E·XFL

NXP USA Inc. - DSPB56725CAF Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Not For New Designs
Туре	Audio Processor
Interface	Host Interface, I ² C, SAI, SPI
Clock Rate	200MHz
Non-Volatile Memory	External
On-Chip RAM	112kB
Voltage - I/O	3.30V
Voltage - Core	1.00V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/dspb56725caf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Elect	rical Ch	naracteristics4
	1.1	Chip-L	evel Conditions
		1.1.1	Maximum Ratings4
		1.1.2	Thermal Characteristics
		1.1.3	Power Requirements
		1.1.4	Power Consumption Considerations7
		1.1.5	DC Electrical Characteristics
		1.1.6	AC Electrical Characteristics
		1.1.7	Internal Clocks9
		1.1.8	External Clock Operation
		1.1.9	Reset, Stop, Mode Select, and Interrupt Timing 11
	1.2	Modul	e-Level Specifications
		1.2.1	Serial Host Interface SPI Protocol Timing15
		1.2.2	Serial Host Interface (SHI) I ² C Protocol Timing.21
		1.2.3	Programming the SHI I ² C Serial Clock
		1.2.4	Enhanced Serial Audio Interface Timing24
		1.2.5	GPIO Timing

		1.2.6	JTAG Timing
		1.2.7	Watchdog Timer Timing
		1.2.8	S/PDIF Timing
		1.2.9	EMC Timing Specifications—DSP56724 34
2	Fund	tional D	Description and Application Information 39
3	Orde	ring Inf	ormation
4	Pack	age Infe	ormation
	4.1	Pinout	and Package Information 40
		4.1.1	Pinout for DSP56724 144-Pin Plastic LQFP
			Package
		4.1.2	Pinout for DSP56725 80-Pin Plastic LQFP Package
			41
		4.1.3	Pin Multiplexing 41
	4.2	144-P	in Package Outline Drawing 42
	4.3	80-Pir	Package Outline Drawing
5	Prod	uct Doc	umentation
6	Revis	sion His	tory

1 Electrical Characteristics

1.1 Chip-Level Conditions

Table 1 provides a quick reference to the subsections in this section.

-	
For	See
Section 1.1.1, "Maximum Ratings"	on page 4
Section 1.1.2, "Thermal Characteristics"	on page 6
Section 1.1.3, "Power Requirements"	on page 6
Section 1.1.5, "DC Electrical Characteristics"	on page 8
Section 1.1.6, "AC Electrical Characteristics"	on page 9
Section 1.1.7, "Internal Clocks"	on page 9
Section 1.1.8, "External Clock Operation"	on page 10
Section 1.1.9, "Reset, Stop, Mode Select, and Interrupt Timing"	on page 11

Table 1. Chip-Level Conditions

1.1.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability of operation is enhanced if unused inputs are pulled to an appropriate logic voltage level (for example, either GND or V_{DD}). The suggested value for a pull-up or pull-down resistor is 4.7 k Ω .

NOTE

In the calculation of timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification will never occur in the same device that has a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Table 2 lists the maximum ratings.

Rating ¹	Symbol	Value ^{1, 2}	Unit
Supply Voltage	V _{CORE_VDD} , V _{PLLD_VDD}	-0.3 to + 1.26	V
	V _{PLLP_VDD} , V _{IO_VDD} , V _{IO_VDD_25} , V _{PLLA_VDD}	-0.3 to + 4.0	v
Maximum CORE_VDD power supply ramp time	Tr	10	ms
Input Voltage per pin excluding VDD and GND	V _{IN}	GND – 0.3 to 5.5 V	V
Current drain per pin excluding V_{DD} and GND (Except for pads listed below)	I	12	mA
LSYNC_OUT	I _{lsync_out}	5	mA
LCLK	l _{lclk}	5	mA
LALE	I _{ale}	5	mA
TDO	I _{JTAG}	12	mA
Operating temperature range • Fsys < 200 MHz • Fsys < 250 MHz	ТЈ	-40 to +100 0 to 90	°C
Storage temperature	T _{STG}	-65 to +150	°C
ESD protected voltage (Human Body Model)	—	2000	V
ESD protected voltage (Charged Device Model) All pins Corner pins 	_	500 750	V

Table 2. Maximum Ratings

Note:

1. GND = 0 V, T_J = –40° C to 100° C, CL = 50 pF

2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to the device.

