter contains electrical and timing specifications for the MC9RS08KA8 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 2. Parameter Cla	assifications
------------------------	---------------

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this chapter.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	۱ _D	±25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table	3.	Absolute	Maximum	Ratings
IUNIO	•••	/10001010	maximani	namgo

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

² All functional non-supply pins are internally clamped to V_{SS} and V_{DD} except the $\overline{\text{RESET}}/V_{PP}$ pin which is internally clamped to V_{SS} only.

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H -40 to 85	°C
Maximum junction temperature	T _{JMAX}	105	°C
Thermal resistance 16-pin PDIP	θ_{JA}	80	°C/W
Thermal resistance 16-pin SOIC	θ_{JA}	112	°C/W

Rating	Symbol	Value	Unit
Thermal resistance 16-pin TSSOP	θ_{JA}	75	°C/W
Thermal resistance 20-pin PDIP	θ_{JA}	75	°C/W
Thermal resistance 20-pin SOIC	θ_{JA}	96	°C/W

Table 4. Thermal Characteristics (continued)

The average chip-junction temperature (TJ) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, °C

 θ_{IA} = Package thermal resistance, junction-to-ambient, °C /W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between PD and TJ (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_{D} \times (T_{A} + 273^{\circ}C) + \theta_{JA} \times (PD)^{2}$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions must be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human Body	Storage capacitance	С	100	pF
2003	Number of pulses per pin	—	3	_
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	—	3	_
Lotob up	Minimum input voltage limit	—	-2.5	V
Latch-up	Maximum input voltage limit	—	7.5	V

 Table 5. ESD and Latch-up Test Conditions

Table 6. ESD and Latch-Up Protection Characterist	ics
---	-----

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	—	V
2	Machine model (MM)	V _{MM}	±200	—	V
3	Charge device model (CDM)	V _{CDM}	±500	—	V
4	Latch-up current at $T_A = 85^{\circ}C$ (applies to all pins except pin 9 PTC3/ADP11)	I _{LAT}	±100 ²	_	mA
	Latch-up current at $T_A = 85^{\circ}C$ (applies to pin 9 PTC3/ADP11)	I _{LAT}	±75 ³	_	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

 $^2~$ These pins meet JESD78A Class II (section 1.2) Level A (section 1.3) requirement of $\pm 100 m A.$

 $^3\,$ This pin meets JESD78A Class II (section 1.2) Level B (section 1.3) characterization to ± 75 mA. This pin is only present on 20 pin package types.

3.6 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Parameter	Symbol	Min	Typical	Max	Unit
Supply voltage (run, wait and stop modes.) 0 < f _{Bus} <10MHz V _{DD} rising V _{DD} falling	V _{DD}	2.0 1.8	_	5.5	v
Minimum RAM retention supply voltage applied to V_{DD}	V _{RAM}	0.8 ¹	—	—	V
Low-voltage Detection threshold (V _{DD} falling) (V _{DD} rising)	V _{LVD}	1.80 1.88	1.86 1.94	1.95 2.03	v
Power on RESET (POR) voltage	V _{POR} ¹	0.9	—	1.7	V

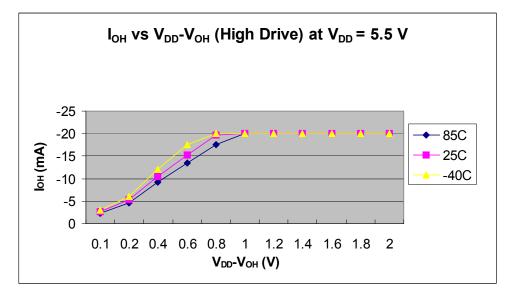


Figure 4. Typical I_{OH} vs. V_{DD} – V_{OH} V_{DD} = 5.5 V (High Drive)