 Table 5. Internal Clocks (Continued)

No.	Characteristics	Symbol	Min	Тур	Мах	Unit	Condition
3	PLL VCO Frequency	Fvco	200	—	500	MHz	Fvco = (Fin * NF)/NR
4	Output Clock Frequency [1] [2] • with PLL enabled • with PLL disabled	Fout	25 —	—	200 or 250 200 or 250	MHz	Fout = Fvco/NO Fout = Fin
5	System Clock Frequency with PLL enabled^[2] with PLL disabled 	Fsys	0.195 0	_	200 or 250 200	MHz	Fsys = Fout/2 ^{DF} Fsys = Fout

Note:

1. Fin = External frequency

NF = Multiplication Factor

NR = Predivision Factor

NO = Output Divider

DF = Division Factor

2. Maximum frequency of 200 MHz supported at 0.95 V < V_{VDD_CORE} < 1.05 V and -40 < Tj < 100° C Maximum frequency of 250 MHz supported at 1.14 V < V_{VDD_CORE} < 1.26 V and 0 < Tj < 90° C

1.1.8 External Clock Operation

The DSP56724/DSP56725 system clock is derived from the on-chip oscillator or is externally supplied. To use the on-chip oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL; see Figure 6.

Figure 6. Using the On-Chip Oscillator

If the DSP56724/DSP56725 system clock is an externally supplied square wave voltage source, it is connected to EXTAL (Figure 7). When the external square wave source is connected to EXTAL, the XTAL pin is not used.

Note: The midpoint is $0.5 (V_{IH} + V_{IL})$.

Figure 7. External Clock Timing

No.	Characteristics	Expression	Min	Max	Unit
19	Duration of level sensitive IRQA assertion to ensure interrupt service (when exiting Stop) ^{1, 2, 3}				
	 PLL is active during Stop and Stop delay is enabled (OMR Bit 6 = 0) 	(128 Kbytes $\times T_{C)}$	655	—	μs
	PLL is active during Stop and Stop delay is not enabled (OMR Bit 6 = 1)	$25 imes T_{C}$	125	—	ns
	• PLL is not active during Stop and Stop delay is enabled (OMR Bit 6 = 0)	(128KxT _C) + PLL _{LOCK}	855	—	μs
	 PLL is not active during Stop and Stop delay is not enabled (OMR Bit 6 = 1) 	$(25 \times T_{C}) + PLL_{LOCK}$	200	—	μs
20	Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose transfer output valid caused by first interrupt instruction execution ¹	10 × T _C + 3.8	_	53.8	ns
21	Interrupt Requests Rate ¹	10T		<u> </u>	
	• ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1, TIMER, TIMER_T	12 × 1 _C	_	60.0	ns
	• DMA	8 × T _C		40.0	ns
	• IRQ, NMI (edge trigger)	$8 \times T_C$	—	40.0	ns
	• IRQ (level trigger)	$12 \times T_{C}$	—	60.0	ns
22	DMA Requests Rate				
	• Data read from ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1	6 × T _C		30.0	ns
	• Data write to ESAI, ESAI_1, ESAI_2, ESAI_3, SHI, SHI_1	$7 \times T_{C}$		35.0	ns
	Timer, Timer_1	$2 \times T_{C}$	—	10.0	ns
	IRQ, NMI (edge trigger)	$3 \times T_C$	—	15.0	ns

Table 7. Reset, Stop, Mode Select, and Interrupt Timing (Continued)

Note:

1. When using fast interrupts and when IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to prevent multiple interrupt service. To avoid these timing restrictions, the Edge-triggered mode is recommended when using fast interrupts. Long interrupts are recommended when using Level-sensitive mode.

2. For PLL disable, if using an external clock (PCTL Bit 13 = 1), no stabilization delay is required and recovery time will be defined by the OMR Bit 6 settings.

For PLL enable, (if bit 12 of the PCTL register is 0), the PLL is shut down during Stop. Recovering from Stop requires the PLL to get locked. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 200 us.

3. Periodically sampled and not 100% tested.

4. RESET duration is measured during the time in which RESET is asserted, V_{DD} is valid, and the EXTAL input is active and valid. When V_{DD} is valid, but the other "required RESET duration" conditions (as specified above) have not been yet met, the device circuitry will be in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize this state to the shortest possible duration.

Figure 8 shows the reset timing diagram.

Figure 8. Reset Timing

Figure 9 shows external fast interrupt timing diagram.

Figure 9. External Fast Interrupt Timing

Figure 10 shows external interrupt timing (negative edge-triggered).

Figure 10. External Interrupt Timing (Negative Edge-Triggered)

Figure 11 shows MODE select set-up and hold time diagram.

Figure 11. MODE Select Set-Up and Hold Time

1.2 Module-Level Specifications

Table 8 provides a quick reference to the subsections of this section.

Table 8. Module-Level Specifications

For	See
Section 1.2.1, "Serial Host Interface SPI Protocol Timing"	on page 4
Section 1.2.2, "Serial Host Interface (SHI) I ² C Protocol Timing"	on page 6
Section 1.2.3, "Programming the SHI I ² C Serial Clock"	on page 6
Section 1.2.4, "Enhanced Serial Audio Interface Timing"	on page 8
Section 1.2.5, "GPIO Timing"	on page 29
Section 1.2.6, "JTAG Timing"	on page 30
Section 1.2.7, "Watchdog Timer Timing"	on page 32
Section 1.2.8, "S/PDIF Timing"	on page 33
Section 1.2.9, "EMC Timing Specifications—DSP56724"	on page 34

No.	Characteristics ^{1,3,4}	Mode	Filter Mode	Expression	Min	Max	Unit
27	SS assertion to first SCK edge	Slave	Bypassed	$2.0 imes T_{C} + 2$	35	—	ns
	СРНА = 0		Very Narrow	2.0 × T _C + 1	25	—	ns
			Narrow	_	0	—	ns
			Wide	_	0	—	ns
	CPHA = 1	Slave	Bypassed	_	10	—	ns
			Very Narrow	_	0	—	ns
			Narrow	_	0	—	ns
			Wide	_	0	—	ns
28	Last SCK edge to \overline{SS} not asserted	Slave	Bypassed	_	12	—	ns
			Very Narrow	_	22	—	ns
			Narrow	_	100	—	ns
			Wide	_	200	—	ns
29	Data input valid to SCK edge (data input	Master	Bypassed	_	0	—	ns
	set-up time)	/Slave	Very Narrow	_	0	—	ns
			Narrow	_	0	—	ns
			Wide	_	0	—	ns
30	SCK last sampling edge to data input not	Master	Bypassed	2 × T _C + 10	20	—	ns
	valid	/Slave	Very Narrow	$2 \times T_{C} + 30$	40	—	ns
			Narrow	$2 \times T_{C} + 60$	70	—	ns
			Wide	_	100.0	—	ns
31	SS assertion to data out active	Slave	—	—	5	—	ns
32	SS deassertion to data high impedance ²	Slave	—	—	—	9	ns
33	SCK edge to data out valid	Master	Bypassed	—	_	45	ns
	(data out delay time)	/Slave	Very Narrow	_	—	110	ns
			Narrow	_	—	135	ns
			Wide	—	—	225	ns
34	SCK edge to data out not valid	Master	Bypassed	—	10	—	ns
	(uata out noid time)	/SIAVe	Very Narrow		15	—	ns
			Narrow		55	_	ns
			Wide		105	—	ns
35	SS assertion to data out valid (CPHA = 0)	Slave	_		_	14.0	ns

Table 9. Serial Host Interface SPI Protocol Timing (Continued)

No.	Characteristics ^{1,3,4}	Mode	Filter Mode	Expression	Min	Max	Unit
36	First SCK sampling edge to HREQ output	Slave	Bypassed	—	45		ns
	deassertion		Very Narrow	—	55	_	ns
			Narrow	—	95	_	ns
			Wide	—	145	_	ns
37	Last SCK sampling edge to $\overline{\text{HREQ}}$ output	Slave	Bypassed	—	50.0	_	ns
	not deasserted (CPHA = 1)		Very Narrow	—	60.0	_	ns
			Narrow	—	100.0	_	ns
			Wide	—	150.0	_	ns
38	\overline{SS} deassertion to \overline{HREQ} output not deasserted (CPHA = 0)	Slave	_	—	45.0		ns
39	\overline{SS} deassertion pulse width (CPHA = 0)	Slave	—	$2 \times T_{C}$	0	_	ns
40	$\overline{\text{HREQ}}$ in deassertion to last SCK sampling edge ($\overline{\text{HREQ}}$ in set-up time) (CPHA = 1)	Master	—	_	0		ns
41	First SCK edge to HREQ in not asserted (HREQ in hold time)	Master	—	_	0		ns
42	HREQ assertion width	Master	_	$3.0 imes T_C$	15	_	ns