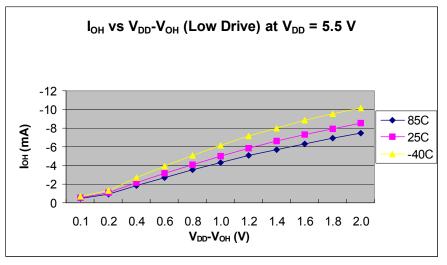


Figure 5. Typical I_{OH} vs. V_{DD}–V_{OH} V_{DD} = 5.5 V (Low Drive)

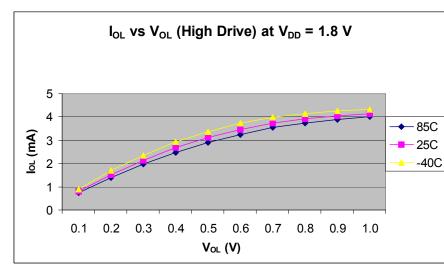


Figure 14. Typical I_{OL} vs. V_{DD}–V_{OL} V_{DD} = 1.8 V (High Drive)

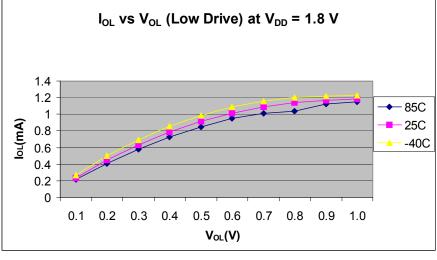


Figure 15. Typical I_{OL} vs. V_{DD}–V_{OL} V_{DD} = 1.8 V (Low Drive)

3.7 Supply Current Characteristics

Table 8.	Supply	Current	Characteristics
----------	--------	---------	-----------------

Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Temp. (°C)
		5	2.4 mA	5 mA	25 85
Run supply current ³ measured at (f _{Bus} = 10 MHz)	RI _{DD10}	3	2.4 mA	_	25 85
		1.80	1.7 mA		25 85

Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Temp. (°C)
		5	0.42 mA	2 mA	25 85
Run supply current ³ measured at (f _{Bus} = 1.25 MHz)	RI _{DD1}	3	0.42 mA	_	25 85
		1.80	0.3 mA	2 mA	25 85
		5	2.4 μA		25 85
Stop mode supply current	SI _{DD}	3	2 μΑ	_	25 85
		1.80	1.5 μA	_	25 85
		5	128 μA		25 85
ADC adder from stop ⁴	_	3	121 μA	_	25 85
		1.80	79 μA	_	25 85
		5	21 μA	22 μA	25 85
ACMP adder from stop (ACME = 1)	_	3	18.5 μA	_	25 85
	SI_{DD} 3 1.80 5 $ 3$ 1.80 1.80 5 $ 3$ 1.80 5 $ 3$ 1.80 5 $ 3$ 1.80 5 $ 3$ 1.80 5 $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ 5$ $ -$	17.5 μA	_	25 85	
		5	2.4 μA	2 μΑ	25 85
RTI adder from stop with 1 kHz clock source enabled ⁵	_	3	1.9 μA	_	25 85
		1.80	1.5 μA	_	25 85
		5	2.1 μA	2 μΑ	25 85
RTI adder from stop with 1 MHz external clock source reference enabled	_	3	1.6 μA	_	25 85
enableu	$ \begin{array}{c c} - & 3 & 1.9 \ \mu A & - & \\ \hline 1.80 & 1.5 \ \mu A & - & \\ \hline 5 & 2.1 \ \mu A & 2 \ \mu A & \\ \hline 0 & 1.6 \ \mu A & - & \\ \hline \end{array} $	25 85			
		5	70 μA	80 μA	25 85
LVI adder from stop (LVDE=1 and LVDSE=1)	_	3	65 μΑ	_	25 85
		1.80	60 μA		25 85

¹ Typicals are measured at 25°C.

² Maximum value is measured at the nominal V_{DD} voltage times 10% tolerance. Values given here are preliminary estimates prior to completing characterization.