Table 9. Serial Host Interface SPI Protocol Timing (Continued)

Note:

1. 0.95 V < V_{VDD_CORE} < 1.05 V and T_J < 100° C, C_L = 50 pF

2. Periodically sampled, not 100% tested

3. All times assume noise free inputs.

4. All times assume internal clock frequency of 200 MHz.

5. SHI_1 specs match those of SHI

6. Slave timings should equal the serial clock high period + the serial clock low period.

Figure 13 shows the SPI master timing (CPHA = 1).

Figure 13. SPI Master Timing (CPHA = 1)

Figure 15 shows the SPI slave timing (CPHA = 1).

Figure 15. SPI Slave Timing (CPHA = 1)

1.2.2 Serial Host Interface (SHI) I²C Protocol Timing

Table 10 lists the SHI I²C protocol timing diagram.

Table	10.	SHI	l ² C	Protocol	Timing
-------	-----	-----	------------------	----------	--------

	Standard I ² C									
No	Characteristics 1,2,3,4,5	Symbol/ Expression	Stan	dard	Fast-M	Unit				
NO.	Characteristics		Min	Max	Min	Max				
XX	Tolerable Spike Width on SCL or SDA Filters Bypassed Very Narrow Filters enabled Narrow Filters enabled Wide Filters enabled.	_	 	0 10 50 100		0 10 50 100	ns ns ns ns			
44	SCL clock frequency	F _{SCL}	_	100	_	400	kHz			
44	SCL clock cycle	T _{SCL}	10	—	2.5	—	μs			
45	Bus free time	T _{BUF}	4.7	—	1.3	—	μs			
46	Start condition set-up time	T _{SUSTA}	4.7		0.6		μs			

Figure 16 shows the I²C timing diagram.

Figure 16. I²C Timing

1.2.4 Enhanced Serial Audio Interface Timing

Table 11 lists the enhanced serial audio interface timing.

Table 11.	Enhanced	Serial	Audio	Interface	Timing
-----------	----------	--------	-------	-----------	--------

No.	Characteristics ^{1, 2, 3}	Symbol	Expression ³	Min	Max	Condition ⁴	Unit
62	Clock cycle ⁵	tssicc	$\begin{array}{c} 4\times T_{\text{C}} \\ 4\times T_{\text{C}} \end{array}$	20.0 20.0		i ck i ck	ns
63	Clock high period • For internal clock	_	$2 \times T_{c}$	10		_	ns
	For external clock	—	$2 \times T_{C}$	10	—	—	
64	Clock low period • For internal clock	_	2×T _c	10		_	ns
	For external clock	—	$2 \times T_{C}$	10	—	—	
65	SCKR rising edge to FSR out (bl) high	—	—	_	17.0 7.0	xck icka	ns
66	SCKR rising edge to FSR out (bl) low	_	—	_	17.0 7.0	x ck i ck a	ns
67	SCKR rising edge to FSR out (wr) high ⁶	—	—	_	19.0 9.0	x ck i ck a	ns
68	SCKR rising edge to FSR out (wr) low ⁶	—	—	_	19.0 9.0	x ck i ck a	ns
69	SCKR rising edge to FSR out (wI) high	—	—	_	16.0 6.0	x ck i ck a	ns
70	SCKR rising edge to FSR out (wl) low	—	—	_	17.0 7.0	x ck i ck a	ns

Figure 17 shows the ESAI transmitter timing diagram.

Note: In network mode, output flag transitions can occur at the start of each time slot within the frame. In normal mode, the output flag state is asserted for the entire frame period.

Figure 17. ESAI Transmitter Timing

Figure 18 shows the ESAI receiver timing diagram.

Figure 18. ESAI Receiver Timing

Figure 19 shows the ESAI HCKT timing diagram.

Figure 20 shows the ESAI HCKR timing diagram.

Figure 20. ESAI HCKR Timing

1.2.5 GPIO Timing

Table 12 lists the GPIO timing.