³ Not include any DC loads on port pins.
 ⁴ Required asynchronous ADC clock and LVD to be enabled.

3.9.2 TPM/MTIM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Num	С	Rating	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	D	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

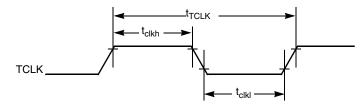


Figure 19. Timer External Clock

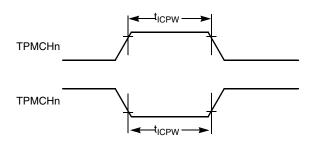


Figure 20. Timer Input Capture Pulse

3.10 Analog Comparator (ACMP) Electrical

Table 12. Analog Comparator Electrical Specifications

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage	V _{DD}	1.80		5.5	V
2	Р	Supply current (active)	I _{DDAC}	_	20	35	μA
3	D	Analog input voltage ¹	V _{AIN}	V _{SS} – 0.3	—	V _{DD}	V
4	Р	Analog input offset voltage ¹	V _{AIO}	_	20	40	mV
5	С	Analog Comparator hysteresis ¹	V _H	3.0	9.0	15.0	mV
6	С	Analog source impedance ¹	R _{AS}	_	_	10	kΩ
7	Р	Analog input leakage current	I _{ALKG}	—	—	1.0	μA
8	С	Analog Comparator initialization delay	t _{AINIT}	_	—	1.0	μS

Characteristic	Conditions	С	Symb	Min	Typical ¹	Max	Unit		
Supply current	Stop, reset, module off	т	I _{DDAD}	_	0.011	1	μA		
ADC asynchronous clock	High speed (ADLPC = 0)		f	—	3.3	—	MHz		
source	Low power (ADLPC = 1)	Т	f _{ADACK}	_	2	—			
Conversion time (including	Short sample (ADLSMP=0)	Р	+	_	20	_	ADCK		
Supply currentSADC asynchronous clock sourceHConversion time (including sample time)SSample time)LSample timeSTotal unadjusted error1Differential non-linearity1Integral non-linearity1Zero-scale error1Full-Scale error1VADIN = VDDA8Quantization error1	Long sample (ADLSMP=1)		t _{ADC}	_	40	—	cycles		
Sampla tima	Short sample (ADLSMP=0)	Р	+	—	3.5	—	ADCK		
Sample line	Long sample (ADLSMP=1)		t _{ADS}	_	23.5	_	cycles		
Total upadiusted array	10 bit mode	с	E _{TUE}	—	±1	±2.5	LSB ²		
rotar unadjusted error	8 bit mode			_	±0.5	±1.0			
	10 bit mode	Р		—	±0.5	±1.0	LSB ²		
Differential non-linearity	8 bit mode	Т	DINL	_	±0.3	±0.5			
	Monotonicity and No-Missing-Codes guaranteed								
Integral pap linearity	10 bit mode	Image Image Image Image node T DNL — ±0.3 Monotonicity and No-Missing-Codes guaranteed mode C INL — ±0.5 node C INL — ±0.3	INII	—	±0.5	±1.0	LSB ²		
integral non-linearity	8 bit mode		±0.5	LOD					
Zoro coolo orror	10 bit mode	Р	E	—	±0.5	±1.5	LSB ²		
	8 bit mode	Т	E _{ZS}	_	±0.5	±0.5	LOD		
Full-Scale error	10 bit mode	Р	E	—	±0.5	±1.5	LSB ²		
VADIN = VDDA	8 bit mode	Т	E _{FS}	_	±0.5	±0.5	LOD		
Quantization arrar	10 bit mode	D	E	—	—	±0.5			
Quantization enor	8 bit mode		EQ	—	_	±0.5	LSB ²		
Input leakage error	10 bit mode		E	—	±0.2	±2.5	LSB ²		
pad leakage ³ * RAS	8 bit mode	D	E _{IL}	_	±0.1	±1	LOD		

¹ Typical values assume Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Based on input pad leakage current. Refer to pad electrical.

3.13 Flash Specifications

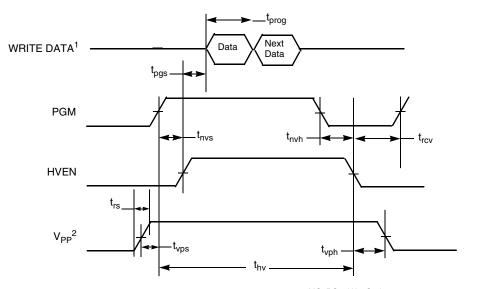
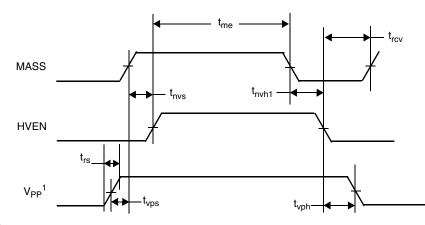

This section provides details about program/erase times and program-erase endurance for the flash memory. For detailed information about program/erase operations, see the reference manual.

Table 1	16.	Flash	Characteristics
---------	-----	-------	-----------------

Characteristic	Symbol	Min	Typical ¹	Max	Unit
Supply voltage for program/erase	V _{DD}	2.7	_	5.5	V


MC9RS08KA8 Series MCU Data Sheet, Rev. 4

¹ Next Data applies if programming multiple bytes in a single row, refer to $^{MC9RS08KA8 Series}$ Reference Manual. ² V_{DD} must be at a valid operating voltage before voltage is applied or removed from the V_{PP} pin.

Figure 23. Flash Program Timing

 1 V_{DD} must be at a valid operating voltage before voltage is applied or removed from the V_{PP} pin.

Figure 24. Flash Mass Erase Timing

STYLE 1:

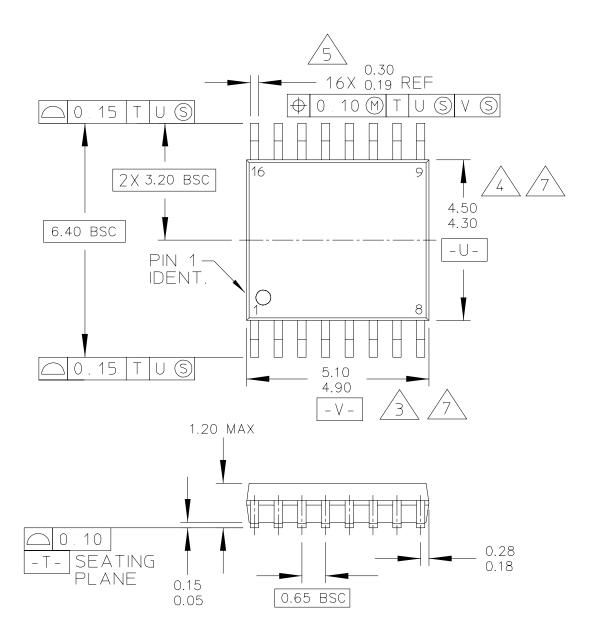
PIN 1. CATHODE

- 2. CATHODE
- 3. CATHODE
- 4. CATHODE
- 5. CATHODE
- 6. CATHODE
- 7. CATHODE
- 8. CATHODE
- 9. ANODE
- 10. ANODE
- 11. ANODE
- 12. ANODE
- 13. ANODE
- 14. ANODE
- 15. ANODE
- 16. ANODE

STYLE 2:

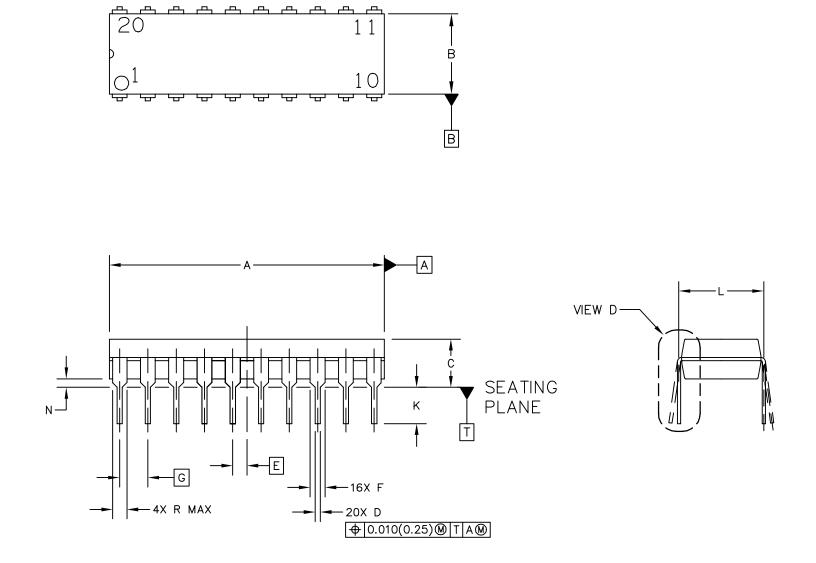
- PIN 1. COMMON DRAIN
 - 2. COMMON DRAIN
 - 3. COMMON DRAIN
 - 4. COMMON DRAIN
 - 5. COMMON DRAIN
 - 6. COMMON DRAIN
 - 7. COMMON DRAIN
 - 8. COMMON DRAIN
 - 9. GATE
 - 10. SOURCE
 - 11. GATE
 - 12. SOURCE
 - 13. GATE
 - 14. SOURCE
 - 15. GATE
 - 16. SOURCE

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42431B	REV: T
16 LD PDIP		CASE NUMBER	19 MAY 2005	
		STANDARD: NO	N-JEDEC	



NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 5. THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- 6. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.


© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	LOUTLINE	PRINT VERSION NO	DT TO SCALE		
TITLE:		DOCUMENT NO	REV: F		
16LD SOIC W/B, 1.27 PITCH, Case outline		CASE NUMBER: 751G-04		02 JUN 2005	
	-	STANDARD: JEDEC MS-013AA			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NOT TO SCALE		
TITLE:	DOCUMENT NE	RE∨: B			
16 LD TSSOP, PITCH 0.65	CASE NUMBER	19 MAY 2005			
		STANDARD: JEDEC			

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		LOUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE:		DOCUMENT NO	RE∨: B	
20LD .300 PDIF)	CASE NUMBER	24 MAY 2005	
		STANDARD: NE	IN-JEDEC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

DIM	MILLIM MIN	IETERS MAX	DIM	IN MIN	ICHES MAX	DIM	MILLIM	ETERS MAX	DIM	MI	INCHES N MAX	
А	24.39	24.99		0.960	0.984							
В	6.96	7.49		0.274	0.295							
С	3.56	5.08		0.140	0.200							
D	0.38	0.56		0.015	0.022							
E	1.27	BSC		0.05	0 BSC							
F	1.14	1.52		0.045	0.060							
G	2.54	BSC		0.100 BSC								
J	0.20	0.38		0.008	0.015							
К	2.79	3.76		0.110	0.148							
L	7.62 B	SC		0.300	0.300 BSC							
М	0.	15 .		0.	15 '							
N	0.50	1.01		0.020	0.040							
R	•••••	1.29		•••••	0.051							
0	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.			CAL	AL OUTLINE PRINT VERSION NOT			T TO SCALE				
TITL	TITLE:				l	DDCUMENT ND: 98ASB42899B REV: 1			RE∨: B			
	20LD .300 PDIP				ASE NUMBER	R: 738C-01			24 MAY 200	5		
					5	STANDARD: NON-JEDEC						