Table 12. GPIO Timing

No.	Characteristics ¹	Expression	Min	Max	Unit
100	Fsys edge to GPIO out valid (GPIO out delay time) ²	—	—	7	ns
101	Fsys edge to GPIO out not valid (GPIO out hold time) ²	—	—	7	ns
102	Fsys In valid to EXTAL edge (GPIO in set-up time) ²	_	2	—	ns
103	Fsys edge to GPIO in not valid (GPIO in hold time) ²	—	0	—	ns
104	Minimum GPIO pulse high width	2 × TC	10	—	ns
105	Minimum GPIO pulse low width	2 × TC	10	—	ns
106	GPIO out rise time	—	—	13.0	ns
107	GPIO out fall time	—	_	13.0	ns

Note:

1. 0.95 V < V_{VDD_CORE} < 1.05 V and Tj < 100° C, C_L = 50 pF

2. Simulation numbers-subject to change.

Figure 22 shows the text clock input timing diagram.

Figure 22. Test Clock Input Timing Diagram

Figure 23 shows the debugger port timing diagram.

Figure 23. Debugger Port Timing Diagram

Figure 28 shows the EMC signals diagram, with EMC PLL bypassed.

Figure 28. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 4

Table 18 lists the EMC timing parameters with EMC PLL bypassed.

Parameter		Min	Мах	Unit
LCLK cycle time		$8 \times T_{C}$	—	ns
Input setup to LCLK (except LGTA/LUPWAIT)		8	—	ns
Input hold from LCLK (except LGTA/LUPWAIT) ¹		-1	—	ns
LGTA valid time	T _{gta}	42	—	ns
LUPWAIT valid time		42	—	ns
LALE negedge to LAD (address phase) invalid (address latch hold time)	T _{ale_h}	5	—	ns
LALE valid time	T _{ale}	34	_	ns

Parameter		Min	Мах	Unit
Output setup from LCLK (except LAD[23:0] and LALE)	T _{out_s}	19	—	ns
Output hold from LCLK (except LAD[23:0] and LALE)		18	—	ns
LAD[23:0] output setup from LCLK	T _{ad_s}	18	—	ns
LAD[23:0] output hold from LCLK	T _{ad_h}	17	—	ns
LCLK to output high impedance for LAD[23:0]	T _{ad_z}	_	17.1	ns

Table 18. EMC Timing Parameters (EMC PLL Bypassed; LRCC[CLKDIV] = 8)

Note:

1. Negative hold time means the signal could be invalid before LCLK raising edge.

Figure 29 shows the EMC signals diagram, with EMC PLL bypassed.

Figure 29. EMC Signals (EMC PLL Bypassed; LRCC[CLKDIV] = 8)

2 Functional Description and Application Information

Refer to the *Symphony*[™] *DSP56724/DSP56725 Multi-Core Audio Processors Reference Manual* (DSP56724RM) for detailed functional and applications information.

3 Ordering Information

Table 19 shows the ordering information for the DSP56724/DSP56725 devices.

Device	Device Marking	Ambient Temp.	Speed	Voltage	LQFP Package
DSP56724	DSPB56724AG	0° C–70° C	250 MHz	1.14–1.26 V	$20 \text{ mm} \times 20 \text{ mm}$
DSP56724	DSPB56724CAG	–40° C–85° C	200 MHz	0.95–1.05 V	$20 \text{ mm} \times 20 \text{ mm}$
DSP56725	DSPB56725AF	0° C–70° C	250 MHz	1.14–1.26 V	$14 \text{ mm} \times 14 \text{ mm}$
DSP56725	DSPB56725CAF	–40° C–85° C	200 MHz	0.95–1.05 V	$14 \text{ mm} \times 14 \text{ mm}$

Table 19. Ordering Information

Contact your local Freescale sales representative for ordering information.

4 Package Information

This section provides package and pinout information.

Table 20 is a quick reference to the package outline drawings.

Table 20. Package Outline Drawings

Device	Package	See
DSP56724	144-pin plastic LQFP	See Section 4.2, "144-Pin Package Outline Drawing," on page 42.
DSP56725	80-pin plastic LQFP	See Section 4.3, "80-Pin Package Outline Drawing," on page 44.

4.1.3 Pin Multiplexing

Many pins are multiplexed, and depending on the selected configuration, can be one of three possible signals. For more about pin multiplexing, refer to the *Symphony*TM *DSP56724/DSP56725 Multi-Core Audio Processors Reference Manual* (DSP56724RM).